k-DISCRETENESS AND *k*-ANALYTIC SETS

RONALD C. FREIWALD

1. Preliminaries. All spaces considered here are metrizable. k will always denote an infinite cardinal. The successor of k will be denoted by k^+ .

Of particular interest will be the Baire spaces $B(k) = \prod_{n=1}^{\infty} T_n$, where each T_n is a discrete space of cardinal k. The product topology on B(k) is the same as the topology given by the (complete) "first-difference" metric, $\rho : \rho(s, t) = 1/n$ if $s_i = t_i$ for $1 \leq i \leq n-1$ and $s_n = t_n$. A great deal of information about these spaces can be found in [4].

A subset A of X is called *k*-analytic (in X) if there exist, for each $t \in B(k)$, closed subsets $F(t_1), \ldots, F(t_1, \ldots, t_n), \ldots$ of X such that

 $A = \bigcup \{ \bigcap_{n=1}^{\infty} F(t_1, \ldots, t_n) : t \in B(k) \}.$

A is called *absolutely k-analytic* if A is homeomorphic to a k-analytic set in some complete metric space. This is equivalent to saying that A is k-analytic in any metric space in which it is embedded. The k-analytic sets of X contain the family of Borel sets of X. Sets k-analytic in this sense were introduced in [5], where their basic properties are discussed.

If A is a subset of the metric space (X, d) and if, for some $\epsilon > 0$, $d(x, y) \ge \epsilon$ whenever x, $y \in A$, we say A is ϵ -discrete (in (X, d)). A is called *metrically* discrete if A is ϵ -discrete for some $\epsilon > 0$.

2. k-discrete sets. In this section, we introduce the idea of k-discreteness and some of its elementary properties. Essentially the same concept occurs in a different context in [3]. It is designed as a measure of the "thinness" of a space. We precede the definition with the following lemma.

LEMMA 1. Let $A \subseteq (X, d)$. Then the following are equivalent:

(1) $A = \bigcup \{X(\lambda) : \lambda \in \mathfrak{A}\}, \text{ where } |\mathfrak{A}| \leq k \text{ and each } X(\lambda) \text{ is discrete in its relative topology.}$

(2) $A = \bigcup \{Y(\lambda) : \lambda \in \mathfrak{B}\}$, where $|\mathfrak{B}| \leq k$ and each $Y(\lambda)$ is discrete in its relative topology and closed in X.

(3) $A = \bigcup \{Z(\lambda) : \lambda \in \mathfrak{C}\}, \text{ where } |\mathfrak{C}| \leq k \text{ and each } Z(\lambda) \text{ is metrically discrete.}$

Proof. Only that (1) implies (3) is not immediate. For each $x \in X(\lambda)$, there is a $\delta(x) > 0$ such that $X(\lambda) \cap S(x; \delta(x)) = \{x\}$. Let

 $X(\lambda, n) = \{x \in X(\lambda) : \delta(x) \ge 1/n\}.$

Received March 8, 1978 and in revised form February 27, 1979.

Then $A = \bigcup \{\bigcup_{n=1}^{\infty} X(\lambda, n) : \lambda \in \mathfrak{A}\}$, and each $X(\lambda, n)$ is metrically discrete.

Definition 2. A space A is called *k*-discrete if any one of the equivalent conditions of Lemma 1 holds.

Some elementary properties of k-discreteness are immediate. It is trivial that k-discreteness is a topological invariant. Indeed, though we shall not use the fact, k-discreteness is an invariant of Borel isomorphism among absolute Borel sets. This follows directly from the fact that \aleph_0 -discreteness (= σ -discreteness) is such an invariant [**6**].

Any space with $\leq k$ points is k-discrete, and any subspace of a k-discrete space is k-discrete. If A has weight $\leq k$ and $A = \bigcup \{Z(\lambda) : \lambda \in \mathbb{C}\}$, with $|\mathbb{C}| \leq k$ and $Z(\lambda)$ metrically discrete, then each $Z(\lambda)$ must have cardinality $\leq k$; hence a k-discrete space of weight $\leq k$ has $\leq k$ points.

Definition 3. A point $a \in A$ is k-isolated if it has an (open) k-discrete neighborhood in A.

We denote $\{a \in A : a \text{ is } k \text{-isolated in } A\}$ by A_k , and $A - A_k$ by A_k^* . Thus A_k^* is closed in A.

