Canad. Math. Bull. Vol. **59** (1), 2016 pp. 197–203 http://dx.doi.org/10.4153/CMB-2015-067-2 © Canadian Mathematical Society 2015

Quasi-copure Submodules

Saeed Rajaee

Abstract. All rings are commutative with identity, and all modules are unital. In this paper we introduce the concept of a quasi-copure submodule of a multiplication R-module M and will give some results about it. We give some properties of the tensor product of finitely generated faithful multiplication modules.

1 Introduction

Let *R* be a commutative ring with identity and let *M* be a unitary *R*-module. We will show that the set of quasi-copure submodules of multiplication modules on arithmetical rings is a lattice. An *R*-module *M* is called a *multiplication module* if for every submodule *N* of *M*, there exists an ideal *I* of *R* such that N = IM = [N:M]M(see [6,7,11]). An *R*-module *M* is called a *cancellation module* if IM = JM for some ideals *I* and *J* of *R* implies I = J. Equivalently, [IM:M] = I for all ideals *I* of *R*. If *M* is a finitely generated faithful multiplication *R*-module, then *M* is a cancellation module (see [11, Corollary to Theorem 9]), from which one can easily verify that [IN:M] = I[N:M] for all ideals *I* of *R* and all submodules *N* of *M*.

A ring *R* is said to be an *arithmetical ring* if, for all ideals *I*, *J*, and *K* of *R*, we have $I + (J \cap K) = (I+J) \cap (I+K)$. Obviously, Prüfer domains and, in particular, Dedekind domains are arithmetical. A module *M* is called *distributive* if one of the following two equivalent conditions holds:

(i) $N \cap (K + L) = (N \cap K) + (N \cap L)$ for all submodules N, L, K of M;

(ii) $N + (K \cap L) = (N + K) \cap (N + L)$ for all submodules N, L, K of M.

For any submodule *N* of an *R*-module *M*, we define V(N) to be the set of all prime submodules of *M* containing *N*. For any family of submodules N_{λ} ($\lambda \in \Lambda$) of *M*, $\bigcap_{\lambda \in \Lambda} V(N_{\lambda}) = V(\sum_{\lambda \in \Lambda} N_{\lambda})$. The *M*-radical of a submodule *N* of an *R*-module *M* is the intersection of all prime submodules of *M* containing *N*, *i.e.*, rad(*N*) = $\bigcap V(N)$. Of course, V(M) is just the empty set and V(0) = Spec(M). Every finitely generated multiplication module on an arithmetical ring is distributive. By [5], a submodule *N* of *M* is called *copure* if for each ideal *I* of *R*, $[N:_MI] = N + [0:_MI]$. An *R*-module *M* is called *fully copure* if every submodule *N* of *M* is copure. We will denote the set of all copure prime submodules of *M* containing *N* by CV(N). We will show that for submodules *N* and *K* of *M*, $CV(N) \cap CV(K) = CV(N + K)$. Moreover, if *M* is a multiplication module on an arithmetical ring *R*, then the intersection of a

Received by the editors February 18, 2014; revised June 26, 2015.

Published electronically October 26, 2015.

This work was supported by the grant of Payame Noor University of Iran.

AMS subject classification: 13A15, 13C05, 13C13, 13C99.

Keywords: multiplication module, arithmetical ring, copure submodule, radical of submodules.

finite collection of copure submodules of *M* is also copure. If *M* is a finitely generated faithful multiplication module, then $CV(N) \cap CV(K) = CV(NK)$.

A submodule *N* of *M* is called a *pure submodule* in *M* if $IN = N \cap IM$ for every ideal *I* of *R*. Hence, an ideal *I* of a ring *R* is pure if for every ideal *J* of *R*, $JI = J \cap I$. Consequently, if *I* is pure, then J = JI for every ideal $J \subseteq I$.

