k-DISCRETENESS AND k-ANALYTIC SETS

RONALD C. FREIWALD

1. Preliminaries. All spaces considered here are metrizable. k will always denote an infinite cardinal. The successor of k will be denoted by k^{+}.

Of particular interest will be the Baire spaces $B(k)=\prod_{n=1}^{\infty} T_{n}$, where each T_{n} is a discrete space of cardinal k. The product topology on $B(k)$ is the same as the topology given by the (complete) "first-difference" metric, $\rho: \rho(s, t)=$ $1 / n$ if $s_{i}=t_{i}$ for $1 \leqq i \leqq n-1$ and $s_{n}=t_{n}$. A great deal of information about these spaces can be found in [4].

A subset A of X is called k-analytic (in X) if there exist, for each $t \in B(k)$, closed subsets $F\left(t_{1}\right), \ldots, F\left(t_{1}, \ldots, t_{n}\right), \ldots$ of X such that

$$
A=\bigcup\left\{\bigcap_{n=1}^{\infty} F\left(t_{1}, \ldots, t_{n}\right): t \in B(k)\right\} .
$$

A is called absolutely k-analytic if A is homeomorphic to a k-analytic set in some complete metric space. This is equivalent to saying that A is k-analytic in any metric space in which it is embedded. The k-analytic sets of X contain the family of Borel sets of X. Sets k-analytic in this sense were introduced in [5], where their basic properties are discussed.

If A is a subset of the metric space (X, d) and if, for some $\epsilon>0, d(x, y) \geqq \epsilon$ whenever $x, y \in A$, we say A is ϵ-discrete (in (X, d)). A is called metrically discrete if A is ϵ-discrete for some $\epsilon>0$.
2. k-discrete sets. In this section, we introduce the idea of k-discreteness and some of its elementary properties. Essentially the same concept occurs in a different context in [3]. It is designed as a measure of the "thinness" of a space. We precede the definition with the following lemma.

Lemma 1. Let $A \subseteq(X, d)$. Then the following are equivalent:
(1) $A=\bigcup\{X(\lambda): \lambda \in \mathfrak{H}\}$, where $|\mathfrak{Y}| \leqq k$ and each $X(\lambda)$ is discrete in its relative topology.
(2) $A=\bigcup\{Y(\lambda): \lambda \in \mathfrak{B}\}$, where $|\mathfrak{B}| \leqq k$ and each $Y(\lambda)$ is discrete in its relative topology and closed in X.
(3) $A=\bigcup\{Z(\lambda): \lambda \in \mathbb{C}\}$, where $|\mathfrak{C}| \leqq k$ and each $Z(\lambda)$ is metrically discrete.

Proof. Only that (1) implies (3) is not immediate. For each $x \in X(\lambda)$, there is a $\delta(x)>0$ such that $X(\lambda) \cap S(x ; \delta(x))=\{x\}$. Let

$$
X(\lambda, n)=\{x \in X(\lambda): \delta(x) \geqq 1 / n\} .
$$

Then $A=\bigcup\left\{\bigcup_{n=1}^{\infty} X(\lambda, n): \lambda \in \mathfrak{N}\right\}$, and each $X(\lambda, n)$ is metrically discrete.

Definition 2. A space A is called k-discrete if any one of the equivalent conditions of Lemma 1 holds.

Some elementary properties of k-discreteness are immediate. It is trivial that k-discreteness is a topological invariant. Indeed, though we shall not use the fact, k-discreteness is an invariant of Borel isomorphism among absolute Borel sets. This follows directly from the fact that $\boldsymbol{\aleph}_{0}$-discreteness ($=\sigma$-discreteness) is such an invariant [6].

Any space with $\leqq k$ points is k-discrete, and any subspace of a k-discrete space is k-discrete. If A has weight $\leqq k$ and $A=\cup\{Z(\lambda): \lambda \in \mathbb{C}\}$, with $|\mathfrak{C}| \leqq k$ and $Z(\lambda)$ metrically discrete, then each $Z(\lambda)$ must have cardinality $\leqq k$; hence a k-discrete space of weight $\leqq k$ has $\leqq k$ points.

Definition 3. A point $a \in A$ is k-isolated if it has an (open) k-discrete neighborhood in A.

We denote $\{a \in A: a$ is k-isolated in $A\}$ by A_{k}, and $A-A_{k}$ by $A_{k}{ }^{*}$. Thus $A_{k}{ }^{*}$ is closed in A.