PROPOSITION 4. A is k-discrete if and only if A is locally k-discrete.

Proof. The latter condition is clearly necessary. So suppose A is locally k-discrete. From a fixed σ -discrete open basis for A, pick a family

 $\{O(\lambda, i) : \lambda \in \Lambda, i = 1, 2, \ldots\}$

of k-discrete sets covering A so that, for fixed i, $\{O(\lambda, i) : \lambda \in \Lambda\}$ is discrete. Write

$$O(\lambda, i) = \bigcup \{O(\lambda, i, \alpha) : \alpha < k\}$$

where each $O(\lambda, i, \alpha)$ is metrically discrete, and put

$$B(\alpha, i) = \bigcup \{O(\lambda, i, \alpha) : \lambda \in \Lambda\}.$$

Given α , *i* and $x \in \Lambda$, pick a neighborhood N_x of *x* which meets at most one $O(\lambda, i)$, say $O(\lambda^*, i)$, and then a neighborhood N_x' of *x* meeting at most one point of $O(\lambda^*, i, \alpha)$. Then $N_x \cap N_x'$ meets $B(\alpha, i)$ in at most one point, so $B(\alpha, i)$ is discrete. Then

$$A = \bigcup \{ B(\alpha, i) : \alpha < k, i = 1, 2, ... \}$$

is k-discrete.

The following propositions are easy to check, and, in fact, are special cases of the kernel properties [7]; A_k^* is the "nowhere locally k-discrete kernel" of A. In the case k = 1, these propositions are familiar properties of discreteness.

k-discretness

PROPOSITION 5. For any A, (1) A_k is k-discrete, (2) if A_k^* is k-discrete, then so is A, (3) either $A_k^* = \emptyset$ or A_k^* is not k-discrete (and therefore $|A_k^*| > k$). PROPOSITION 6. For any A,

(1) $(A_k^*)_k^* = A_k^*,$ (2) $(A_k^*)_k = \emptyset,$ (3) $(A_k)_k = A_k,$ (4) $(A_k)_k^* = \emptyset.$

The following simple corollary will be used repeatedly in the next section.

COROLLARY 7. If $A \subseteq X$ and G is open in X, and if $M = G \cap A_k^*$, then $M_k = \emptyset$. Hence if $M \neq \emptyset$, M is not k-discrete.

Proof. M is open in A_k^* . If $M_k \neq \emptyset$, then $(A_k^*)_k \neq \emptyset$, contrary to Proposition 6. Hence, if $M \neq \emptyset$, the set $M = M_k^*$ is not k-discrete by Proposition 5.

Other generalizations of discreteness have been used in descriptive set theory, for example the properties " $\sigma lw(< k)$ " (= σ -locally of weight less than k) and "h - lw(< k)" (= h-locally of weight less than k), which occur in [8] and in [9, 10] respectively. In the latter two papers, the concept of k-discreteness also occurs.

The following theorem, which was pointed out to the author by the referee, can be used to relate the concepts of k-discreteness and $\sigma lw(< k)$. This is perhaps of special interest since the latter property plays such an important role in the structure theory of absolute Borel sets [8].

THEOREM 8. For any metric space (X, d), the following are equivalent:

(1) X is k-discrete.

(2) X is σ -locally-of-cardinal $\leq k$, i.e., $X = \bigcup_{n=1}^{\infty} Y_n$, where, for each n, each $y \in Y_n$ has a neighborhood in Y_n of cardinality $\leq k$.

Proof. Assume (1). Then $X = \bigcup \{X_{\lambda} : \lambda \in \Lambda\}$, where $|\Lambda| \leq k$ and each X_{λ} is discrete. We may assume, by Lemma 1, that each X_{λ} is metrically discrete. For each $n = 1, 2, 3, \ldots$, let $\Lambda_n = \{\lambda \in \Lambda : X_{\lambda} \text{ is } 1/n \text{-discrete}\}$, and

 $Y_n = \bigcup \{X_{\lambda} : \lambda \in \Lambda_n\}.$

Then $X = \bigcup_{n=1}^{\infty} Y_n$, and $|Y_n| \leq k$, since the (1/2n)-neighborhood of a point in Y_n contains at most one point from each X_{λ} .

