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Quasi-copure Submodules

Saeed Rajaee

Abstract. All rings are commutative with identity, and all modules are unital. In this paper we
introduce the concept of a quasi-copure submodule of a multiplication R-module M and will give
some results about it. We give some properties of the tensor product of ûnitely generated faithful
multiplication modules.

1 Introduction

Let R be a commutative ring with identity and let M be a unitary R-module. We will
show that the set of quasi-copure submodules of multiplication modules on arith-
metical rings is a lattice. An R-module M is called a multiplication module if for ev-
ery submodule N of M, there exists an ideal I of R such that N = IM = [N ∶M]M
(see [6, 7, 11]). An R-module M is called a cancellation module if IM = JM for some
ideals I and J of R implies I = J. Equivalently, [IM ∶M] = I for all ideals I of R.
If M is a ûnitely generated faithful multiplication R-module, then M is a cancella-
tion module (see [11, Corollary to _eorem 9]), from which one can easily verify that
[IN ∶M] = I[N ∶M] for all ideals I of R and all submodules N of M.
A ring R is said to be an arithmetical ring if, for all ideals I, J, and K of R, we have

I+(J∩K) = (I+ J)∩(I+K). Obviously, Prüfer domains and, in particular, Dedekind
domains are arithmetical. AmoduleM is called distributive if one of the following two
equivalent conditions holds:
(i) N ∩ (K + L) = (N ∩ K) + (N ∩ L) for all submodules N , L,K of M;
(ii) N + (K ∩ L) = (N + K) ∩ (N + L) for all submodules N , L,K of M.
For any submodule N of an R-module M, we deûne V(N) to be the set of all prime
submodules of M containing N . For any family of submodules Nλ (λ ∈ Λ) of M,
⋂λ∈Λ V(Nλ) = V(∑λ∈Λ Nλ). _eM-radical of a submodule N of an R-moduleM is
the intersection of all prime submodules ofM containing N , i.e., rad(N) = ⋂V(N).
Of course, V(M) is just the empty set and V(0) = Spec(M). Every ûnitely generated
multiplication module on an arithmetical ring is distributive. By [5], a submodule N
of M is called copure if for each ideal I of R, [N ∶M I] = N + [0 ∶M I]. An R-module
M is called fully copure if every submodule N of M is copure. We will denote the
set of all copure prime submodules of M containing N by CV(N). We will show
that for submodules N and K of M, CV(N) ∩ CV(K) = CV(N + K). Moreover,
if M is a multiplication module on an arithmetical ring R, then the intersection of a
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ûnite collection of copure submodules ofM is also copure. IfM is a ûnitely generated
faithful multiplication module, then CV(N) ∩ CV(K) = CV(NK).
A submodule N of M is called a pure submodule in M if IN = N ∩ IM for every

ideal I of R. Hence, an ideal I of a ring R is pure if for every ideal J of R, JI = J ∩ I.
Consequently, if I is pure, then J = JI for every ideal J ⊆ I.

Let R be a domain, K the ûeld of fractions of R, and M a torsion free R-mod-
ule; then a nonzero ideal I of R is said to be invertible if II−1 = R, where
I−1 = {x ∈ K ∶xI ⊆ R}. _e associated ideal θ(M) = ∑m∈M[Rm ∶M] and the trace
ideal Tr(M) = ∑ f ∈Hom(M ,R) f (M) of a module M play analogous but distinct roles
in the study ofmultiplication and projectivemodules respectively.

If M is projective, then M = Tr(M)M, ann(M) = ann(Tr(M)), and Tr(M) is
a pure ideal of R (see [8, Proposition 3.30]). In particular, if M is a ûnitely gener-
ated faithful multiplication R-module (hence projective), then pure ideals are �at,
and hence Tr(M) is �at. Let M be an R-module and N a submodule of M; then
Γ(N) = [N ∶M]Tr(M). Obviously, Γ(M) = Tr(M). It is shown in [4, _eorem 3]
that if N is a submodule of a faithful multiplication or locally cyclic projectivemod-
ule M, then Tr(radN) =

√
Γ(N) = Γ(radN).