Proposition 4. A is k-discrete if and only if A is locally k-discrete.
Proof. The latter condition is clearly necessary. So suppose A is locally k-discrete. From a fixed σ-discrete open basis for A, pick a family

$$
\{O(\lambda, i): \lambda \in \Lambda, i=1,2, \ldots\}
$$

of k-discrete sets covering A so that, for fixed $i,\{O(\lambda, i): \lambda \in \Lambda\}$ is discrete. Write

$$
O(\lambda, i)=\bigcup\{O(\lambda, i, \alpha): \alpha<k\}
$$

where each $O(\lambda, i, \alpha)$ is metrically discrete, and put

$$
B(\alpha, i)=\cup\{O(\lambda, i, \alpha): \lambda \in \Lambda\}
$$

Given α, i and $x \in \Lambda$, pick a neighborhood N_{x} of x which meets at most one $O(\lambda, i)$, say $O\left(\lambda^{*}, i\right)$, and then a neighborhood N_{x}^{\prime} of x meeting at most one point of $O\left(\lambda^{*}, i, \alpha\right)$. Then $N_{r} \cap N_{x}{ }^{\prime}$ meets $B(\alpha, i)$ in at most one point, so $B(\alpha, i)$ is discrete. Then

$$
A=\bigcup\{B(\alpha, i): \alpha<k, i=1,2, \ldots\}
$$

is k-discrete.
The following propositions are easy to check, and, in fact, are special cases of the kernel properties [7]; $A_{k}{ }^{*}$ is the "nowhere locally k-discrete kernel" of A. In the case $k=1$, these propositions are familiar properties of discreteness.

Proposition 5. For any A,
(1) A_{k} is k-discrete,
(2) if $A_{k}{ }^{*}$ is k-discrete, then so is A,
(3) either $A_{k}{ }^{*}=\emptyset$ or $A_{k}{ }^{*}$ is not k-discrete (and therefore $\left|A_{k}{ }^{*}\right|>k$).

Proposition 6. For any A,
(1) $\left(A_{k}{ }^{*}\right)_{k}{ }^{*}=\mathrm{A}_{k}{ }^{*}$,
(2) $\left(A_{k}{ }^{*}\right)_{k}=\emptyset$,
(3) $\left(A_{k}\right)_{k}=\mathrm{A}_{k}$,
(4) $\left(A_{k}\right)_{k} *=\emptyset$.

The following simple corollary will be used repeatedly in the next section.
Corollary 7. If $A \subseteq X$ and G is open in X, and if $M=G \cap A_{k}{ }^{*}$, then $M_{k}=\emptyset$. Hence if $M \neq \emptyset, M$ is not k-discrete.

Proof. M is open in $A_{k}{ }^{*}$. If $M_{k} \neq \emptyset$, then $\left(A_{k}{ }^{*}\right)_{k} \neq \emptyset$, contrary to Proposition 6. Hence, if $M \neq \emptyset$, the set $M=M_{k}{ }^{*}$ is not k-discrete by Proposition 5 .

Other generalizations of discreteness have been used in descriptive set theory, for example the properties " $\sigma l w(<k)$ " $(=\sigma$-locally of weight less than k) and " h-lw $(<k)$ " ($=h$-locally of weight less than k), which occur in $[\mathbf{8}]$ and in $[\mathbf{9}, \mathbf{1 0}]$ respectively. In the latter two papers, the concept of k-discreteness also occurs.

The following theorem, which was pointed out to the author by the referee, can be used to relate the concepts of k-discreteness and $\sigma l w(<k)$. This is perhaps of special interest since the latter property plays such an important role in the structure theory of absolute Borel sets [8].

Theorem 8. For any metric space (X, d), the following are equivalent:
(1) X is k-discrete.
(2) X is σ-locally-of-cardinal $\leqq k$, i.e., $X=\bigcup_{n=1}^{\infty} Y_{n}$, where, for each n, each $y \in Y_{n}$ has a neighborhood in Y_{n} of cardinality $\leqq k$.

Proof. Assume (1). Then $X=\bigcup\left\{X_{\lambda}: \lambda \in \Lambda\right\}$, where $|\Lambda| \leqq k$ and each X_{λ} is discrete. We may assume, by Lemma 1 , that each X_{λ} is metrically discrete. For each $n=1,2,3, \ldots$, let $\Lambda_{n}=\left\{\lambda \in \Lambda: X_{\lambda}\right.$ is $1 / n$-discrete $\}$, and

$$
Y_{n}=\bigcup\left\{X_{\lambda}: \lambda \in \Lambda_{n}\right\} .
$$

Then $X=\cup_{n=1}^{\infty} Y_{n}$, and $\left|Y_{n}\right| \leqq k$, since the $(1 / 2 n)$-neighborhood of a point in Y_{n} contains at most one point from each X_{λ}.

