© Canadian Mathematical Society 2015

Quasi-copure Submodules

Saeed Rajaee

Abstract

All rings are commutative with identity, and all modules are unital. In this paper we introduce the concept of a quasi-copure submodule of a multiplication R-module M and will give some results about it. We give some properties of the tensor product of finitely generated faithful multiplication modules.

1 Introduction

Let R be a commutative ring with identity and let M be a unitary R-module. We will show that the set of quasi-copure submodules of multiplication modules on arithmetical rings is a lattice. An R-module M is called a multiplication module if for every submodule N of M, there exists an ideal I of R such that $N=I M=[N: M] M$ (see $[6,7,11]$). An R-module M is called a cancellation module if $I M=J M$ for some ideals I and J of R implies $I=J$. Equivalently, $[I M: M]=I$ for all ideals I of R. If M is a finitely generated faithful multiplication R-module, then M is a cancellation module (see [11, Corollary to Theorem 9]), from which one can easily verify that $[I N: M]=I[N: M]$ for all ideals I of R and all submodules N of M.

A ring R is said to be an arithmetical ring if, for all ideals I, J, and K of R, we have $I+(J \cap K)=(I+J) \cap(I+K)$. Obviously, Prüfer domains and, in particular, Dedekind domains are arithmetical. A module M is called distributive if one of the following two equivalent conditions holds:
(i) $\quad N \cap(K+L)=(N \cap K)+(N \cap L)$ for all submodules N, L, K of M;
(ii) $N+(K \cap L)=(N+K) \cap(N+L)$ for all submodules N, L, K of M.

For any submodule N of an R-module M, we define $V(N)$ to be the set of all prime submodules of M containing N. For any family of submodules $N_{\lambda}(\lambda \in \Lambda)$ of M, $\cap_{\lambda \in \Lambda} V\left(N_{\lambda}\right)=V\left(\sum_{\lambda \in \Lambda} N_{\lambda}\right)$. The M-radical of a submodule N of an R-module M is the intersection of all prime submodules of M containing N, i.e., $\operatorname{rad}(N)=\cap V(N)$. Of course, $V(M)$ is just the empty set and $V(0)=\operatorname{Spec}(M)$. Every finitely generated multiplication module on an arithmetical ring is distributive. By [5], a submodule N of M is called copure if for each ideal I of $R,\left[N:_{M} I\right]=N+\left[0:_{M} I\right]$. An R-module M is called fully copure if every submodule N of M is copure. We will denote the set of all copure prime submodules of M containing N by $C V(N)$. We will show that for submodules N and K of $M, C V(N) \cap C V(K)=C V(N+K)$. Moreover, if M is a multiplication module on an arithmetical ring R, then the intersection of a

[^0]finite collection of copure submodules of M is also copure. If M is a finitely generated faithful multiplication module, then $C V(N) \cap C V(K)=C V(N K)$.

A submodule N of M is called a pure submodule in M if $I N=N \cap I M$ for every ideal I of R. Hence, an ideal I of a ring R is pure if for every ideal J of $R, J I=J \cap I$. Consequently, if I is pure, then $J=J I$ for every ideal $J \subseteq I$.

Let R be a domain, K the field of fractions of R, and M a torsion free R-module; then a nonzero ideal I of R is said to be invertible if $I I^{-1}=R$, where $I^{-1}=\{x \in K: x I \subseteq R\}$. The associated ideal $\theta(M)=\sum_{m \in M}[R m: M]$ and the trace ideal $\operatorname{Tr}(M)=\sum_{f \in \operatorname{Hom}(M, R)} f(M)$ of a module M play analogous but distinct roles in the study of multiplication and projective modules respectively.

If M is projective, then $M=\operatorname{Tr}(M) M$, ann $(M)=\operatorname{ann}(\operatorname{Tr}(M))$, and $\operatorname{Tr}(M)$ is a pure ideal of R (see [8, Proposition 3.30]). In particular, if M is a finitely generated faithful multiplication R-module (hence projective), then pure ideals are flat, and hence $\operatorname{Tr}(M)$ is flat. Let M be an R-module and N a submodule of M; then $\Gamma(N)=[N: M] \operatorname{Tr}(M)$. Obviously, $\Gamma(M)=\operatorname{Tr}(M)$. It is shown in [4, Theorem 3] that if N is a submodule of a faithful multiplication or locally cyclic projective module M, then $\operatorname{Tr}(\operatorname{rad} N)=\sqrt{\Gamma(N)}=\Gamma(\operatorname{rad} N)$.