Let *R* be a domain, *K* the field of fractions of *R*, and *M* a torsion free *R*-module; then a nonzero ideal *I* of *R* is said to be *invertible* if $II^{-1} = R$, where $I^{-1} = \{x \in K : xI \subseteq R\}$. The associated ideal $\theta(M) = \sum_{m \in M} [Rm:M]$ and the trace ideal $\text{Tr}(M) = \sum_{f \in \text{Hom}(M,R)} f(M)$ of a module *M* play analogous but distinct roles in the study of multiplication and projective modules respectively.

If *M* is projective, then M = Tr(M)M, $\operatorname{ann}(M) = \operatorname{ann}(\text{Tr}(M))$, and $\operatorname{Tr}(M)$ is a pure ideal of *R* (see [8, Proposition 3.30]). In particular, if *M* is a finitely generated faithful multiplication *R*-module (hence projective), then pure ideals are flat, and hence $\operatorname{Tr}(M)$ is flat. Let *M* be an *R*-module and *N* a submodule of *M*; then $\Gamma(N) = [N:M]\operatorname{Tr}(M)$. Obviously, $\Gamma(M) = \operatorname{Tr}(M)$. It is shown in [4, Theorem 3] that if *N* is a submodule of a faithful multiplication or locally cyclic projective module *M*, then $\operatorname{Tr}(\operatorname{rad} N) = \sqrt{\Gamma(N)} = \Gamma(\operatorname{rad} N)$.

2 Preliminary Notes

Definition 2.1 Let N be a submodule of an R-module M. We will denote the set of all copure prime submodules of M containing N by CV(N):

$$CV(N) = \{P \in V(N) : P \text{ is copure.}\}$$

Definition 2.2 A submodule N of M is called *quasi-copure* (or *weak-copure*) if every proper prime submodule P containing N is a copure submodule of M. Equivalently, if V(N) = CV(N), then N is a quasi-copure submodule of M.

Example 2.3 We consider $M = \mathbb{Z}_8 \oplus \mathbb{Z}_6$ as a \mathbb{Z} -module and $N = \langle \overline{2} \rangle \oplus \langle \overline{3} \rangle$ as a submodule of M. We show that N is not a copure submodule of M and also that $L = \mathbb{Z}_8 \oplus \langle \overline{3} \rangle$ and $K = \langle \overline{2} \rangle \oplus \mathbb{Z}_6$ are proper prime submodules of M contained N, where both are copure submodules of M; therefore, N is a quasi-copure submodule of M:

$$\begin{bmatrix} N : {}_{M}2\mathbb{Z} \end{bmatrix} = \left\{ (\overline{m}, \overline{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 2\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \langle \overline{2} \rangle \oplus \langle \overline{3} \rangle \right\} = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle$$
$$N + \left[\{\overline{0}\} \oplus \{\overline{0}\} : {}_{M}2\mathbb{Z} \right] = \langle \overline{2} \rangle \oplus \langle \overline{3} \rangle + \left\{ (\overline{m}, \overline{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 2\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \langle \overline{0} \rangle \oplus \langle \overline{0} \rangle \right\}$$
$$= \langle \overline{2} \rangle \oplus \langle \overline{3} \rangle + \langle \overline{4} \rangle \oplus \langle \overline{3} \rangle = \langle \overline{2} \rangle \oplus \langle \overline{3} \rangle.$$

Therefore, *N* is not a copure submodule of *M*. We know that $L = \mathbb{Z}_8 \oplus \langle \overline{3} \rangle$ and $K = \langle \overline{2} \rangle \oplus \mathbb{Z}_6$ are proper prime submodules of *M* contained *N*.