Conversely, suppose (2) holds. We can assume that X is locally of cardinal $\leq k$. Cover X by open sets of cardinal $\leq k$ and let $\{V_{n,\mu} : \mu \in M_n, n = 1, 2...\}$ be a σ -discrete open refinement of that cover. Index the points of each $V_{n,\mu}$ as $v_{n,\mu,\alpha}$ ($\alpha \leq$ some ordinal $\alpha_{n,\mu} \leq k$). Then, for each $\alpha \leq k$ and each n = 1, 2, ...,let $D_{\alpha,n} = \{v_{n,\mu,\alpha} : \mu \in M_n\}$. Each $D_{\alpha,n}$ is discrete since the $V_{n,\mu}$'s are open and disjoint for fixed n. There are $\leq k D_{\alpha,n}$'s and

 $X = \bigcup \{ D_{\alpha,n} : \alpha \leq k, n = 1, 2 \ldots \}.$

It follows that if X is k-discrete, then X is $\sigma lw(\leq k)$. If X is $\sigma lw(\leq k)$, then X is k^{\aleph_0} -discrete. In particular, if $k^{\aleph_0} = k$, then k-discreteness coincides with $\sigma lw(\leq k)$; and assuming GCH, if X is $\sigma lw(\leq k)$, then X is k^+ -discrete.

3. *k*-discreteness and *k*-analytic sets. In this section we investigate the consequences if an absolutely *k*-analytic set A is "thick", in the sense that $A_k^* \neq \emptyset$. We first prove the following simple lemma.

LEMMA 9. Let (A, d) be an absolutely k-analytic metric space with $A_k^* \neq \emptyset$. Then A_k^* contains either a metrically discrete subset of cardinal k^+ or a closed subspace C, of cardinal k^{\aleph_0} , and homeomorphic either to the Cantor set or a Baire space B(p).

Proof. Let *m* denote the weight of A_k^* . Since A_k^* is not *k*-discrete, $|A_k^*| > k$. So if $m \leq k$, then, by a theorem of Stone [5], A_k^* contains a closed subset of the form *C*. On the other hand, if m > k, then, letting D_n denote a maximal 1/n-discrete subset of A_k^* , we get that $|\bigcup_{n=1}^{\infty} D_n| \geq m$, so some D_n has cardinal > k.

COROLLARY 10. Under the hypotheses of Lemma 9, A_k^* contains either a metrically discrete subset of cardinal k^+ , or a copy of B(p) for some p such that $p^{\aleph_0} = k^{\aleph_0}$.

Proof. If C is the Cantor set, then C contains a copy of $B(\aleph_0)$, and $|B(\aleph_0)| = \aleph_0^{\aleph_0} = c = |C| = k^{\aleph_0}$.

In [6], Stone showed that any absolute Borel set is either \aleph_0 -discrete (= σ -discrete) or contains a copy of the Cantor set. And in [1], El'kin generalized this result to absolutely \aleph_0 -analytic sets. The next theorem shows that it remains true for absolutely *k*-analytic sets.

THEOREM 11. Let (A, d) be an absolutely k-analytic metric space. Then either A is k-discrete or A contains a closed subspace C of cardinal k^{\aleph_0} , homeomorphic either to the Cantor set or a Baire space B(p).

Proof. Assume A is not k-discrete, and write $B(k) = \prod_{n=1}^{\infty} T_n$, where T_n is a discrete space of cardinal k. Let X denote the completion of (A, d). Since A is k-analytic in X, we can find, for each $t \in B(k)$, and for each n, closed subsets $F(t_1, \ldots, t_n)$ of X, with

$$F(t_1,\ldots,t_{n+1}) \subseteq F(t_1,\ldots,t_n), \text{ such that} \\ A = \bigcup \{\bigcap_{n=1}^{\infty} F(t_1,\ldots,t_n) : t \in B(k)\}.$$

Define

$$A(t_1,\ldots,t_n) = \bigcup \{ \bigcap_{n=1}^{\infty} F(t_1,\ldots,t_k) : (t_{n+1},t_{n+2},\ldots) \\ \in T_{n+1} \times T_{n+2} \times \ldots \} \subseteq A.$$

k-discretness

Clearly $A = \bigcup \{A(t_1) : t_1 \in T_1\}, A(t_1, \ldots, t_n) \subseteq F(t_1, \ldots, t_n)$, and it is easy to check that each $A(t_1, \ldots, t_n)$ is k-analytic in X.