Conversely, suppose (2) holds. We can assume that X is locally of cardinal $\leqq k$. Cover X by open sets of cardinal $\leqq k$ and let $\left\{V_{n, \mu}: \mu \in M_{n}, n=1,2 \ldots\right\}$ be a σ-discrete open refinement of that cover. Index the points of each $V_{n, \mu}$ as $v_{n, \mu, \alpha}\left(\alpha \leqq\right.$ some ordinal $\left.\alpha_{n, \mu} \leqq k\right)$. Then, for each $\alpha \leqq k$ and each $n=1,2, \ldots$, let $D_{\alpha, n}=\left\{v_{n, \mu, \alpha}: \mu \in M_{n}\right\}$. Each $D_{\alpha, n}$ is discrete since the $V_{n, \mu}$'s are open and
disjoint for fixed n. There are $\leqq k D_{\alpha, n}$'s and

$$
X=\cup\left\{D_{\alpha, n}: \alpha \leqq k, n=1,2 \ldots\right\}
$$

It follows that if X is k-discrete, then X is $\sigma l w(\leqq k)$. If X is $\sigma l w(\leqq k)$, then X is $k^{\mathbf{N}_{0}}$ discrete. In particular, if $k^{\aleph_{0}}=k$, then k-discreteness coincides with $\sigma l w(\leqq k)$; and assuming GCH, if X is $\sigma l w(\leqq k)$, then X is k^{+}-discrete.
3. k-discreteness and k-analytic sets. In this section we investigate the consequences if an absolutely k-analytic set A is "thick", in the sense that $A_{k}{ }^{*} \neq \emptyset$. We first prove the following simple lemma.

Lemma 9. Let (A, d) be an absolutely k-analytic metric space with $A_{k}{ }^{*} \neq \emptyset$. Then $A_{k}{ }^{*}$ contains either a metrically discrete subset of cardinal k^{+}or a closed subspace C, of cardinal $k^{\mathbf{N}_{0}}$, and homeomorphic either to the Cantor set or a Baire space $B(p)$.

Proof. Let m denote the weight of $A_{k}{ }^{*}$. Since $A_{k}{ }^{*}$ is not k-discrete, $\left|A_{k}{ }^{*}\right|>k$. So if $m \leqq k$, then, by a theorem of Stone [5], $A_{k}{ }^{*}$ contains a closed subset of the form C. On the other hand, if $m>k$, then, letting D_{n} denote a maximal $1 / n$-discrete subset of A_{k}^{*}, we get that $\left|\bigcup_{n=1}^{\infty} D_{n}\right| \geqq m$, so some D_{n} has cardinal $>k$.

Corollary 10. Under the hypotheses of Lemma 9, $A_{k}{ }^{*}$ contains either a metrically discrete subset of cardinal k^{+}, or a copy of $B(p)$ for some p such that $p^{\boldsymbol{N}_{0}}=k^{\boldsymbol{N}_{0}}$.

Proof. If C is the Cantor set, then C contains a copy of $B\left(\boldsymbol{\aleph}_{0}\right)$, and $\left|B\left(\boldsymbol{\aleph}_{0}\right)\right|=$ $\boldsymbol{\aleph}_{0}{ }^{\boldsymbol{N}_{0}}=c=|C|=k^{\boldsymbol{N}_{0}}$.

In [6], Stone showed that any absolute Borel set is either $\boldsymbol{\aleph}_{0}$-discrete ($=\sigma$ discrete) or contains a copy of the Cantor set. And in [1], El'kin generalized this result to absolutely $\boldsymbol{\aleph}_{0}$-analytic sets. The next theorem shows that it remains true for absolutely k-analytic sets.

Theorem 11. Let (A, d) be an absolutely k-analytic metric space. Then either A is k-discrete or A contains a closed subspace C of cardinal $k^{\aleph_{0}}$, homeomorphic either to the Cantor set or a Baire space $B(p)$.

Proof. Assume A is not k-discrete, and write $B(k)=\prod_{n=1}^{\infty} T_{n}$, where T_{n} is a discrete space of cardinal k. Let X denote the completion of (A, d). Since A is k-analytic in X, we can find, for each $t \in B(k)$, and for each n, closed subsets $F\left(t_{1}, \ldots, t_{n}\right)$ of X, with

$$
\begin{aligned}
& F\left(t_{1}, \ldots, t_{n+1}\right) \subseteq F\left(t_{1}, \ldots, t_{n}\right), \quad \text { such that } \\
& \qquad A=\bigcup\left\{\bigcap_{n=1}^{\infty} F\left(t_{1}, \ldots, t_{n}\right): t \in B(k)\right\} .
\end{aligned}
$$

Define

$$
\begin{aligned}
& A\left(t_{1}, \ldots, t_{n}\right)=\bigcup\left\{\cap_{n=1}^{\infty} F\left(t_{1}, \ldots, t_{k}\right):\left(t_{n+1}, t_{n+2}, \ldots\right)\right. \\
&\left.\in T_{n+1} \times T_{n+2} \times \ldots\right\} \subseteq A
\end{aligned}
$$

Clearly $A=\cup\left\{A\left(t_{1}\right): t_{1} \in T_{1}\right\}, A\left(t_{1}, \ldots, t_{n}\right) \subseteq F\left(t_{1}, \ldots, t_{n}\right)$, and it is easy to check that each $A\left(t_{1}, \ldots, t_{n}\right)$ is k-analytic in X.