2 Preliminary Notes

Definition 2.1 Let N be a submodule of an R-module M. We will denote the set of all copure prime submodules of M containing N by $C V(N)$:

$$
C V(N)=\{P \in V(N): P \text { is copure. }\}
$$

Definition 2.2 A submodule N of M is called quasi-copure (or weak-copure) if every proper prime submodule P containing N is a copure submodule of M. Equivalently, if $V(N)=C V(N)$, then N is a quasi-copure submodule of M.

Example 2.3 We consider $M=\mathbb{Z}_{8} \oplus \mathbb{Z}_{6}$ as a \mathbb{Z}-module and $N=\langle\overline{2}\rangle \oplus\langle\overline{3}\rangle$ as a submodule of M. We show that N is not a copure submodule of M and also that $L=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle$ and $K=\langle\overline{2}\rangle \oplus \mathbb{Z}_{6}$ are proper prime submodules of M contained N, where both are copure submodules of M; therefore, N is a quasi-copure submodule of M :

$$
\begin{gathered}
{\left[N:_{M} 2 \mathbb{Z}\right]=\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 2 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq\langle\overline{2}\rangle \oplus\langle\overline{3}\rangle\right\}=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle} \\
N+\left[\{\overline{0}\} \oplus\{\overline{0}\}:_{M} 2 \mathbb{Z}\right]=\langle\overline{2}\rangle \oplus\langle\overline{3}\rangle+\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 2 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq\langle\overline{0}\rangle \oplus\langle\overline{0}\rangle\right\} \\
=\langle\overline{2}\rangle \oplus\langle\overline{3}\rangle+\langle\overline{4}\rangle \oplus\langle\overline{3}\rangle=\langle\overline{2}\rangle \oplus\langle\overline{3}\rangle .
\end{gathered}
$$

Therefore, N is not a copure submodule of M. We know that $L=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle$ and $K=$ $\langle\overline{2}\rangle \oplus \mathbb{Z}_{6}$ are proper prime submodules of M contained N.
Case 1: If $k=p>3$ is a prime number, then

$$
\begin{gathered}
{\left[L:_{M} p \mathbb{Z}\right]=\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid p \mathbb{Z}(\bar{m}, \bar{n}) \subseteq \mathbb{Z}_{8} \oplus\langle\overline{3}\rangle\right\}=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle} \\
L+\left[\{\overline{0}\} \oplus\{\overline{0}\}:_{M} p \mathbb{Z}\right]=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid p \mathbb{Z}(\bar{m}, \bar{n}) \subseteq\langle\overline{0}\rangle \oplus\langle\overline{0}\rangle\right\} \\
=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\langle\overline{0}\rangle \oplus\langle\overline{0}\rangle=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle .
\end{gathered}
$$