Since A is not k-discrete, neither is its closed subset A_k^* . If A_k^* contains a closed set of form C, we are done. Otherwise, by Lemma 9, for some $\epsilon_1 > 0$, A_k^* contains an ϵ_1 -discrete subset $\{a(\lambda_1) : \lambda_1 < k\}$. For each $\lambda_1 < k$, pick an open (in X) sphere $U(\lambda_1)$, centered at $a(\lambda_1)$ and of radius $< \min\{1/2, (\epsilon_1)/3\}$. Note that if $\lambda_1 \neq \lambda_1' < k$, then $cl_X U(\lambda_1)$ and $cl_X U(\lambda_1')$ are at distance $> (\epsilon_1)/3$.

For each $\lambda_1 < k$, there is a $t(\lambda_1) \in T_1$ such that $A(t(\lambda_1))_k^* \cap U(\lambda_1) \neq \emptyset$, and therefore, by Corollary 7, is not k-discrete. For if not, then for some $\lambda_1 < k$,

$$A \cap U(\lambda_1) = \bigcup \{ [A(t_1)_k \cup A(t_1)_k^*] \cap U(\lambda_1) : t_1 \in T_1 \}$$
$$= \bigcup \{ A(t_1)_k \cap U(\lambda_1) : t_1 \in T_1 \}$$

would be k-discrete. Hence $A_k^* \cap U(\lambda_1)$ would be k-discrete, which, since it contains $a(\lambda_1)$, would contradict Corollary 7.

Now suppose that given n, we have defined for every i, $1 \leq i \leq n$, and every i-tuple $(\lambda_1, \ldots, \lambda_i)$ (with $\lambda_s < k, 1 \leq s \leq i$)

(1) points $t(\lambda_1, \ldots, \lambda_i) \in T_i$

(2) positive numbers $\epsilon_i(\lambda_1, \ldots, \lambda_{i-1})$ (= ϵ_1 if i = 1)

(3) $\epsilon_i(\lambda_1, \ldots, \lambda_{i-1})$ -discrete sets $\{a(\lambda_1, \ldots, \lambda_{i-1}, \lambda_i) : \lambda_i < k\}$

(4) open (in X) spheres $U(\lambda_1, \ldots, \lambda_1)$ of radius $< \min\{1/2^i, \epsilon_i(\lambda_1, \ldots, \lambda_{i-1})/3\}$ centered at $a(\lambda_1, \ldots, \lambda_i)$ in such a way that

(5) for i > 1, $\{a(\lambda_1, \ldots, \lambda_i) : \lambda_i < k\} \subseteq A(t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_{i-1}))_k^* \cap U(\lambda_1, \ldots, \lambda_{i-1})$

(6) for i > 1, $cl_X U(\lambda_1, \ldots, \lambda_i) \subseteq U(\lambda_1, \ldots, \lambda_{i-1})$

(7) $A(t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_i))_k^* \cap U(\lambda_1, \ldots, \lambda_i) \neq \emptyset$ (and hence, by Corollary 7, is not k-discrete).

If any of the closed sets $cl_A(A[t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_n)]_k^* \cap U(\lambda_1, \ldots, \lambda_n))$ contains a closed set of the form *C*, we are done. So suppose not. The set

 $\mathrm{cl}_A(A[t(\lambda_1),\ldots,t(\lambda_1,\ldots,\lambda_n)]_k^* \cap U(\lambda_1,\ldots,\lambda_n))$

is not k-discrete or else its subset

$$A[t(\lambda_1),\ldots,t(\lambda_1,\ldots,\lambda_n)]_k^* \cap U(\lambda_1,\ldots,\lambda_n)$$

would be, contrary to (7). Hence it contains a metrically discrete subset of cardinal k, and therefore, for some $\epsilon_{n+1}(\lambda_1, \ldots, \lambda_n) > 0$, $A[t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_n)]_k^* \cap U(\lambda_1, \ldots, \lambda_n)$ contains an $\epsilon_{n+1}(\lambda_1, \ldots, \lambda_n)$ -discrete set of cardinal k, say

$$\{a(\lambda_1,\ldots,\lambda_n,\lambda_{n+1}):\lambda_{n+1}< k\}.$$

Pick open spheres (in X) $U(\lambda_1, \ldots, \lambda_{n+1})$ of radius $< \min\{1/2^{n+1}, \epsilon_{n+1}(\lambda_1, \ldots, \lambda_n)/3\}$ centered at $u(\lambda_1, \ldots, \lambda_{n+1})$ and so that

$$\operatorname{cl}_X U(\lambda_1,\ldots,\lambda_{n+1}) \subseteq U(\lambda_1,\ldots,\lambda_n).$$