Since A is not k-discrete, neither is its closed subset $A_{k}{ }^{*}$. If $A_{k}{ }^{*}$ contains a closed set of form C, we are done. Otherwise, by Lemma 9 , for some $\epsilon_{1}>0$, $A_{k}{ }^{*}$ contains an ϵ_{1}-discrete subset $\left\{a\left(\lambda_{1}\right): \lambda_{1}<k\right\}$. For each $\lambda_{1}<k$, pick an open (in X) sphere $U\left(\lambda_{1}\right)$, centered at $a\left(\lambda_{1}\right)$ and of radius $<\min \left\{1 / 2,\left(\epsilon_{1}\right) / 3\right\}$. Note that if $\lambda_{1} \neq \lambda_{1}{ }^{\prime}<k$, then $\mathrm{cl}_{X} U\left(\lambda_{1}\right)$ and $\mathrm{cl}_{X} U\left(\lambda_{1}{ }^{\prime}\right)$ are at distance $>$ $\left(\epsilon_{1}\right) / 3$.

For each $\lambda_{1}<k$, there is a $t\left(\lambda_{1}\right) \in T_{1}$ such that $A\left(t\left(\lambda_{1}\right)\right)_{k}^{*} \cap U\left(\lambda_{1}\right) \neq \emptyset$, and therefore, by Corollary 7 , is not k-discrete. For if not, then for some $\lambda_{1}<k$,

$$
\begin{aligned}
A \cap U\left(\lambda_{1}\right)=\bigcup\left\{\left[A\left(t_{1}\right)_{k} \cup A\left(t_{1}\right)_{k}^{*}\right] \cap\right. & \left.U\left(\lambda_{1}\right): t_{1} \in T_{1}\right\} \\
& =\bigcup\left\{A\left(t_{1}\right)_{k} \cap U\left(\lambda_{1}\right): t_{1} \in T_{1}\right\}
\end{aligned}
$$

would be k-discrete. Hence $A_{k}{ }^{*} \cap U\left(\lambda_{1}\right)$ would be k-discrete, which, since it contains $a\left(\lambda_{1}\right)$, would contradict Corollary 7.

Now suppose that given n, we have defined for every $i, 1 \leqq i \leqq n$, and every i-tuple $\left(\lambda_{1}, \ldots, \lambda_{i}\right)\left(\right.$ with $\left.\lambda_{s}<k, 1 \leqq s \leqq i\right)$
(1) points $t\left(\lambda_{1}, \ldots, \lambda_{i}\right) \in T_{i}$
(2) positive numbers $\epsilon_{i}\left(\lambda_{1}, \ldots, \lambda_{i-1}\right)\left(=\epsilon_{1}\right.$ if $\left.i=1\right)$
(3) $\epsilon_{i}\left(\lambda_{1}, \ldots, \lambda_{i-1}\right)$-discrete sets $\left\{a\left(\lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i}\right): \lambda_{i}<k\right\}$
(4) open (in X) spheres $U\left(\lambda_{1}, \ldots, \lambda_{1}\right)$ of radius $<\min \left\{1 / 2^{i}, \epsilon_{i}\left(\lambda_{1}, \ldots\right.\right.$, $\left.\left.\lambda_{i-1}\right) / 3\right\}$ centered at $a\left(\lambda_{1}, \ldots, \lambda_{i}\right)$ in such a way that
(5) for $i>1$, $\left\{a\left(\lambda_{1}, \ldots, \lambda_{i}\right): \lambda_{i}<k\right\} \subseteq A\left(t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{i-1}\right)\right)_{k}{ }^{*} \cap$ $U\left(\lambda_{1}, \ldots, \lambda_{i-1}\right)$
(6) for $i>1, \mathrm{cl}_{X} U\left(\lambda_{1}, \ldots, \lambda_{i}\right) \subseteq U\left(\lambda_{1}, \ldots, \lambda_{i-1}\right)$
(7) $A\left(t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{i}\right)\right)_{k}^{*} \cap U\left(\lambda_{1}, \ldots, \lambda_{i}\right) \neq \emptyset \quad$ (and hence, by Corollary 7 , is not k-discrete).