2 Preliminary Notes

Deûnition 2.1 Let N be a submodule of an R-moduleM. We will denote the set of
all copure prime submodules of M containing N by CV(N):

CV(N) = {P ∈ V(N) ∶ P is copure.}

Deûnition 2.2 A submoduleN ofM is called quasi-copure (orweak-copure) if every
proper prime submodule P containing N is a copure submodule of M. Equivalently,
if V(N) = CV(N), then N is a quasi-copure submodule of M.

Example 2.3 We consider M = Z8 ⊕ Z6 as a Z-module and N = ⟨2⟩ ⊕ ⟨3⟩ as a
submodule of M. We show that N is not a copure submodule of M and also that
L = Z8 ⊕ ⟨3⟩ and K = ⟨2⟩ ⊕ Z6 are proper prime submodules of M contained N ,
where both are copure submodules of M; therefore, N is a quasi-copure submodule
of M:

[N ∶M2Z] = {(m, n) ∈ Z8 ⊕Z6 ∣ 2Z(m, n) ⊆ ⟨2⟩⊕ ⟨3⟩} = Z8 ⊕ ⟨3⟩

N + [{0}⊕ {0} ∶M2Z] = ⟨2⟩⊕ ⟨3⟩ + {(m, n) ∈ Z8 ⊕Z6 ∣ 2Z(m, n) ⊆ ⟨0⟩⊕ ⟨0⟩}

= ⟨2⟩⊕ ⟨3⟩ + ⟨4⟩⊕ ⟨3⟩ = ⟨2⟩⊕ ⟨3⟩.

_erefore, N is not a copure submodule of M. We know that L = Z8 ⊕ ⟨3⟩ and K =

⟨2⟩⊕Z6 are proper prime submodules of M contained N .

Case 1: If k = p > 3 is a prime number, then

[L ∶M pZ] = {(m, n) ∈ Z8 ⊕Z6 ∣ pZ(m, n) ⊆ Z8 ⊕ ⟨3⟩} = Z8 ⊕ ⟨3⟩

L + [{0}⊕ {0} ∶M pZ] = Z8 ⊕ ⟨3⟩ + {(m, n) ∈ Z8 ⊕Z6 ∣ pZ(m, n) ⊆ ⟨0⟩⊕ ⟨0⟩}

= Z8 ⊕ ⟨3⟩ + ⟨0⟩⊕ ⟨0⟩ = Z8 ⊕ ⟨3⟩.
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Case 2: Otherwise, we have that

[L ∶M2Z] = {(m, n) ∈ Z8 ⊕Z6 ∣ 2Z(m, n) ⊆ Z8 ⊕ ⟨3⟩} = Z8 ⊕ ⟨3⟩

L + [{0}⊕ {0} ∶M2Z] = Z8 ⊕ ⟨3⟩ + {(m, n) ∈Z 8⊕Z6 ∣ 2Z(m, n) ⊆ ⟨0⟩⊕ ⟨0⟩}

= Z8 ⊕ ⟨3⟩ + ⟨4⟩⊕ ⟨3⟩ = Z8 ⊕ ⟨3⟩

[L ∶M3Z] = {(m, n) ∈ Z8 ⊕Z6 ∣ 3Z(m, n) ⊆ Z8 ⊕ ⟨3⟩} = Z8 ⊕Z6

L + [{0}⊕ {0} ∶M3Z] = Z8 ⊕ ⟨3⟩ + {(m, n) ∈ Z8 ⊕Z6 ∣ 3Z(m, n) ⊆ ⟨0⟩⊕ ⟨0⟩}

= Z8 ⊕ ⟨3⟩ + ⟨0⟩⊕ ⟨2⟩ = Z8 ⊕Z6

[L ∶M4Z] = {(m, n) ∈ Z8 ⊕Z6 ∣ 4Z(m, n) ⊆ Z8 ⊕ ⟨3⟩} = Z8 ⊕ ⟨3⟩

L + [{0}⊕ {0} ∶M4Z] = Z8 ⊕ ⟨3⟩ + {(m, n) ∈ Z8 ⊕Z6 ∣ 4Z(m, n) ⊆ ⟨0⟩⊕ ⟨0⟩}

= Z8 ⊕ ⟨3⟩ + ⟨2⟩⊕ ⟨3⟩ = Z8 ⊕ ⟨3⟩.