Given now $(\lambda_1, \ldots, \lambda_{n+1})$, there must be a point $t(\lambda_1, \ldots, \lambda_{n+1}) \in T_{n+1}$ such that

$$A[t(\lambda_1),\ldots,t(\lambda_{n+1})]_k^* \cap U(\lambda_1,\ldots,\lambda_{n+1}) \neq \emptyset.$$

Otherwise,

$$\begin{aligned} A[t(\lambda_{1}), \dots, t(\lambda_{1}, \dots, \lambda_{n})] &\cap U(\lambda_{1}, \dots, \lambda_{n+1}) \\ &= \bigcup \left\{ (A[t(\lambda_{1}), \dots, t(\lambda_{1}, \dots, \lambda_{n}), t_{n+1}]_{k} \\ &\cup A[t(\lambda_{1}), \dots, t(\lambda_{1}, \dots, \lambda_{n}), t_{n+1}]_{k}^{*} \right\} \\ &\cap U(\lambda_{1}, \dots, \lambda_{n+1}) : t_{n+1} \in T_{n+1} \\ &= \bigcup \left\{ A[t(\lambda_{1}), \dots, t(\lambda_{1}, \dots, \lambda_{n}), t_{n+1}]_{k} \cap U(\lambda_{1}, \dots, \lambda_{n+1}) : t_{n+1} \in T_{n+1} \right\} \end{aligned}$$

which is k-discrete. This would imply $A[t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_n)]_k^* \cap U(\lambda_1, \ldots, \lambda_{n+1})$ is k-discrete, which, since it contains $a(\lambda_1, \ldots, \lambda_{n+1})$, would contradict Corollary 7.

Thus we either produce, at some finite stage of this construction, a closed subset of A of the form C, or else, by induction, we define, for all n, objects satisfying (1)-(7). Assume the latter occurs.

The space of all sequences $\{(\lambda_1, \ldots, \lambda_n, \ldots) : \lambda_n < k\}$, with the "firstdifference" metric, is homeomorphic to B(k). Given $\lambda = (\lambda_1, \ldots, \lambda_n, \ldots) \in B(k)$, the sets

$$A[t(\lambda_1)] \cap U(\lambda_1), \ldots, A[t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_n)] \cap U(\lambda_1, \ldots, \lambda_n), \ldots$$

are non-empty. It follows that the decreasing sequence of non-empty closed sets of X,

$$F[t(\lambda_1)] \cap \operatorname{cl}_X U(\lambda_1), \ldots, F[t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_n)]$$
$$\cap \operatorname{cl}_X U(\lambda_1, \ldots, \lambda_n), \ldots,$$

whose diameters tend to 0, intersect in a single point $f(\lambda)$ of X. In fact, $f(\lambda) \in A$ since

$$\bigcap_{n=1}^{\infty} F[t(\lambda_1), \ldots, t(\lambda_1, \ldots, \lambda_n)] \subseteq A.$$

It is easy to check that the map $f: B(k) \to A$ is continuous and one to one.

f is also an open map of B(k) onto f(B(k)). Indeed, if $W(\lambda_1, \ldots, \lambda_n)$ is the basic open set $\{(\lambda_1, \ldots, \lambda_n, \mu_{n+1}, \ldots) : \mu_{n+i} < k\}$ of B(k), then

$$f[W(\lambda_1,\ldots,\lambda_n)] = U(\lambda_1,\ldots,\lambda_n) \cap f[B(k)].$$