If any of the closed sets $\mathrm{cl}_{A}\left(A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right]_{k}{ }^{*} \cap U\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)$ contains a closed set of the form C, we are done. So suppose not. The set

$$
\mathrm{cl}_{A}\left(A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right]_{k}^{*} \cap U\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)
$$

is not k-discrete or else its subset

$$
A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right]_{k}^{*} \cap U\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

would be, contrary to (7). Hence it contains a metrically discrete subset of cardinal k, and therefore, for some $\epsilon_{n+1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)>0, A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots\right.\right.$, $\left.\left.\lambda_{n}\right)\right]_{k}^{*} \cap U\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ contains an $\epsilon_{n+1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$-discrete set of cardinal k, say

$$
\left\{a\left(\lambda_{1}, \ldots, \lambda_{n}, \lambda_{n+1}\right): \lambda_{n+1}<k\right\} .
$$

Pick open spheres $($ in $X) U\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ of radius $<\min \left\{1 / 2^{n+1}, \epsilon_{n+1}\left(\lambda_{1}, \ldots\right.\right.$, $\left.\left.\lambda_{n}\right) / 3\right\}$ centered at $a\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ and so that

$$
\mathrm{cl}_{X} U\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \subseteq U\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Given now $\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$, there must be a point $t\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \in T_{n+1}$ such that

$$
A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{n+1}\right)\right]_{k}^{*} \cap U\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \neq \emptyset
$$

Otherwise,

$$
\begin{aligned}
A & {\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right] \cap U\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) } \\
= & \cup\left\{\left(A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right), t_{n+1}\right]_{k}\right.\right. \\
& \left.\cup A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right), t_{n+1}\right)_{k}^{*}\right) \\
& \left.\cap U\left(\lambda_{1}, \ldots, \lambda_{n+1}\right): t_{n+1} \in T_{n+1}\right\} \\
= & \cup\left\{A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right), t_{n+1}\right]_{k} \cap U\left(\lambda_{1}, \ldots, \lambda_{n+1}\right): t_{n+1} \in T_{n+1}\right\}
\end{aligned}
$$

which is k-discrete. This would imply $A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right]_{k}{ }^{*} \cap$ $U\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ is k-discrete, which, since it contains $a\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$, would contradict Corollary 7.

Thus we either produce, at some finite stage of this construction, a closed subset of A of the form C, or else, by induction, we define, for all n, objects satisfying (1)-(7). Assume the latter occurs.

The space of all sequences $\left\{\left(\lambda_{1}, \ldots, \lambda_{n}, \ldots\right): \lambda_{n}<k\right\}$, with the "firstdifference" metric, is homeomorphic to $B(k)$. Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}, \ldots\right) \in$ $B(k)$, the sets

$$
A\left[t\left(\lambda_{1}\right)\right] \cap U\left(\lambda_{1}\right), \ldots, A\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right] \cap U\left(\lambda_{1}, \ldots, \lambda_{n}\right), \ldots
$$

are non-empty. It follows that the decreasing sequence of non-empty closed sets of X,

$$
\begin{aligned}
F\left[t\left(\lambda_{1}\right)\right] \cap \mathrm{cl}_{X} U\left(\lambda_{1}\right), \ldots, F\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots,\right.\right. & \left.\left.\lambda_{n}\right)\right] \\
& \cap \operatorname{cl}_{X} U\left(\lambda_{1}, \ldots, \lambda_{n}\right), \ldots
\end{aligned}
$$

whose diameters tend to 0 , intersect in a single point $f(\lambda)$ of X. In fact, $f(\lambda) \in A$ since

$$
\bigcap_{n=1}^{\infty} F\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right] \subseteq A
$$

It is easy to check that the map $f: B(k) \rightarrow A$ is continuous and one to one.
f is also an open map of $B(k)$ onto $f(B(k))$. Indeed, if $W\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the basic open set $\left\{\left(\lambda_{1}, \ldots, \lambda_{n}, \mu_{n+1}, \ldots\right): \mu_{n+i}<k\right\}$ of $B(k)$, then

$$
f\left[W\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right]=U\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cap f[B(k)] .
$$

Finally, we claim $f[B(k)]$ is closed in A. We will, in fact, show it is even closed in X, by proving $(f(B(k)), d)$ is complete. Let $\left\{y_{n}: n=1,2, \ldots\right\}$ be a Cauchy sequence in $(f[B(k)], d)$. Pick a positive integer N_{1} so that if $n \geqq N_{1}$, then $d\left(y_{n}, y_{N_{1}}\right)<\left(\epsilon_{1}\right) / 3$, where ϵ_{1} is as above. Since $y_{N_{1}} \in f[B(k)]$, it is in some (unique) set of the form

$$
F\left[t\left(\mu_{1}\right)\right] \cap \operatorname{cl}_{X} U\left(\mu_{1}\right), \quad \mu_{1}<k,
$$

and since, if $\mu_{1} \neq \mu_{1}{ }^{\prime}<k$, the sets $\mathrm{cl}_{X} U\left(\mu_{1}\right)$ and $\mathrm{cl}_{X} U\left(\mu_{1}{ }^{\prime}\right)$ are at distance $>\left(\epsilon_{1}\right) / 3$, we get that if $n \geqq N_{1}$,

$$
y_{n} \in F\left[t\left(\mu_{1}\right)\right] \cap \mathrm{cl}_{X} U\left(\mu_{1}\right) .
$$