Case 1: If k = p > 3 is a prime number, then

$$\begin{split} \left[L:_{M}p\mathbb{Z}\right] &= \left\{\left(\overline{m},\overline{n}\right) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid p\mathbb{Z}(\overline{m},\overline{n}) \subseteq \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle\right\} = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle \\ L &+ \left[\left\{\overline{0}\right\} \oplus \left\{\overline{0}\right\}:_{M}p\mathbb{Z}\right] = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \left\{\left(\overline{m},\overline{n}\right) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid p\mathbb{Z}(\overline{m},\overline{n}) \subseteq \langle \overline{0} \rangle \oplus \langle \overline{0} \rangle\right\} \\ &= \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \langle \overline{0} \rangle \oplus \langle \overline{0} \rangle = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle. \end{split}$$

Case 2: Otherwise, we have that

$$\begin{bmatrix} L:_{M} 2\mathbb{Z} \end{bmatrix} = \left\{ (\overline{m}, \overline{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 2\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle \right\} = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle$$

$$L + \left[\{\overline{0}\} \oplus \{\overline{0}\}:_{M} 2\mathbb{Z} \right] = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \left\{ (\overline{m}, \overline{n}) \in_{\mathbb{Z}} 8 \oplus \mathbb{Z}_{6} \mid 2\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \langle \overline{0} \rangle \oplus \langle \overline{0} \rangle \right\}$$

$$= \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \langle \overline{4} \rangle \oplus \langle \overline{3} \rangle = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle$$

$$[L:_{M} 3\mathbb{Z}] = \left\{ (\overline{m}, \overline{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 3\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle \right\} = \mathbb{Z}_{8} \oplus \mathbb{Z}_{6}$$

$$L + \left[\{\overline{0}\} \oplus \{\overline{0}\}:_{M} 3\mathbb{Z} \right] = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \left\{ (\overline{m}, \overline{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 3\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \langle \overline{0} \rangle \oplus \langle \overline{0} \rangle \right\}$$

$$= \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \langle \overline{0} \rangle \oplus \langle \overline{2} \rangle = \mathbb{Z}_{8} \oplus \mathbb{Z}_{6}$$

$$[L:_{M} 4\mathbb{Z}] = \left\{ (\overline{m}, \overline{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 4\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle \right\} = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle$$

$$L + \left[\{\overline{0}\} \oplus \{\overline{0}\}:_{M} 4\mathbb{Z} \right] = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \left\{ (\overline{m}, \overline{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 4\mathbb{Z}(\overline{m}, \overline{n}) \subseteq \langle \overline{0} \rangle \oplus \langle \overline{0} \rangle \right\}$$

$$= \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle + \langle \overline{2} \rangle \oplus \langle \overline{3} \rangle = \mathbb{Z}_{8} \oplus \langle \overline{3} \rangle.$$

Definition 2.4 Let *R* be a ring and *M* an *R*-module. An ideal *I* of *R* is called an *M*-cancellation module (resp., *M*-weak cancellation module) if for all submodules *K* and *N* of *M*, *IK* = *IN* implies K = N (resp. $K + [0:_M I] = N + [0:_M I]$). Equivalently, we have $[IN:_M I] = N$ (resp. $[IN:_M I] = N + [0:_M I]$) for all submodules *N* of *M* (see [1]).

3 Main Results

Definition 3.1 Let *M* be a multiplication *R*-module and let N = IM and K = JM be submodules of *M*. The product of *N* and *K* is denoted by *NK* and is defined by *IJM*. Clearly, *NK* is a submodule of *M* and contained in $N \cap K$.

Lemma 3.2 Let *M* be a multiplication *R*-module.

- (i) If *M* be finitely generated faithful, then *M* is a cancellation module.
- (ii) Every proper submodule of M is contained in a maximal submodule of M and P is a maximal submodule of M if and only if there exists a maximal ideal m of R such that $P = mM \neq M$.

Proof (i) By [11, Corollary 1 to Theorem 9], *M* is a cancellation module, and therefore

 $IN = [IN:M]M = I[N:M]M \Rightarrow [IN:M] = I[N:M]$

for all ideals *I* of *R* and all submodules *N* of *M*. (ii) [7, Theorem 2.5]

Theorem 3.3 Let M be an R-module and let N and K be submodules of M.