Finally, we claim f[B(k)] is closed in A. We will, in fact, show it is even closed in X, by proving (f(B(k)), d) is complete. Let $\{y_n : n = 1, 2, ...\}$ be a Cauchy sequence in (f[B(k)], d). Pick a positive integer N_1 so that if $n \ge N_1$, then $d(y_n, y_{N_1}) < (\epsilon_1)/3$, where ϵ_1 is as above. Since $y_{N_1} \in f[B(k)]$, it is in some (unique) set of the form

$$F[t(\mu_1)] \cap \operatorname{cl}_X U(\mu_1), \quad \mu_1 < k,$$

and since, if $\mu_1 \neq \mu_1' < k$, the sets $\operatorname{cl}_X U(\mu_1)$ and $\operatorname{cl}_X U(\mu_1')$ are at distance $> (\epsilon_1)/3$, we get that if $n \ge N_1$,

$$y_n \in F[t(\mu_1)] \cap \operatorname{cl}_X U(\mu_1).$$

Now assume that positive integers $N_s > \ldots > N_1$ have been chosen, and ordinals $\mu_1, \ldots, \mu_s < k$ so that, if $n \ge N_i$,

$$y_n \in F[t(\mu_1), \ldots, t(\mu_1, \ldots, \mu_i)] \cap \operatorname{cl}_X U(\mu_1, \ldots, \mu_i).$$

Then choose $N_{s+1} > N_s$ so $n \ge N_{s+1}$ implies

 $d(y_n, y_{N_{s+1}}) < \epsilon_{s+1}(\mu_1, \ldots, \mu_s)/3.$

Again, $y_{N_{s+1}}$ is in a unique set of the form

$$F[t(\lambda_1),\ldots,t(\lambda_1,\ldots,\lambda_{s+1})] \cap \operatorname{cl}_X U(\lambda_1,\ldots,\lambda_{s+1}),$$

and since $N_{s+1} > \ldots > N_1$, we get $\lambda_i = \mu_i$, $1 \leq i \leq s$. Let $\lambda_{s+1} = \mu_{s+1}$. As before, if $n \geq N_{s+1}$, we have

$$y_n \in F[t(\mu_1),\ldots,t(\mu_1,\ldots,\mu_{s+1})] \cap \operatorname{cl}_X U(\mu_1,\ldots,\mu_{s+1}).$$

Let $y = f(\mu_1, \ldots, \mu_s, \ldots,) \in f[B(k)]$. Since y and y_{N_s} are both in $\operatorname{cl}_X U(\mu_1, \ldots, \mu_s)$, which has diameter $<1/2^{s-1}$, the sequence $\{y_{N_s}: s = 1, 2, \ldots\} \rightarrow y$, and therefore the Cauchy sequence $\{y_n: n = 1, 2, \ldots\}$ converges to y as well.

COROLLARY 12. Under the hypotheses of Theorem 11, A is either k-discrete or contains a copy of B(p) for some p such that $p^{\aleph_0} = k^{\aleph_0}$.

COROLLARY 13. (El'kin) If A is absolutely \aleph_0 -analytic, then A is either \aleph_0 -discrete or A contains a Cantor set.

Proof. By Corollary 12, A is either \aleph_0 -discrete or contains a copy of a Baire space B(p), which in turn contains a Cantor set.

The alternatives of Theorem 11 are not mutually exclusive. For example, the space B(k) itself, having weight k, is k-discrete precisely when $k^{\aleph_0} = k$. We shall show, however, that the alternatives are mutually exclusive if $k^{\aleph_0} > k$. We begin by examining B(k) again.

PROPOSITION 14. The smallest k for which B(m) is k-discrete satisfies $m \leq k \leq m^{\aleph_0}$, and m < k unless $m = m^{\aleph_0}$.

Proof. We first show B(m) is not k-discrete if k < m. It suffices to show $B(k^+)$ is not k-discrete. We assume $\prod_{n=1}^{\infty} T_n = B(k^+)$ has the "first-difference" metric, ρ .

Suppose $\mathfrak{B} = \{B(\lambda) : \lambda < k\}$ is a family of metrically discrete subsets of $B(k^+)$. We shall show $\bigcup \mathfrak{B} \neq B(k^+)$. For each *n*, let

 $\Lambda_n = \{\lambda < k : B(\lambda) \text{ is } 1/n \text{-discrete}\}.$

Then $|\Lambda| \leq k$ and $\Lambda_n \subseteq \Lambda_{n+1}$.

Pick $x_1^* \in T_1$. Any two points of the form $(x_1^*, x_2, ...)$ are at distance $\leq 1/2$, so no two of them are in one $B(\lambda)(\lambda \in \Lambda_1)$. Thus $\bigcup \{B(\lambda) : \lambda \in \Lambda_1\}$ contains $\leq k$ points of that form. Therefore we can choose $x_2^* \in T_2$ so no point of the form $(x_1^*, x_2^*, ...)$ is in $\bigcup \{B(\lambda) : \lambda \in \Lambda_1\}$.