Now assume that positive integers $N_{s}>\ldots>N_{1}$ have been chosen, and ordinals $\mu_{1}, \ldots, \mu_{s}<k$ so that, if $n \geqq N_{i}$,

$$
y_{n} \in F\left[t\left(\mu_{1}\right), \ldots, t\left(\mu_{1}, \ldots, \mu_{i}\right)\right] \cap \mathrm{cl}_{X} U\left(\mu_{1}, \ldots, \mu_{i}\right) .
$$

Then choose $N_{s+1}>N_{s}$ so $n \geqq N_{s+1}$ implies

$$
d\left(y_{n}, y_{N_{s+1}}\right)<\epsilon_{s+1}\left(\mu_{1}, \ldots, \mu_{s}\right) / 3 .
$$

Again, $y_{N_{s+1}}$ is in a unique set of the form

$$
F\left[t\left(\lambda_{1}\right), \ldots, t\left(\lambda_{1}, \ldots, \lambda_{s+1}\right)\right] \cap{\mathrm{cl}_{X}} U\left(\lambda_{1}, \ldots, \lambda_{s+1}\right),
$$

and since $N_{s+1}>\ldots>N_{1}$, we get $\lambda_{i}=\mu_{i}, 1 \leqq i \leqq s$. Let $\lambda_{s+1}=\mu_{s+1}$. As before, if $n \geqq N_{s+1}$, we have

$$
y_{n} \in F\left[t\left(\mu_{1}\right), \ldots, t\left(\mu_{1}, \ldots, \mu_{s+1}\right)\right] \cap \mathrm{cl}_{X} U\left(\mu_{1}, \ldots, \mu_{s+1}\right) .
$$

Let $y=f\left(\mu_{1}, \ldots, \mu_{s}, \ldots,\right) \in f[B(k)]$. Since y and $y_{N_{s}}$ are both in $\mathrm{cl}_{X} U\left(\mu_{1}, \ldots, \mu_{s}\right)$, which has diameter $<1 / 2^{s-1}$, the sequence $\left\{y_{N_{s}}: s=1\right.$, $2, \ldots\} \rightarrow y$, and therefore the Cauchy sequence $\left\{y_{n}: n=1,2, \ldots\right\}$ converges to y as well.

Corollary 12. Under the hypotheses of Theorem 11, A is either k-discrete or contains a copy of $B(p)$ for some p such that $p^{\boldsymbol{N}_{0}}=k^{\mathbf{N}_{0}}$.

Corollary 13. (El'kin) If A is absolutely $\boldsymbol{\aleph}_{0}$-analytic, then A is either $\boldsymbol{\aleph}_{0}$-discrete or A contains a Cantor set.

Proof. By Corollary 12, A is either $\boldsymbol{\aleph}_{0}$-discrete or contains a copy of a Baire space $B(p)$, which in turn contains a Cantor set.

The alternatives of Theorem 11 are not mutually exclusive. For example, the space $B(k)$ itself, having weight k, is k-discrete precisely when $k^{\aleph_{0}}=k$. We shall show, however, that the alternatives are mutually exclusive if $k^{\mathbf{N}_{0}}>k$. We begin by examining $B(k)$ again.

Proposition 14. The smallest k for which $B(m)$ is k-discrete satisfies $m \leqq k \leqq$ $m^{\boldsymbol{\aleph}_{0}}$, and $m<k$ unless $m=m^{\boldsymbol{\aleph}_{0}}$.

Proof. We first show $B(m)$ is not k-discrete if $k<m$. It suffices to show $B\left(k^{+}\right)$is not k-discrete. We assume $\prod_{n=1}^{\infty} T_{n}=B\left(k^{+}\right)$has the "first-difference" metric, ρ.

Suppose $\mathfrak{B}=\{B(\lambda): \lambda<k\}$ is a family of metrically discrete subsets of $B\left(k^{+}\right)$. We shall show $\cup \mathfrak{B} \neq B\left(k^{+}\right)$. For each n, let

$$
\Lambda_{n}=\{\lambda<k: B(\lambda) \text { is } 1 / n \text {-discrete }\} .
$$

Then $|\Lambda| \leqq k$ and $\Lambda_{n} \subseteq \Lambda_{n+1}$.
Pick $x_{1}{ }^{*} \in T_{1}$. Any two points of the form $\left(x_{1}{ }^{*}, x_{2}, \ldots\right)$ are at distance $\leqq 1 / 2$, so no two of them are in one $B(\lambda)\left(\lambda \in \Lambda_{1}\right)$. Thus $\cup\left\{B(\lambda): \lambda \in \Lambda_{1}\right\}$ contains $\leqq k$ points of that form. Therefore we can choose $x_{2}{ }^{*} \in T_{2}$ so no point of the form $\left(x_{1}{ }^{*}, x_{2}{ }^{*}, \ldots\right)$ is in $\cup\left\{B(\lambda): \lambda \in \Lambda_{1}\right\}$.