Deûnition 2.4 Let R be a ring and M an R-module. An ideal I of R is called an
M-cancellation module (resp., M-weak cancellation module) if for all submodules K
and N of M, IK = IN implies K = N (resp. K + [0 ∶M I] = N + [0 ∶M I]). Equivalently,
we have [IN ∶M I] = N (resp. [IN ∶M I] = N + [0 ∶M I]) for all submodules N ofM (see
[1]).

3 Main Results

Deûnition 3.1 Let M be amultiplication R-module and let N = IM and K = JM be
submodules ofM. _e product of N and K is denoted by NK and is deûned by IJM.
Clearly, NK is a submodule of M and contained in N ∩ K.

Lemma 3.2 Let M be amultiplication R-module.
(i) IfM be ûnitely generated faithful, then M is a cancellation module.
(ii) Every proper submodule of M is contained in a maximal submodule of M and P

is a maximal submodule of M if and only if there exists a maximal ideal m of R
such that P = mM ≠ M.

Proof (i)By [11, Corollary 1 to_eorem9],M is a cancellationmodule, and therefore

IN = [IN ∶M]M = I[N ∶M]M ⇒ [IN ∶M] = I[N ∶M]

for all ideals I of R and all submodules N of M.
(ii) [7,_eorem 2.5]

_eorem 3.3 Let M be an R-module and let N and K be submodules ofM.
(i) If N ⊆ L ⊂ M and N is quasi-copure, then L is also quasi-copure. In particular, if

one of the N or K are quasi-copure submodules, then N +K is also a quasi-copure
submodule ofM.

(ii) Let M be a multiplication R-module on an arithmetical ring R. If N and K are
copure submodules, then N ∩ K is also a copure submodule of M. Moreover, if
V(N) is a ûnite set and N quasi-copure, then rad(N) is copure.
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(iii) IfM is amultiplication module and N and K are quasi-copure submodules ofM,
thenNK is also a quasi-copure submodule ofM. _erefore, CV(NK) = CV(N)∩

CV(K).

Proof (i) Let P ∈ CV(N), then P ⊃ L ⊇ N , since N is quasi-copure, hence P is
copure. _erefore, P ∈ CV(L). For the second part we set L = N +K, which contains
N and K.

(ii) Every ûnitely generatedmultiplication module M on an arithmetical ring R is
a distributive module. Since N and K are copure submodules of M, hence for every
ideal I of R,

[N ∩ K ∶M I] = [N ∶M I] ∩ [K ∶M I] = (N + [0 ∶M I]) ∩ (K + [0 ∶M I])

= N ∩ K + [0 ∶M I].

_erefore, N ∩ K is a copure submodule of M.
Since N is quasi-copure by deûnition, each P ∈ V(N) is copure, and therefore

rad(N) = ⋂P∈V(N) P is copure.
(iii) Let P ∈ CV(N)∩CV(K) and P ∈ V(NK). By [7, Corollary 2.11], there exists

a prime ideal p ⊇ ann(M), where P = pM and [P ∶M] = [pM ∶M] = p. Let N = IM
and K = JM for some ideals I and J of R; then NK = IJM ⊂ pM. SinceM is a ûnitely
generated faithful multiplication module, it is cancellation module [11, Corollary 1 to
_eorem 9], hence IJ ⊂ p. _erefore, I ⊂ p or J ⊂ p, and this implies that N ⊂ P or
K ⊂ P, respectively. In each of those two cases, P is copure, and hence P ∈ CV(NK).
It follows that NK is a quasi-copure submodule of M. Conversely, let P ∈ CV(NK);
then P ⊇ NK and by [7,_eorem 3.16 and Corollary 3.17], P ⊇ N or P ⊇ K. It follows
that P ∈ CV(N) ∪ CV(K) ⊇ CV(N) ∩ CV(K).

Corollary 3.4 Let M be a nonzero multiplication R-module.
(i) If M is a faithful prime and N a copure submodule of M, then N = IN for every

nonzero ideal I of R.
(ii) If M be ûnitely generated and Q a quasi-copure primary submodule of M, then

rad(Q) is a copure submodule ofM.
(iii) For every two copure submodules N1 ,N2 ofM, if IN1 = IN2, then N1 = N2.
(iv) IfM is Noetherian and R an arithmetical ring, then for quasi-copure submodules

N and K ofM, rad(N ∩ K) is copure.

