ON MULTIPLIERS WITH UNCONDITIONALLY CONVERGING FOURIER SERIES

GREGORY F. BACHELIS AND LOUIS PIGNO

Let G be a compact abelian group with dual group Γ. For $1 \leqq p<\infty$, $1 \leqq q<\infty$, let $M_{p}{ }^{q}(\Gamma)$ denote the Banach space of complex-valued functions on Γ which are multipliers of type (p, q) and $m_{p}{ }^{q}(\Gamma)$ the subspace of compact multipliers.

Grothendieck $[\mathbf{1 0} ; \mathbf{1 1}]$ has proven that a function in $\mathrm{L}^{p}(G), 1 \leqq p<2$, has an unconditionally converging Fourier series in $L^{p}(G)$ if and only if it is in $L^{2}(G)$, and Helgason [12] has proven that the derived algebra of $L^{p}(G)$, $1 \leqq p<2$, is $L^{2}(G)$. Using these results we show in § 2 that a multiplier of type $(p, q), 1 \leqq p \leqq 2,1 \leqq q \leqq 2$, has an unconditionally converging Fourier series in $M_{p}{ }^{q}(\Gamma)$ if and only if it is in $m_{p}{ }^{2}(\Gamma)$ (Theorem 2.1), and that, for $1 \leqq p \leqq q \leqq 2$, the derived algebra of $M_{p}{ }^{q}(\Gamma)$ is $M_{p}{ }^{2}(\Gamma)$ (Theorem 2.2). Statements equivalent to the above are also given. Thus, by a result of the first author and John Gilbert [2] the derived algebra of $M_{p}{ }^{q}(\Gamma)$ is the double dual of the (p, q) multipliers with unconditionally converging Fourier series. This last result is valid for $1 \leqq p \leqq q<\infty$ (Remark 2.5) and is in contrast to the situation for $L^{p}(G)$, where the unconditionally converging Fourier series coincide with the derived algebra [1] and form a reflexive Banach space [2].

Figà-Talamanca and Gaudry [7] have given an example of an element of $C_{0}(\mathbf{Z})$ (i.e., a function on the integers vanishing at infinity) which is also in $M_{p}{ }^{2}(\mathbf{Z})$ but not in $m_{p}{ }^{p}(\mathbf{Z})$, where $1<p<2$. In § 3 we show that the absolute value of this function gives that

$$
m_{p}^{2}(\mathbf{Z}) \subsetneq M_{p}^{2}(\mathbf{Z}) \cap m_{p}{ }^{q}(\mathbf{Z}), \quad 1<p \leqq q<2
$$

and that

$$
m_{p}{ }^{2}(\mathbf{Z}) \not \supset L^{s}(T)^{\wedge} \cap M_{p}{ }^{2}(\mathbf{Z}), 1<p<2,1 \leqq s<2 p /(3 p-2)
$$

The first inequality is due to Haskell Rosenthal.

1. Preliminaries. We use freely the notation and basic results in Rudin's book [17]. We use without reference fundamental facts about multipliers as presented in Edward's book [6]. The fact that results are stated there only for $G=\mathbf{T}$ (the circle group) should cause the reader no difficulty.

Let $1 \leqq p<\infty, 1 \leqq q<\infty$. A complex-valued function φ defined on Γ is said to be a multiplier of type (p, q) if it determines an operator from $L^{p}(G)$ to

[^0]$L^{q}(G), T_{\varphi}$, given by
$$
\left(T_{\varphi} f\right)^{\wedge}=\varphi \hat{f} \quad\left(f \in L^{p}(G)\right)
$$

Let $M_{p}{ }^{q}(\Gamma)$ denote the set of multipliers of type (p, q). Then $M_{p}{ }^{q}(\Gamma)$ is a Banach space where the norm $\|\cdot\|_{(p, q)}$ of the multiplier φ is defined to be the norm of the multiplier operator T_{φ}. We denote by $m_{p}{ }^{q}(\Gamma)$ the set of compact multipliers of type (p, q), that is, the set of $\varphi \in M_{p}{ }^{q}(\Gamma)$ for which the corresponding operator T_{φ} is compact. The set $m_{p}{ }^{q}(\Gamma)$ is a closed subspace of $M_{p}{ }^{q}(\Gamma)$.