- (i) If $N \subseteq L \subset M$ and N is quasi-copure, then L is also quasi-copure. In particular, if one of the N or K are quasi-copure submodules, then N + K is also a quasi-copure submodule of M.
- (ii) Let M be a multiplication R-module on an arithmetical ring R. If N and K are copure submodules, then $N \cap K$ is also a copure submodule of M. Moreover, if V(N) is a finite set and N quasi-copure, then rad(N) is copure.

(iii) If M is a multiplication module and N and K are quasi-copure submodules of M, then NK is also a quasi-copure submodule of M. Therefore, $CV(NK) = CV(N) \cap CV(K)$.

Proof (i) Let $P \in CV(N)$, then $P \supset L \supseteq N$, since N is quasi-copure, hence P is copure. Therefore, $P \in CV(L)$. For the second part we set L = N + K, which contains N and K.

(ii) Every finitely generated multiplication module M on an arithmetical ring R is a distributive module. Since N and K are copure submodules of M, hence for every ideal I of R,

$$[N \cap K:_{M}I] = [N:_{M}I] \cap [K:_{M}I] = (N + [0:_{M}I]) \cap (K + [0:_{M}I])$$
$$= N \cap K + [0:_{M}I].$$

Therefore, $N \cap K$ is a copure submodule of M.

Since *N* is quasi-copure by definition, each $P \in V(N)$ is copure, and therefore $rad(N) = \bigcap_{P \in V(N)} P$ is copure.

(iii) Let $P \in CV(N) \cap CV(K)$ and $P \in V(NK)$. By [7, Corollary 2.11], there exists a prime ideal $p \supseteq \operatorname{ann}(M)$, where P = pM and [P:M] = [pM:M] = p. Let N = IMand K = JM for some ideals I and J of R; then $NK = IJM \subset pM$. Since M is a finitely generated faithful multiplication module, it is cancellation module [11, Corollary 1 to Theorem 9], hence $IJ \subset p$. Therefore, $I \subset p$ or $J \subset p$, and this implies that $N \subset P$ or $K \subset P$, respectively. In each of those two cases, P is copure, and hence $P \in CV(NK)$. It follows that NK is a quasi-copure submodule of M. Conversely, let $P \in CV(NK)$; then $P \supseteq NK$ and by [7, Theorem 3.16 and Corollary 3.17], $P \supseteq N$ or $P \supseteq K$. It follows that $P \in CV(N) \cup CV(K) \supseteq CV(N) \cap CV(K)$.

Corollary 3.4 Let M be a nonzero multiplication R-module.

- (i) If M is a faithful prime and N a copure submodule of M, then N = IN for every nonzero ideal I of R.
- (ii) If M be finitely generated and Q a quasi-copure primary submodule of M, then rad(Q) is a copure submodule of M.
- (iii) For every two copure submodules N_1 , N_2 of M, if $IN_1 = IN_2$, then $N_1 = N_2$.
- (iv) If M is Noetherian and R an arithmetical ring, then for quasi-copure submodules N and K of M, $rad(N \cap K)$ is copure.

Proof (i) *M* is faithful, $\operatorname{ann}_R(M) = 0$, and *M* is prime, hence for each submodule *N* of *M*, $\operatorname{ann}_R(N) = \operatorname{ann}_R(M) = 0$; then $\operatorname{ann}_M(N) = \operatorname{ann}_R(N)M = 0$. Now *M* is a multiplication *R*-module therefore for each ideal *I* of *R* and every submodule *L* of *M*, $[L:_MI] = [L:_MIM]$. In particular, $\operatorname{ann}_M(I) = [0:_MI] = \operatorname{ann}_M(IM) = 0$. Since *N* is copure, $[N:_MI] = N + [0:_MI] = N$. It follows that N = IN.