Proof (i) M is faithful, annR(M) = 0, and M is prime, hence for each submodule
N of M, annR(N) = annR(M) = 0; then annM(N) = annR(N)M = 0. Now M is a
multiplication R-module therefore for each ideal I of R and every submodule L ofM,
[L ∶M I] = [L ∶M IM]. In particular, annM(I) = [0 ∶M I] = annM(IM) = 0. Since N is
copure, [N ∶M I] = N + [0 ∶M I] = N . It follows that N = IN .

(ii) Since Q is primary submodule,
√

[Q ∶M] is a prime ideal containing ann(M).
_erefore, by [9, Lemma 3 and _eorem 4], rad(Q) =

√
[Q ∶M]M is a prime sub-

module of M and Q is quasi-copure, hence rad(Q) is copure.
(iii) _e proof follows from (i) immediately.
(iv) Since the radical of any submodule of a Noetherian multiplication module is

a ûnite intersection of prime submodules, by _eorem 3.3(ii), rad(N) and rad(K)
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are copure submeodules ofM. By [7,_eorems 1.6 and 2.12] it follows that rad(N) ∩

rad(K) = rad(N ∩ K), and by _eorem 3.3(ii) rad(N ∩ K) is also copure.

_eorem 3.5 Let (R,m) be a Noetherian local ring and M a cancellation multipli-
cation R-module. If P is a copuremaximal submodule ofM, then for every ideal I of R,
annM(I) ⊆ P. Moreover, for every submodule N ofM, annM(I) = annM(N) ⊆ P.

Proof Since P is a copure submodule of M, for every ideal I of R,

P ⊆ [P ∶M I] = P + [0 ∶M I] ⊆ M

_erefore, bymaximality of P, P = P+[0 ∶M I] or P+[0 ∶M I] = M. Let P+[0 ∶M I] = M;
then IP + I[0 ∶M I] = IM hence IP = IM. Since M is cancellation, hence [IN ∶M] =

I[N ∶M] for all ideals I of R and all submodules N ofM, and also [P ∶M] = m, there-
fore

Im = I[P ∶M] = [IP ∶M] = [IM ∶M] = I.

By Nakayama’s lemma, since I is a ûnitely generated R-module and m = Jac(R) and
I = mI, we have I = 0; therefore, P = P + [0 ∶M I] = P +M = M, which is a contradic-
tion. It follows that P = P + [0 ∶M I] and so annM(I) ⊆ P.

Let N = IM be a submodule ofM. SinceM is amultiplication R-module, for every
ideal I of R and submodule K of M, [K ∶M I] = [K ∶MN] = [K ∶M IM]. In particular,
for K = 0, annM(I) = annM(IM) = annM(N) ⊆ P.

Corollary 3.6 Let M be an R-module and I an M-cancellation ideal of R. If P is a
copuremaximal submodule ofM, then annM(I) ⊆ P.

Proof By theproofof_eorem 3.5wehave IP = IM, and since I is anM-cancellation
ideal of R, P = M, which is a contradiction. _en P = P + [0 ∶M I], and therefore
annM(I) ⊆ P. _erefore,

annM(I) ⊆ ⋂
P=maximal copure

P.

Moreover, if {Iλ}λ∈Λ is a collection of M-cancellation ideals of R, then

⋂
λ∈Λ

annM(Iλ) = ∑
λ∈Λ

annM(Iλ) ⊆ ⋂
P=maximal copure

P.

_eorem 3.7 Let M1 andM2 be ûnitely generated faithful multiplication R-modules.
_e following hold.
(i) If K and N are invertible in M1 and M2 respectively, or if one of K or N is �at,

then Γ(K ⊗ N) ≅ Γ(K)Γ(N). Moreover Γ(K ⊗M2) ≅ Γ(K)Tr(M2).
(ii) IfM1 andM2 are free R-modules, then Tr(rad(K ⊗M2)) ≅ Γ(radK)Tr(M2).