Case 2: Otherwise, we have that

$$
\begin{gathered}
{\left[L:_{M} 2 \mathbb{Z}\right]=\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 2 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq \mathbb{Z}_{8} \oplus\langle\overline{3}\rangle\right\}=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle} \\
L+\left[\{\overline{0}\} \oplus\{\overline{0}\}:_{M} 2 \mathbb{Z}\right]=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\left\{(\bar{m}, \bar{n}) \epsilon_{\mathbb{Z}} 8 \oplus \mathbb{Z}_{6} \mid 2 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq\langle\overline{0}\rangle \oplus\langle\overline{0}\rangle\right\} \\
=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\langle\overline{4}\rangle \oplus\langle\overline{3}\rangle=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle \\
{\left[L:_{M} 3 \mathbb{Z}\right]=\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 3 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq \mathbb{Z}_{8} \oplus\langle\overline{3}\rangle\right\}=\mathbb{Z}_{8} \oplus \mathbb{Z}_{6}} \\
L+\left[\{\overline{0}\} \oplus\{\overline{0}\}:_{M} 3 \mathbb{Z}\right]=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 3 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq\langle\overline{0}\rangle \oplus\langle\overline{0}\rangle\right\} \\
=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\langle\overline{0}\rangle \oplus\langle\overline{2}\rangle=\mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \\
{\left[L:_{M} 4 \mathbb{Z}\right]=\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 4 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq \mathbb{Z}_{8} \oplus\langle\overline{3}\rangle\right\}=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle} \\
L+\left[\{\overline{0}\} \oplus\{\overline{0}\}:{ }_{M} 4 \mathbb{Z}\right]=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\left\{(\bar{m}, \bar{n}) \in \mathbb{Z}_{8} \oplus \mathbb{Z}_{6} \mid 4 \mathbb{Z}(\bar{m}, \bar{n}) \subseteq\langle\overline{0}\rangle \oplus\langle\overline{0}\rangle\right\} \\
=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle+\langle\overline{2}\rangle \oplus\langle\overline{3}\rangle=\mathbb{Z}_{8} \oplus\langle\overline{3}\rangle .
\end{gathered}
$$

Definition 2.4 Let R be a ring and M an R-module. An ideal I of R is called an M-cancellation module (resp., M-weak cancellation module) if for all submodules K and N of $M, I K=I N$ implies $K=N$ (resp. $K+\left[0:_{M} I\right]=N+\left[0:_{M} I\right]$). Equivalently, we have $\left[I N:{ }_{M} I\right]=N\left(\right.$ resp. $\left.\left[I N:_{M} I\right]=N+\left[0:_{M} I\right]\right)$ for all submodules N of M (see [1]).

3 Main Results

Definition 3.1 Let M be a multiplication R-module and let $N=I M$ and $K=J M$ be submodules of M. The product of N and K is denoted by $N K$ and is defined by $I J M$. Clearly, $N K$ is a submodule of M and contained in $N \cap K$.

Lemma 3.2 Let M be a multiplication R-module.
(i) If M be finitely generated faithful, then M is a cancellation module.
(ii) Every proper submodule of M is contained in a maximal submodule of M and P is a maximal submodule of M if and only if there exists a maximal ideal m of R such that $P=m M \neq M$.

Proof (i) By [11, Corollary 1 to Theorem 9], M is a cancellation module, and therefore

$$
I N=[I N: M] M=I[N: M] M \Rightarrow[I N: M]=I[N: M]
$$

for all ideals I of R and all submodules N of M.
(ii) [7, Theorem 2.5]

Theorem 3.3 Let M be an R-module and let N and K be submodules of M.
(i) If $N \subseteq L \subset M$ and N is quasi-copure, then L is also quasi-copure. In particular, if one of the N or K are quasi-copure submodules, then $N+K$ is also a quasi-copure submodule of M.
(ii) Let M be a multiplication R-module on an arithmetical ring R. If N and K are copure submodules, then $N \cap K$ is also a copure submodule of M. Moreover, if $V(N)$ is a finite set and N quasi-copure, then $\operatorname{rad}(N)$ is copure.
(iii) If M is a multiplication module and N and K are quasi-copure submodules of M, then $N K$ is also a quasi-copure submodule of M. Therefore, $C V(N K)=C V(N) \cap$ $C V(K)$.

Proof (i) Let $P \in C V(N)$, then $P \supset L \supseteq N$, since N is quasi-copure, hence P is copure. Therefore, $P \in C V(L)$. For the second part we set $L=N+K$, which contains N and K.
(ii) Every finitely generated multiplication module M on an arithmetical ring R is a distributive module. Since N and K are copure submodules of M, hence for every ideal I of R,

$$
\begin{aligned}
{\left[N \cap K:_{M} I\right] } & =\left[N:_{M} I\right] \cap\left[K:_{M} I\right]=\left(N+\left[0:_{M} I\right]\right) \cap\left(K+\left[0:_{M} I\right]\right) \\
& =N \cap K+\left[0:_{M} I\right] .
\end{aligned}
$$