(ii) Since *Q* is primary submodule, $\sqrt{[Q:M]}$ is a prime ideal containing ann(*M*). Therefore, by [9, Lemma 3 and Theorem 4], $rad(Q) = \sqrt{[Q:M]}M$ is a prime submodule of *M* and *Q* is quasi-copure, hence rad(Q) is copure.

(iii) The proof follows from (i) immediately.

(iv) Since the radical of any submodule of a Noetherian multiplication module is a finite intersection of prime submodules, by Theorem 3.3(ii), rad(N) and rad(K)

Quasi-copure Submodules

are copure submeodules of *M*. By [7, Theorems 1.6 and 2.12] it follows that $rad(N) \cap rad(K) = rad(N \cap K)$, and by Theorem 3.3(ii) $rad(N \cap K)$ is also copure.

Theorem 3.5 Let (R, m) be a Noetherian local ring and M a cancellation multiplication R-module. If P is a copure maximal submodule of M, then for every ideal I of R, $\operatorname{ann}_M(I) \subseteq P$. Moreover, for every submodule N of M, $\operatorname{ann}_M(I) = \operatorname{ann}_M(N) \subseteq P$.

Proof Since *P* is a copure submodule of *M*, for every ideal *I* of *R*,

$$P \subseteq [P:_M I] = P + [0:_M I] \subseteq M$$

Therefore, by maximality of P, $P = P + [0:_M I]$ or $P + [0:_M I] = M$. Let $P + [0:_M I] = M$; then $IP + I[0:_M I] = IM$ hence IP = IM. Since M is cancellation, hence [IN:M] = I[N:M] for all ideals I of R and all submodules N of M, and also [P:M] = m, therefore

$$Im = I[P:M] = [IP:M] = [IM:M] = I.$$

By Nakayama's lemma, since *I* is a finitely generated *R*-module and m = Jac(R) and I = mI, we have I = 0; therefore, $P = P + [0:_M I] = P + M = M$, which is a contradiction. It follows that $P = P + [0:_M I]$ and so $\operatorname{ann}_M(I) \subseteq P$.

Let N = IM be a submodule of M. Since M is a multiplication R-module, for every ideal I of R and submodule K of M, $[K:_M I] = [K:_M N] = [K:_M IM]$. In particular, for K = 0, ann_M(I) = ann_{<math>M}(IM) = ann_{<math>M} $(N) \subseteq P$.

Corollary 3.6 Let M be an R-module and I an M-cancellation ideal of R. If P is a copure maximal submodule of M, then $\operatorname{ann}_M(I) \subseteq P$.

Proof By the proof of Theorem 3.5 we have IP = IM, and since *I* is an *M*-cancellation ideal of *R*, P = M, which is a contradiction. Then $P = P + [0:_M I]$, and therefore $\operatorname{ann}_M(I) \subseteq P$. Therefore,

$$\operatorname{ann}_M(I) \subseteq \bigcap_{P=\text{maximal copure}} P$$

Moreover, if $\{I_{\lambda}\}_{\lambda \in \Lambda}$ is a collection of *M*-cancellation ideals of *R*, then

$$\bigcap_{\lambda \in \Lambda} \operatorname{ann}_M(I_{\lambda}) = \sum_{\lambda \in \Lambda} \operatorname{ann}_M(I_{\lambda}) \subseteq \bigcap_{P = \text{maximal copure}} P.$$

Theorem 3.7 Let M_1 and M_2 be finitely generated faithful multiplication *R*-modules. The following hold.

- (i) If K and N are invertible in M₁ and M₂ respectively, or if one of K or N is flat, then Γ(K ⊗ N) ≅ Γ(K)Γ(N). Moreover Γ(K ⊗ M₂) ≅ Γ(K) Tr(M₂).
- (ii) If M_1 and M_2 are free *R*-modules, then $\operatorname{Tr}(\operatorname{rad}(K \otimes M_2)) \cong \Gamma(\operatorname{rad} K) \operatorname{Tr}(M_2)$.