Continuing in this way, suppose, for $1 \leq i \leq n$, $x_i^* \in T_i$ are chosen so that no two points of the form $(x_1^*, \ldots, x_n^*, x_{n+1}, \ldots)$ are in $\cup \{B(\lambda) : \lambda \in \Lambda_{n-1}\}$. Since any two such points are at distance $\leq 1/(n + 1)$ no $B(\lambda)(\lambda \in \Lambda_n)$ can contain two of them. Hence, as before, we can choose $x_{n+1}^* \in T_{n+1}$ so that no point of the form $(x_1^*, \ldots, x_{n+1}^*, x_{n+2}, \ldots)$ is in $\cup \{B(\lambda) : \lambda \in \Lambda_n\}$. The point $(x_1^*, \ldots, x_n^*, \ldots)$ whose coordinates have been inductively defined in this way is clearly not in $\cup \mathfrak{B}$.

The second inequality of the theorem follows from the fact that B(m), with m^{\aleph_0} points, is m^{\aleph_0} -discrete. The last assertion follows from the remark following Corollary 13.

THEOREM 15. If A is absolutely k-analytic and $k^{\mathbf{k}_0} > k$, then one and only one of the following holds:

(1) A is k-discrete

(2) A contains a closed subset C, of cardinal k^{\aleph_0} , and homeomorphic to either the Cantor set or a Baire space B(p).

Proof. It only remains to show (1) and (2) are mutually exclusive. So suppose $k^{\mathbf{x}_0} > k$ and A is k-discrete. If (2) also holds, then A contains a copy of B(p) with $p^{\mathbf{x}_0} = k^{\mathbf{x}_0}$. This copy of B(p) is k-discrete, so $p \leq k$ by Proposition 14; since a k-discrete space of weight $\leq k$ has $\langle k$ points, it follows that $p^{\mathbf{x}_0} \leq k < k^{\mathbf{x}_0}$, while $p^{\mathbf{x}_0} = k^{\mathbf{x}_0}$, a contradiction.

Corollary 12 also produces a different proof of the following result due to Stone [5].

THEOREM 16. Let k be an infinite cardinal such that (i) $k < k^{\aleph_0}$ and (ii) $p^{\aleph_0} < k$ whenever $\aleph_0 \leq p < k$. Then the following statements about an absolute Borel set X are equivalent:

(1) X has weight $\leq k$ and |X| > k.

(2) X is Borel isomorphic to B(k).

(3) X is generalized homeomorphic to B(k).

Proof. That (3) implies (2) is trivial. If (2) holds, then $|X| = k^{\aleph_0} > k$, and the weight of X is $\leq k$ (since weight is an invariant of Borel isomorphism among absolute Borel sets [5]). If (1) holds, then X is not k-discrete and so, by Corollary 12, X contains a Baire space B(p) with $p^{\aleph_0} = k^{\aleph_0} > k$. Then $p \geq k$, so X contains a copy of B(k). Hence, X is generalized homeomorphic to B(k) [5].

We remark that on the generalized continuum hypothesis, any infinite cardinal k satisfying (i) in Theorem 16 also satisfies (ii). Also, (2) and (3) are known to be equivalent (for absolutely \aleph_0 -analytic metric spaces) without any cardinal assumptions. This follows from theorems of Preiss [11] and Hansell [2].

4. Results using the generalized continuum hypothesis. If we assume the generalized continuum hypothesis ([GCH]), then the results of the previous section can be somewhat sharpened.

LEMMA 9* [GCH]. Let (A, d) be an absolutely k-analytic metric space with $A_k^* \neq \emptyset$. Then A_k^* contains either a metrically discrete subset of cardinal k^+ or a closed subspace C, of cardinal k^{\aleph_0} , homeomorphic either to the Cantor set or B(k).

Proof. If $k^{\aleph_0} = k$, then the weight of A_k^* must be >k, or else A_k^* would be k-discrete. Then it follows, as in the proof of Lemma 9, that A_k^* contains a metrically discrete subset of cardinal k^+ .

If $k^{\mathbf{x}_0} > k$, and A_k^* contains a closed set C homeomorphic to B(p), with $p^{\mathbf{x}_0} = k^{\mathbf{x}_0}$, then either p = k or $p = k^+$, and so A_k^* contains a closed copy of B(k).