Therefore, $N \cap K$ is a copure submodule of M.
Since N is quasi-copure by definition, each $P \in V(N)$ is copure, and therefore $\operatorname{rad}(N)=\bigcap_{P \in V(N)} P$ is copure.
(iii) Let $P \in C V(N) \cap C V(K)$ and $P \in V(N K)$. By [7, Corollary 2.11], there exists a prime ideal $p \supseteq \operatorname{ann}(M)$, where $P=p M$ and $[P: M]=[p M: M]=p$. Let $N=I M$ and $K=J M$ for some ideals I and J of R; then $N K=I J M \subset p M$. Since M is a finitely generated faithful multiplication module, it is cancellation module [11, Corollary 1 to Theorem 9], hence $I J \subset p$. Therefore, $I \subset p$ or $J \subset p$, and this implies that $N \subset P$ or $K \subset P$, respectively. In each of those two cases, P is copure, and hence $P \in C V(N K)$. It follows that $N K$ is a quasi-copure submodule of M. Conversely, let $P \in C V(N K)$; then $P \supseteq N K$ and by [7, Theorem 3.16 and Corollary 3.17], $P \supseteq N$ or $P \supseteq K$. It follows that $P \in C V(N) \cup C V(K) \supseteq C V(N) \cap C V(K)$.

Corollary 3.4 Let M be a nonzero multiplication R-module.
(i) If M is a faithful prime and N a copure submodule of M, then $N=I N$ for every nonzero ideal I of R.
(ii) If M be finitely generated and Q a quasi-copure primary submodule of M, then $\operatorname{rad}(Q)$ is a copure submodule of M.
(iii) For every two copure submodules N_{1}, N_{2} of M, if $I N_{1}=I N_{2}$, then $N_{1}=N_{2}$.
(iv) If M is Noetherian and R an arithmetical ring, then for quasi-copure submodules N and K of $M, \operatorname{rad}(N \cap K)$ is copure.

Proof (i) M is faithful, $\operatorname{ann}_{R}(M)=0$, and M is prime, hence for each submodule N of $M, \operatorname{ann}_{R}(N)=\operatorname{ann}_{R}(M)=0$; then $\operatorname{ann}_{M}(N)=\operatorname{ann}_{R}(N) M=0$. Now M is a multiplication R-module therefore for each ideal I of R and every submodule L of M, $\left[L:_{M} I\right]=\left[L:_{M} I M\right]$. In particular, $\operatorname{ann}_{M}(I)=\left[0:_{M} I\right]=\operatorname{ann}_{M}(I M)=0$. Since N is copure, $\left[N:_{M} I\right]=N+\left[0:_{M} I\right]=N$. It follows that $N=I N$.
(ii) Since Q is primary submodule, $\sqrt{[Q: M]}$ is a prime ideal containing ann (M). Therefore, by $[9$, Lemma 3 and Theorem 4], $\operatorname{rad}(Q)=\sqrt{[Q: M]} M$ is a prime submodule of M and Q is quasi-copure, hence $\operatorname{rad}(Q)$ is copure.
(iii) The proof follows from (i) immediately.
(iv) Since the radical of any submodule of a Noetherian multiplication module is a finite intersection of prime submodules, by Theorem 3.3(ii), $\operatorname{rad}(N)$ and $\operatorname{rad}(K)$
are copure submeodules of M. By [7, Theorems 1.6 and 2.12] it follows that $\operatorname{rad}(N) \cap$ $\operatorname{rad}(K)=\operatorname{rad}(N \cap K)$, and by Theorem 3.3(ii) $\operatorname{rad}(N \cap K)$ is also copure.

Theorem 3.5 Let (R, m) be a Noetherian local ring and M a cancellation multiplication R-module. If P is a copure maximal submodule of M, then for every ideal I of R, $\operatorname{ann}_{M}(I) \subseteq P$. Moreover, for every submodule N of $M, \operatorname{ann}_{M}(I)=\operatorname{ann}_{M}(N) \subseteq P$.