Continuing in this way, suppose, for $1 \leqq i \leqq n, x_{i}{ }^{*} \in T_{i}$ are chosen so that no two points of the form $\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}, x_{n+1}, \ldots\right)$ are in $\cup\left\{B(\lambda): \lambda \in \Lambda_{n-1}\right\}$. Since any two such points are at distance $\leqq 1 /(n+1)$ no $B(\lambda)\left(\lambda \in \Lambda_{n}\right)$ can contain two of them. Hence, as before, we can choose $x_{n+1} * \in T_{n+1}$ so that no point of the form $\left(x_{1}{ }^{*}, \ldots, x_{n+1}{ }^{*}, x_{n+2}, \ldots\right)$ is in $\cup\left\{B(\lambda): \lambda \in \Lambda_{n}\right\}$. The point $\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}, \ldots\right)$ whose coordinates have been inductively defined in this way is clearly not in $\cup \mathfrak{B}$.

The second inequality of the theorem follows from the fact that $B(m)$, with $m^{\boldsymbol{N}_{0}}$ points, is $m^{\boldsymbol{N}_{0}}$-discrete. The last assertion follows from the remark following Corollary 13.

Theorem 15. If A is absolutely k-analytic and $k^{\mathbf{\aleph}_{0}}>k$, then one and only one of the following holds:
(1) A is k-discrete
(2) A contains a closed subset C, of cardinal $k^{\mathbf{N}_{0}}$, and homeomorphic to either the Cantor set or a Baire space $B(p)$.

Proof. It only remains to show (1) and (2) are mutually exclusive. So suppose $k^{\boldsymbol{N}_{0}}>k$ and A is k-discrete. If (2) also holds, then A contains a copy of $B(p)$ with $p^{\mathbf{N}_{0}}=k^{\mathbf{N}_{0}}$. This copy of $B(p)$ is k-discrete, so $p \leqq k$ by Proposition 14 ; since a k-discrete space of weight $\leqq k$ has $<k$ points, it follows that $p^{\aleph_{0}} \leqq$ $k<k^{\mathbf{\aleph}_{0}}$, while $p^{\mathbf{N}_{0}}=k^{\mathbf{\aleph}_{0}}$, a contradiction.

Corollary 12 also produces a different proof of the following result due to Stone [5].

Theorem 16. Let k be an infinite cardinal such that (i) $k<k^{\mathrm{N}_{0}}$ and (ii) $p^{\boldsymbol{N}_{0}}<k$ whenever $\boldsymbol{\aleph}_{0} \leqq p<k$. Then the following statements about an absolute Borel set X are equivalent:
(1) X has weight $\leqq k$ and $|X|>k$.
(2) X is Borel isomorphic to $B(k)$.
(3) X is generalized homeomorphic to $B(k)$.

Proof. That (3) implies (2) is trivial. If (2) holds, then $|X|=k^{\aleph_{0}}>k$, and the weight of X is $\leqq k$ (since weight is an invariant of Borel isomorphism among absolute Borel sets [5]). If (1) holds, then X is not k-discrete and so, by Corollary $12, X$ contains a Baire space $B(p)$ with $p^{\boldsymbol{N}_{0}}=k^{\boldsymbol{N}_{0}}>k$. Then $p \geqq k$, so X contains a copy of $B(k)$. Hence, X is generalized homeomorphic to $B(k)[5]$.

We remark that on the generalized continuum hypothesis, any infinite cardinal k satisfying (i) in Theorem 16 also satisfies (ii). Also, (2) and (3) are known to be equivalent (for absolutely $\mathbf{\aleph}_{0}$-analytic metric spaces) without any cardinal assumptions. This follows from theorems of Preiss [11] and Hansell [2].
4. Results using the generalized continuum hypothesis. If we assume the generalized continuum hypothesis ([GCH]), then the results of the previous section can be somewhat sharpened.

Lemma 9* [GCH]. Let (A, d) be an absolutely k-analytic metric space with $A_{k}{ }^{*} \neq \emptyset$. Then $A_{k}{ }^{*}$ contains either a metrically discrete subset of cardinal k^{+} or a closed subspace C, of cardinal $k^{\boldsymbol{N}_{0}}$, homeomorphic either to the Cantor set or $B(k)$.

Proof. If $k^{\mathbf{N}_{0}}=k$, then the weight of $A_{k}{ }^{*}$ must be $>k$, or else $A_{k}{ }^{*}$ would be k-discrete. Then it follows, as in the proof of Lemma 9 , that $A_{k}{ }^{*}$ contains a metrically discrete subset of cardinal k^{+}.