Proof (i) By [2, _eorem 2] M1 ⊗ M2 is a ûnitely generated faithful multiplication
R-module. If K is a nonzero submodule of multiplication R-module M1 such that
[K ∶M1] is an invertible ideal of R, thenK is invertible in M1. _e converse is true ifwe
assume further thatM1 isûnitely generated and faithful (see [10,Lemmas 3.2 and 3.3]).
_erefore, [K ∶M1] and [N ∶M2] are invertible ideals of R, and Tr(M1) and Tr(M2)
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are �at ideals, hence Tr(M1)Tr(M2) ≅ Tr(M1)⊗Tr(M2) ≅ Tr(M1⊗M2). Also, since
M1 ⊗M2 is projective, ann(M1 ⊗M2) = ann(Tr(M1 ⊗M2)) = 0. It follows that

[K ⊗ N ∶M1 ⊗M2] ≅ [K ∶M1]⊗ [N ∶M2] ≅ [K ∶M1][N ∶M2].

_erefore,

Γ(K ⊗ N) = [K ⊗ N ∶M1 ⊗M2]Tr(M1 ⊗M2)

≅ [K ∶M1][N ∶M2]Tr(M1)⊗ Tr(M2)

≅ [K ∶M1][N ∶M2]Tr(M1)Tr(M2)

= [K ∶M1]Tr(M1)[N ∶M2]Tr(M2) = Γ(K)Γ(N).

Also, if K or N is �at, then [K ∶M1] or [N ∶M2] is a �at ideal, and hence

[K ∶M1]⊗ [N ∶M2] ≅ [K ∶M1][N ∶M2],

and the result is true. Since M1 ⊗M2 is a faithful multiplication R-module,

K ⊗ N = Γ(K ⊗ N)(M1 ⊗M2) ≅ Γ(K)Γ(N)(M1 ⊗M2) ≅ Γ(K ⊗ N)(M1 ⊗M2).

(ii) SinceM1⊗M2 is a faithful multiplication free R-module, therefore for some ideal
I of R, K = IM1 and then

rad(K ⊗M2) = rad(IM1 ⊗M2) ≅ rad(I(M1 ⊗M2)) =
√

I(M1 ⊗M2)

≅
√

IM1 ⊗M2 = (radK)⊗M2

By [4,_eorem 3], and (i) and also since Tr(M2) is �at, it follows that

Tr(rad(K ⊗M2)) = Tr(radK ⊗M2) ≅ Tr(radK)⊗ Tr(M2)

≅ Tr(radK)Tr(M2) =
√

Γ(K)Tr(M2)

= Γ(radK)Tr(M2) = Γ(radK)Γ(M2).

_eorem 3.8 Let M be a ûnitely generated faithful multiplication R-module and let
Nλ (λ ∈ Λ) be a ûnite collection of submodules ofM, where for all λ ≠ µ, Nλ + Nµ is a
multiplication module.
(i) If N = ⋂λ∈Λ Nλ , then for every pure ideal I of R, Γ(IN) = IΓ(N) = I ∩ Γ(N).
(ii) If K is a pure idempotent submodule ofM, then K = Γ(K)K.

Proof (i) By [3,_eorem 1], IN = ⋂λ∈Λ INλ and by [4, Lemma 2],

Γ(IN) = Γ( I ⋂
λ∈Λ

Nλ) = Γ( ⋂
λ∈Λ

INλ) = ⋂
λ∈Λ

Γ(INλ)

= ⋂
λ∈Λ

[INλ ∶M]Tr(M) = ⋂
λ∈Λ

I[Nλ ∶M]Tr(M)

= ⋂
λ∈Λ

IΓ(Nλ) = I ⋂
λ∈Λ

Γ(Nλ) = IΓ(N) = I ∩ Γ(N).

(ii) By [11, _eorem 11], if M is a ûnitely generated multiplication R-module such
that ann(M) = Re for some idempotent e, then M is projective, and hence, ûnitely
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generated faithful multiplication modules are projective and M = Tr(M)M. Since K
is pure and idempotent,

Tr(M)K = K ∩ Tr(M)M = K ∩M = K ,
K = [K ∶M]K ⇒ Tr(M)K = Tr(M)[K ∶M]K = Γ(K)K .

It follows that K = Γ(K)K = K ∩ Γ(K)M.
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