Proof Since P is a copure submodule of M, for every ideal I of R,

$$
P \subseteq\left[P:_{M} I\right]=P+\left[0:_{M} I\right] \subseteq M
$$

Therefore, by maximality of $P, P=P+\left[0:_{M} I\right]$ or $P+\left[0:_{M} I\right]=M$. Let $P+\left[0:_{M} I\right]=M$; then $I P+I\left[0:{ }_{M} I\right]=I M$ hence $I P=I M$. Since M is cancellation, hence $[I N: M]=$ $I[N: M]$ for all ideals I of R and all submodules N of M, and also $[P: M]=m$, therefore

$$
I m=I[P: M]=[I P: M]=[I M: M]=I
$$

By Nakayama's lemma, since I is a finitely generated R-module and $m=\operatorname{Jac}(R)$ and $I=m I$, we have $I=0$; therefore, $P=P+\left[0:_{M} I\right]=P+M=M$, which is a contradiction. It follows that $P=P+\left[0:_{M} I\right]$ and so $\operatorname{ann}_{M}(I) \subseteq P$.

Let $N=I M$ be a submodule of M. Since M is a multiplication R-module, for every ideal I of R and submodule K of $M,\left[K:_{M} I\right]=\left[K:_{M} N\right]=\left[K:_{M} I M\right]$. In particular, for $K=0, \operatorname{ann}_{M}(I)=\operatorname{ann}_{M}(I M)=\operatorname{ann}_{M}(N) \subseteq P$.

Corollary 3.6 Let M be an R-module and I an M-cancellation ideal of R. If P is a copure maximal submodule of M, then $\operatorname{ann}_{M}(I) \subseteq P$.

Proof By the proof of Theorem 3.5 we have $I P=I M$, and since I is an M-cancellation ideal of $R, P=M$, which is a contradiction. Then $P=P+\left[0:_{M} I\right]$, and therefore $\operatorname{ann}_{M}(I) \subseteq P$. Therefore,

$$
\operatorname{ann}_{M}(I) \subseteq \bigcap_{P=\text { maximal copure }} P .
$$

Moreover, if $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ is a collection of M-cancellation ideals of R, then

$$
\bigcap_{\lambda \in \Lambda} \operatorname{ann}_{M}\left(I_{\lambda}\right)=\sum_{\lambda \in \Lambda} \operatorname{ann}_{M}\left(I_{\lambda}\right) \subseteq \bigcap_{P=\text { maximal copure }} P .
$$

Theorem 3.7 Let M_{1} and M_{2} be finitely generated faithful multiplication R-modules. The following hold.
(i) If K and N are invertible in M_{1} and M_{2} respectively, or if one of K or N is flat, then $\Gamma(K \otimes N) \cong \Gamma(K) \Gamma(N)$. Moreover $\Gamma\left(K \otimes M_{2}\right) \cong \Gamma(K) \operatorname{Tr}\left(M_{2}\right)$.
(ii) If M_{1} and M_{2} are free R-modules, then $\operatorname{Tr}\left(\operatorname{rad}\left(K \otimes M_{2}\right)\right) \cong \Gamma(\operatorname{rad} K) \operatorname{Tr}\left(M_{2}\right)$.

Proof (i) By [2, Theorem 2] $M_{1} \otimes M_{2}$ is a finitely generated faithful multiplication R-module. If K is a nonzero submodule of multiplication R-module M_{1} such that [$K: M_{1}$] is an invertible ideal of R, then K is invertible in M_{1}. The converse is true if we assume further that M_{1} is finitely generated and faithful (see [10, Lemmas 3.2 and 3.3]). Therefore, $\left[K: M_{1}\right]$ and $\left[N: M_{2}\right]$ are invertible ideals of R, and $\operatorname{Tr}\left(M_{1}\right)$ and $\operatorname{Tr}\left(M_{2}\right)$
are flat ideals, hence $\operatorname{Tr}\left(M_{1}\right) \operatorname{Tr}\left(M_{2}\right) \cong \operatorname{Tr}\left(M_{1}\right) \otimes \operatorname{Tr}\left(M_{2}\right) \cong \operatorname{Tr}\left(M_{1} \otimes M_{2}\right)$. Also, since $M_{1} \otimes M_{2}$ is projective, ann $\left(M_{1} \otimes M_{2}\right)=\operatorname{ann}\left(\operatorname{Tr}\left(M_{1} \otimes M_{2}\right)\right)=0$. It follows that

$$
\left[K \otimes N: M_{1} \otimes M_{2}\right] \cong\left[K: M_{1}\right] \otimes\left[N: M_{2}\right] \cong\left[K: M_{1}\right]\left[N: M_{2}\right] .
$$