If $k^{\aleph_{0}}>k$, and $A_{k}{ }^{*}$ contains a closed set C homeomorphic to $B(p)$, with $p^{\mathfrak{N}_{0}}=k^{\mathbf{\aleph}_{0}}$, then either $p=k$ or $p=k^{+}$, and so A_{k}^{*} contains a closed copy of $B(k)$.

Theorem 11* $[\mathrm{GCH}]$. Let (A, d) be an absolutely k-analytic metric space. Then either A is k-discrete or A contains a closed subspace C of cardinal $k^{\aleph_{0}}$, homeomorphic either to the Cantor set or $B(k)$.

Proof. The proof is virtually identical to that of Theorem 11, replacing the uses of Lemma 9 by Lemma 9^{*}.

Remark. It is not possible to conclude that the set A of Theorem 11^{*} is either k-discrete or contains a closed subset homeomorphic to $B(k)$. For example, the Cantor set is not $\boldsymbol{\aleph}_{0}$-discrete and contains no closed copy of $B\left(\boldsymbol{\aleph}_{0}\right)$ (or, for that matter, of any Baire space $B(p))$. However, it is easy to see that this stronger conclusion can be drawn, on the generalized continuum hypothesis, if $k>\boldsymbol{\aleph}_{0}$.

Our next result generalizes, under the generalized continuum hypothesis, the classical theorem that every uncountable, complete, separable, zero-dimen-
sional space is, after the deletion of an appropriate countable set, homeomorphic to $B\left(\boldsymbol{N}_{0}\right)$ [4, p. 443].

Corollary 17 [GCH]. Every complete space with (covering) dimension 0 and weight $\leqq k$ is the union of two disjoint subspaces A and B where
(1) A is open and has cardinal $\leqq k$;
(2) B is either empty or homeomorphic to $B(k)$.

Proof. Since the proof of the classical result covers the case $k=\boldsymbol{\aleph}_{0}$, we assume $k>\boldsymbol{\aleph}_{0}$. Let $A=X_{k}$ and $B=X_{k}{ }^{*}$. Then A is open, and since A is k-discrete and has weight $\leqq k,|A| \leqq k$.

If $B \neq \emptyset$, then it is a completely metrizable, zero-dimensional space of weight $\leqq k$ which, by Proposition 6 , has no k-isolated points. Hence no open subset of B has k-isolated points. Since each non-empty subset of B is absolutely k-analytic, each contains, by the remarks following Theorem 10^{*}, a closed copy of $B(k)$, and hence a discrete subset of cardinal k. It follows that B is homeomorphic to $B(k)[\mathbf{5}]$.

In [5], Stone has shown, under the generalized continuum hypothesis, that the space X of weight $\leqq k$ has every subset absolutely k-analytic if and only if $|X| \leqq k$, and raised the question of a similar theorem for spaces of arbitrary weight. Our next result provides a partial answer.

Theorem 17 [GCH]. Let A be absolutely k-analytic and assume $k^{\mathbb{N}_{0}}>k$. Then the following are equivalent:
(1) A is k-discrete.
(2) Every subset of A is (absolutely) k-analytic.

Proof. If A is k-discrete, then every subset of A is the union of $\leqq k$ closed sets and is therefore (absolutely) k-analytic. Now assume (2) holds and A is not k-discrete. Then A contains a copy of $B(k)$. Therefore all subsets of $B(k)$ are absolutely k-analytic, and hence each subset of $B(k)$ is a continuous image of $B(k)$ [$\mathbf{5}]$. But the number of continuous images of $B(k)$ in $B(k)$ is $\leqq\left(k^{\mathrm{N}_{0}}\right)^{k}=$ $k^{k}=2^{k}$, while $B(k)$ has $2^{\chi^{\aleph_{0}}}=2^{2^{k}}$ subsets.

The author wishes to thank the referee for several helpful comments and suggestions.

References

1. A. El'kin, A-sets in complete metric spaces, Soviet Math. Dokl. 8 (1967), 874-877.
2. R. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145-169.
3. N. Lasnev, Continuous decompositions of collectively normal spaces, Soviet Math. Dokl. 188 (1967), 1069-70.
4. K. Kuratowski, Topology, v. 1 (Academic Press, New York, 1966).
5. A. H. Stone, Non-separable Borel sets, Rozprawy Matematyczne 28, Warsaw (1962).
6. -On σ-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655-666.
7. - Kernel constructions and Borel sets, Trans. Amer. Math. Soc. 107 (1963), 58-70.
8. ——Non-separable Borel sets, II, Gen. Top. and Appl. 2 (1972), 249-270.
9. R. Pol, Note on decompositions of metrizable spaces, I, Fund. Math. 95 (1977), 95-103.
10. - Note on decompositions of metrizable spaces, II, Fund. Math. 100 (2) (1978), 129-143.
11. D. Preiss, Completely additive disjoint system of Baire sets is of bounded class, Comm. Math. Univ. Carolinae 15 (1975), 341-344.

Washington University, St. Louis, Missouri