Proof (i) By [2, Theorem 2] $M_1 \otimes M_2$ is a finitely generated faithful multiplication R-module. If K is a nonzero submodule of multiplication R-module M_1 such that $[K:M_1]$ is an invertible ideal of R, then K is invertible in M_1 . The converse is true if we assume further that M_1 is finitely generated and faithful (see [10, Lemmas 3.2 and 3.3]). Therefore, $[K:M_1]$ and $[N:M_2]$ are invertible ideals of R, and $Tr(M_1)$ and $Tr(M_2)$

S. Rajaee

are flat ideals, hence $\operatorname{Tr}(M_1) \operatorname{Tr}(M_2) \cong \operatorname{Tr}(M_1) \otimes \operatorname{Tr}(M_2) \cong \operatorname{Tr}(M_1 \otimes M_2)$. Also, since $M_1 \otimes M_2$ is projective, $\operatorname{ann}(M_1 \otimes M_2) = \operatorname{ann}(\operatorname{Tr}(M_1 \otimes M_2)) = 0$. It follows that

$$[K \otimes N : M_1 \otimes M_2] \cong [K : M_1] \otimes [N : M_2] \cong [K : M_1][N : M_2].$$

Therefore,

$$\Gamma(K \otimes N) = [K \otimes N : M_1 \otimes M_2] \operatorname{Tr}(M_1 \otimes M_2)$$

$$\cong [K : M_1] [N : M_2] \operatorname{Tr}(M_1) \otimes \operatorname{Tr}(M_2)$$

$$\cong [K : M_1] [N : M_2] \operatorname{Tr}(M_1) \operatorname{Tr}(M_2)$$

$$= [K : M_1] \operatorname{Tr}(M_1) [N : M_2] \operatorname{Tr}(M_2) = \Gamma(K) \Gamma(N).$$

Also, if *K* or *N* is flat, then $[K:M_1]$ or $[N:M_2]$ is a flat ideal, and hence

$$[K:M_1] \otimes [N:M_2] \cong [K:M_1][N:M_2]$$

and the result is true. Since $M_1 \otimes M_2$ is a faithful multiplication *R*-module,

$$K \otimes N = \Gamma(K \otimes N)(M_1 \otimes M_2) \cong \Gamma(K)\Gamma(N)(M_1 \otimes M_2) \cong \Gamma(K \otimes N)(M_1 \otimes M_2).$$

(ii) Since $M_1 \otimes M_2$ is a faithful multiplication free *R*-module, therefore for some ideal *I* of *R*, $K = IM_1$ and then

$$\operatorname{rad}(K \otimes M_2) = \operatorname{rad}(IM_1 \otimes M_2) \cong \operatorname{rad}(I(M_1 \otimes M_2)) = \sqrt{I(M_1 \otimes M_2)}$$
$$\cong \sqrt{I}M_1 \otimes M_2 = (\operatorname{rad} K) \otimes M_2$$

By [4, Theorem 3], and (i) and also since $Tr(M_2)$ is flat, it follows that

$$Tr(rad(K \otimes M_2)) = Tr(rad K \otimes M_2) \cong Tr(rad K) \otimes Tr(M_2)$$
$$\cong Tr(rad K) Tr(M_2) = \sqrt{\Gamma(K)} Tr(M_2)$$
$$= \Gamma(rad K) Tr(M_2) = \Gamma(rad K)\Gamma(M_2).$$

Theorem 3.8 Let *M* be a finitely generated faithful multiplication *R*-module and let N_{λ} ($\lambda \in \Lambda$) be a finite collection of submodules of *M*, where for all $\lambda \neq \mu$, $N_{\lambda} + N_{\mu}$ is a multiplication module.

(i) If $N = \bigcap_{\lambda \in \Lambda} N_{\lambda}$, then for every pure ideal I of R, $\Gamma(IN) = I\Gamma(N) = I \cap \Gamma(N)$.

(ii) If K is a pure idempotent submodule of M, then $K = \Gamma(K)K$.