Therefore,

$$
\begin{aligned}
\Gamma(K \otimes N) & =\left[K \otimes N: M_{1} \otimes M_{2}\right] \operatorname{Tr}\left(M_{1} \otimes M_{2}\right) \\
& \cong\left[K: M_{1}\right]\left[N: M_{2}\right] \operatorname{Tr}\left(M_{1}\right) \otimes \operatorname{Tr}\left(M_{2}\right) \\
& \cong\left[K: M_{1}\right]\left[N: M_{2}\right] \operatorname{Tr}\left(M_{1}\right) \operatorname{Tr}\left(M_{2}\right) \\
& =\left[K: M_{1}\right] \operatorname{Tr}\left(M_{1}\right)\left[N: M_{2}\right] \operatorname{Tr}\left(M_{2}\right)=\Gamma(K) \Gamma(N) .
\end{aligned}
$$

Also, if K or N is flat, then $\left[K: M_{1}\right]$ or [$N: M_{2}$] is a flat ideal, and hence

$$
\left[K: M_{1}\right] \otimes\left[N: M_{2}\right] \cong\left[K: M_{1}\right]\left[N: M_{2}\right],
$$

and the result is true. Since $M_{1} \otimes M_{2}$ is a faithful multiplication R-module,

$$
K \otimes N=\Gamma(K \otimes N)\left(M_{1} \otimes M_{2}\right) \cong \Gamma(K) \Gamma(N)\left(M_{1} \otimes M_{2}\right) \cong \Gamma(K \otimes N)\left(M_{1} \otimes M_{2}\right)
$$

(ii) Since $M_{1} \otimes M_{2}$ is a faithful multiplication free R-module, therefore for some ideal I of $R, K=I M_{1}$ and then

$$
\begin{aligned}
\operatorname{rad}\left(K \otimes M_{2}\right) & =\operatorname{rad}\left(I M_{1} \otimes M_{2}\right) \cong \operatorname{rad}\left(I\left(M_{1} \otimes M_{2}\right)\right)=\sqrt{I}\left(M_{1} \otimes M_{2}\right) \\
& \cong \sqrt{I} M_{1} \otimes M_{2}=(\operatorname{rad} K) \otimes M_{2}
\end{aligned}
$$

By [4, Theorem 3], and (i) and also since $\operatorname{Tr}\left(M_{2}\right)$ is flat, it follows that

$$
\begin{aligned}
\operatorname{Tr}\left(\operatorname{rad}\left(K \otimes M_{2}\right)\right) & =\operatorname{Tr}\left(\operatorname{rad} K \otimes M_{2}\right) \cong \operatorname{Tr}(\operatorname{rad} K) \otimes \operatorname{Tr}\left(M_{2}\right) \\
& \cong \operatorname{Tr}(\operatorname{rad} K) \operatorname{Tr}\left(M_{2}\right)=\sqrt{\Gamma(K)} \operatorname{Tr}\left(M_{2}\right) \\
& =\Gamma(\operatorname{rad} K) \operatorname{Tr}\left(M_{2}\right)=\Gamma(\operatorname{rad} K) \Gamma\left(M_{2}\right) .
\end{aligned}
$$

Theorem 3.8 Let M be a finitely generated faithful multiplication R-module and let $N_{\lambda}(\lambda \in \Lambda)$ be a finite collection of submodules of M, where for all $\lambda \neq \mu, N_{\lambda}+N_{\mu}$ is a multiplication module.
(i) If $N=\bigcap_{\lambda \in \Lambda} N_{\lambda}$, then for every pure ideal I of $R, \Gamma(I N)=I \Gamma(N)=I \cap \Gamma(N)$.
(ii) If K is a pure idempotent submodule of M, then $K=\Gamma(K) K$.