THEOREM 11^{*} [GCH]. Let (A, d) be an absolutely k-analytic metric space. Then either A is k-discrete or A contains a closed subspace C of cardinal k^{\aleph_0} , homeomorphic either to the Cantor set or B(k).

Proof. The proof is virtually identical to that of Theorem 11, replacing the uses of Lemma 9 by Lemma 9*.

Remark. It is not possible to conclude that the set A of Theorem 11^{*} is either k-discrete or contains a closed subset homeomorphic to B(k). For example, the Cantor set is not \aleph_0 -discrete and contains no closed copy of $B(\aleph_0)$ (or, for that matter, of any Baire space B(p)). However, it is easy to see that this stronger conclusion can be drawn, on the generalized continuum hypothesis, if $k > \aleph_0$.

Our next result generalizes, under the generalized continuum hypothesis, the classical theorem that every uncountable, complete, separable, zero-dimensional space is, after the deletion of an appropriate countable set, homeomorphic to $B(\mathbf{X}_0)$ [4, p. 443].

COROLLARY 17 [GCH]. Every complete space with (covering) dimension 0 and weight $\leq k$ is the union of two disjoint subspaces A and B where

(1) A is open and has cardinal $\leq k$;

(2) B is either empty or homeomorphic to B(k).

Proof. Since the proof of the classical result covers the case $k = \mathbf{X}_0$, we assume $k > \mathbf{X}_0$. Let $A = X_k$ and $B = X_k^*$. Then A is open, and since A is k-discrete and has weight $\leq k$, $|A| \leq k$.

If $B \neq \emptyset$, then it is a completely metrizable, zero-dimensional space of weight $\leq k$ which, by Proposition 6, has no k-isolated points. Hence no open subset of B has k-isolated points. Since each non-empty subset of B is absolutely k-analytic, each contains, by the remarks following Theorem 10^{*}, a closed copy of B(k), and hence a discrete subset of cardinal k. It follows that B is homeomorphic to B(k) [5].

In [5], Stone has shown, under the generalized continuum hypothesis, that the space X of weight $\leq k$ has every subset absolutely k-analytic if and only if $|X| \leq k$, and raised the question of a similar theorem for spaces of arbitrary weight. Our next result provides a partial answer.

THEOREM 17 [GCH]. Let A be absolutely k-analytic and assume $k^{\mathbf{x}_0} > k$. Then the following are equivalent:

(1) A is k-discrete.

(2) Every subset of A is (absolutely) k-analytic.

Proof. If A is k-discrete, then every subset of A is the union of $\leq k$ closed sets and is therefore (absolutely) k-analytic. Now assume (2) holds and A is not k-discrete. Then A contains a copy of B(k). Therefore all subsets of B(k) are absolutely k-analytic, and hence each subset of B(k) is a continuous image of B(k) [5]. But the number of continuous images of B(k) in B(k) is $\leq (k^{\aleph_0})^k = k^k = 2^k$, while B(k) has $2^{k^{\aleph_0}} = 2^{2^k}$ subsets.

The author wishes to thank the referee for several helpful comments and suggestions.

References

- 1. A. El'kin, A-sets in complete metric spaces, Soviet Math. Dokl. 8 (1967), 874-877.
- R. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145–169.
- 3. N. Lasnev, Continuous decompositions of collectively normal spaces, Soviet Math. Dokl. 188 (1967), 1069-70.
- 4. K. Kuratowski, Topology, v.1 (Academic Press, New York, 1966).
- 5. A. H. Stone, Non-separable Borel sets, Rozprawy Matematyczne 28, Warsaw (1962).
- 6. ——— On σ-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655-666.
- 7. Kernel constructions and Borel sets, Trans. Amer. Math. Soc. 107 (1963), 58-70.

k-discretness

- 8. Non-separable Borel sets, II, Gen. Top. and Appl. 2 (1972), 249-270.
- 9. R. Pol, Note on decompositions of metrizable spaces, I, Fund. Math. 95 (1977), 95-103.
- 10. Note on decompositions of metrizable spaces, II, Fund. Math. 100 (2) (1978), 129–143.
- 11. D. Preiss, Completely additive disjoint system of Baire sets is of bounded class, Comm. Math. Univ. Carolinae 15 (1975), 341-344.

Washington University, St. Louis, Missouri