Proof (i) By [3, Theorem 1], $IN = \bigcap_{\lambda \in \Lambda} IN_{\lambda}$ and by [4, Lemma 2],

$$\Gamma(IN) = \Gamma\left(I\bigcap_{\lambda\in\Lambda}N_{\lambda}\right) = \Gamma\left(\bigcap_{\lambda\in\Lambda}IN_{\lambda}\right) = \bigcap_{\lambda\in\Lambda}\Gamma(IN_{\lambda})$$
$$= \bigcap_{\lambda\in\Lambda}[IN_{\lambda}:M]\operatorname{Tr}(M) = \bigcap_{\lambda\in\Lambda}I[N_{\lambda}:M]\operatorname{Tr}(M)$$
$$= \bigcap_{\lambda\in\Lambda}I\Gamma(N_{\lambda}) = I\bigcap_{\lambda\in\Lambda}\Gamma(N_{\lambda}) = I\Gamma(N) = I\cap\Gamma(N)$$

(ii) By [11, Theorem 11], if M is a finitely generated multiplication R-module such that ann(M) = Re for some idempotent e, then M is projective, and hence, finitely

Quasi-copure Submodules

generated faithful multiplication modules are projective and M = Tr(M)M. Since *K* is pure and idempotent,

$$\operatorname{Tr}(M)K = K \cap \operatorname{Tr}(M)M = K \cap M = K,$$

$$K = [K:M]K \Rightarrow \operatorname{Tr}(M)K = \operatorname{Tr}(M)[K:M]K = \Gamma(K)K.$$

It follows that $K = \Gamma(K)K = K \cap \Gamma(K)M$.

Acknowledgements The author is grateful to the referee for helpful suggestions, which have resulted in an improvement to the article.

References

- M. M. Ali, ¹/₂ cancellation modules and homogeneous idealization. II. Comm. Algebra 36(2008), 3842–3864. http://dx.doi.org/10.1080/00927870802160826
- [2] _____, Multiplication modules and tensor product. Beiträge Algebra Geom. 47(2006), no. 2, 305–327.
- [3] _____, Some remarks on Multiplication and flat modules. J. Commut. Algebra 4(2012), no. 1, 1–27. http://dx.doi.org/10.1216/JCA-2012-4-1-1
- [4] ______, Some remarks on multiplication and projective modules. II. Comm. Algebra 41(2013), 195–214. http://dx.doi.org/10.1080/00927872.2011.628724
- [5] H. Ansari-Toroghy and F. Farshadifar, *On comultiplication modules*. Korean Ann Math. 25(2008), no. 1–2, 57–66.
- [6] A. D. Barnard, Multiplication modules. J. Algebra 71(1981), 174–178. http://dx.doi.org/10.1016/0021-8693(81)90112-5
- Z. A. El-Bast and P. F. Smith, *Multiplication modules*. Comm. Algebra 16(1988), 755–779. http://dx.doi.org/10.1080/00927878808823601
- [8] C. Faith, *Algebra I: Rings, modules, and categories.* Grundlehren der Mathematischen Wissenschaften, 190, Springer-Verlag, Berlin-New York, 1981.
- [9] R. L. McCasland and M. E. Moore, On radicals of finitely generated modules. Canad. Math. Bull. 29(1986), no. 1, 37–39. http://dx.doi.org/10.4153/CMB-1986-006-7
- [10] A. G.Naoum and F. H. Al-Alwan, Dedekind modules. Comm. Algebra 24(1996), no. 2. 397–412. http://dx.doi.org/10.1080/00927879608825576
- P. F. Smith, Some remarks on multiplication modules. Arch. Math. (Basel) 50(1988), 223–235. http://dx.doi.org/10.1007/BF01187738

Department of Mathematics, Faculty of Mathematics, Payame Noor University (PNU), P.O. Box, 19395-3697, Tehran, Iran

e-mail: saeed_rajaee@pnu.ac.ir