Proof (i) By [3, Theorem 1], $I N=\bigcap_{\lambda \in \Lambda} I N_{\lambda}$ and by [4, Lemma 2],

$$
\begin{aligned}
\Gamma(I N) & =\Gamma\left(I \bigcap_{\lambda \in \Lambda} N_{\lambda}\right)=\Gamma\left(\bigcap_{\lambda \in \Lambda} I N_{\lambda}\right)=\bigcap_{\lambda \in \Lambda} \Gamma\left(I N_{\lambda}\right) \\
& =\bigcap_{\lambda \in \Lambda}\left[I N_{\lambda}: M\right] \operatorname{Tr}(M)=\bigcap_{\lambda \in \Lambda} I\left[N_{\lambda}: M\right] \operatorname{Tr}(M) \\
& =\bigcap_{\lambda \in \Lambda} I \Gamma\left(N_{\lambda}\right)=I \bigcap_{\lambda \in \Lambda} \Gamma\left(N_{\lambda}\right)=I \Gamma(N)=I \cap \Gamma(N) .
\end{aligned}
$$

(ii) By [11, Theorem 11], if M is a finitely generated multiplication R-module such that $\operatorname{ann}(M)=R e$ for some idempotent e, then M is projective, and hence, finitely
generated faithful multiplication modules are projective and $M=\operatorname{Tr}(M) M$. Since K is pure and idempotent,

$$
\begin{aligned}
\operatorname{Tr}(M) K & =K \cap \operatorname{Tr}(M) M=K \cap M=K, \\
K & =[K: M] K \Rightarrow \operatorname{Tr}(M) K=\operatorname{Tr}(M)[K: M] K=\Gamma(K) K .
\end{aligned}
$$

It follows that $K=\Gamma(K) K=K \cap \Gamma(K) M$.
Acknowledgements The author is grateful to the referee for helpful suggestions, which have resulted in an improvement to the article.

References

[1] M. M. Ali, $\frac{1}{2}$ cancellation modules and homogeneous idealization. II. Comm. Algebra 36(2008), 3842-3864. http://dx.doi.org/10.1080/00927870802160826
[2] , Multiplication modules and tensor product. Beiträge Algebra Geom. 47(2006), no. 2, 305-327.
[3] , Some remarks on Multiplication and flat modules. J. Commut. Algebra 4(2012), no. 1, 1-27. http://dx.doi.org/10.1216/JCA-2012-4-1-1
[4] , Some remarks on multiplication and projective modules. II. Comm. Algebra 41(2013), 195-214. http://dx.doi.org/10.1080/00927872.2011.628724
[5] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules. Korean Ann Math. 25(2008), no. 1-2, 57-66.
[6] A. D. Barnard, Multiplication modules. J. Algebra 71(1981), 174-178. http://dx.doi.org/10.1016/0021-8693(81)90112-5
[7] Z. A. El-Bast and P. F. Smith, Multiplication modules. Comm. Algebra 16(1988), 755-779. http://dx.doi.org/10.1080/00927878808823601
[8] C. Faith, Algebra I: Rings, modules, and categories. Grundlehren der Mathematischen Wissenschaften, 190, Springer-Verlag, Berlin-New York, 1981.
[9] R. L. McCasland and M. E. Moore, On radicals of finitely generated modules. Canad. Math. Bull. 29(1986), no. 1, 37-39. http://dx.doi.org/10.4153/CMB-1986-006-7
[10] A. G.Naoum and F. H. Al-Alwan, Dedekind modules. Comm. Algebra 24(1996), no. 2. 397-412. http://dx.doi.org/10.1080/00927879608825576
[11] P. F. Smith, Some remarks on multiplication modules. Arch. Math. (Basel) 50(1988), 223-235. http://dx.doi.org/10.1007/BF01187738
Department of Mathematics, Faculty of Mathematics, Payame Noor University (PNU), P.O. Box, 193953697, Tehran, Iran
e-mail: saeed_rajaee@pnu.ac.ir

[^0]: Received by the editors February 18, 2014; revised June 26, 2015.
 Published electronically October 26, 2015.
 This work was supported by the grant of Payame Noor University of Iran.
 AMS subject classification: 13A15, 13C05, 13C13, 13C99.
 Keywords: multiplication module, arithmetical ring, copure submodule, radical of submodules.