We have:
1.1 Lemma. Let $1 \leqq p<\infty, 1 \leqq q<\infty$. Then
(i) $m_{p}{ }^{q}(\Gamma)$ is the closure of $C_{c}(\Gamma)$ in $M_{p}{ }^{q}(\Gamma)$. If $\varphi \in m_{p}{ }^{q}(\Gamma)$ then φ can be approximated in $M_{p}{ }^{q}(\Gamma)$ by functions in $C_{c}(\Gamma)$ with supports contained in that of φ.
(ii) (cf. Hormander [14]). If $p \leqq q$, then $M_{p}{ }^{q}(\Gamma)$ is a commutative semi-simple Banach algebra whose maximal ideal space contains Γ. The set $m_{p}{ }^{q}(\Gamma)$ is a closed ideal in $M_{p}{ }^{q}(\Gamma)$ whose maximal ideal space equals Γ.

Proof. (i) See [2, Theorem 3.1] or [8, Theorem 4.2.2]. We note that $\varphi \in C_{c}(\Gamma)$ if and only if T_{φ} is given by convolution with a trigonometric polynomial.
(ii) If $p \leqq q$, then $L^{q}(G) \subset L^{p}(G)$ and $\|\cdot\|_{q} \geqq\|\cdot\|_{p}$. From this it follows that $M_{p}{ }^{q}(\Gamma)$ is a commutative Banach algebra under pointwise multiplication. Its maximal ideal space contains Γ, since $\varphi \rightarrow \varphi(\gamma)$ is a multiplicative linear functional. In particular, $M_{p}{ }^{q}(\Gamma)$ is semi-simple. Since $C(G)^{\wedge} \subset m_{p}{ }^{q}(\Gamma) \subset$ $C_{0}(\Gamma)$, it follows that the maximal ideal space of $m_{p}{ }^{q}(\Gamma)$ is Γ. Since $M_{p}{ }^{q}(\Gamma) \subset M_{p}{ }^{p}(\Gamma)$, if follows from operator theory that $m_{p}{ }^{q}(\Gamma)$ is an ideal in $M_{p}{ }^{q}(\Gamma)$.

We next discuss the notions of unconditional convergence and the derived algebra.
1.2 Definition. Let $\{J\}$ denote the collection of finite subsets of Γ, directed by inclusion, and let $\chi_{J} \in C_{c}(\Gamma)$ denote the characteristic function of J. If $\varphi \in M_{p}{ }^{q}(\Gamma)$, we say that φ has an unconditionally converging Fourier series if

$$
\lim _{\{J\}}\left\|\varphi \chi_{J}-\varphi\right\|_{(p, q)}=0
$$

The motivation for this terminology is as follows: If $\varphi=\hat{f}$ for some $f \in L^{1}(G)$ then $T_{\varphi}(g)=f * g$, and the operator corresponding to $\varphi \chi_{J}$ is convolution by the trigonometric polynomial, $\sum_{\gamma \in J} \hat{f}(\gamma) \gamma$. Thus φ has an unconditionally converging Fourier series, in our terminology, if and only if the Fourier series for f converges unconditionally to f in the (p, q)-multiplier norm ; that is,

$$
\lim _{(J)} \sup _{\|0\|_{p} \leq 1}\left\|\sum_{J} \hat{f}(\gamma) \hat{g}(\gamma) \gamma-f * g\right\|_{q}=0 .
$$

For basic facts on unconditional convergence, the reader is referred to Day's book [4]. It is straightforward to verify that the set of elements of $M_{p}{ }^{q}(\Gamma)$ or
$m_{p}{ }^{q}(\Gamma)$ with an unconditionally converging Fourier series is a Banach space with the norm given by

$$
\|\varphi\|_{S}=\sup _{J}\left\|\varphi \chi_{J}\right\|_{(p, q)}
$$

and that, for such φ,

$$
\lim _{\{J\}}\left\|\varphi-\varphi \chi_{J}\right\|_{S}=0
$$

1.3 Definition (Helgason [12]). If A is a commutative semi-simple Banach algebra with maximal ideal space \mathscr{M}, define the derived algebra, A_{0}, to be the the set of $x \in A$ such that

$$
\sup _{y \in A} \frac{\|x y\|_{A}}{\|\tilde{y}\|_{\infty}} \equiv\|x\|_{0}<\infty
$$

where \tilde{y} denotes the Gelfand transform of y, so that

$$
\|\tilde{y}\|_{\infty}=\sup \{|\tilde{y}(M)|: M \in \mathscr{M}\}
$$

If $q \leqq p$, and $A=M_{p}{ }^{q}(\Gamma)$ or $m_{p}{ }^{q}(\Gamma)$, one verifies that A_{0} is a Banach algebra and that $\|\cdot\|_{0} \geqq\|\cdot\|_{(p, q)}$.

Let $S^{p}(G)$ denote the set of functions in $L^{p}(G)$ with unconditionally converging Fourier series in $L^{p}(G)$. In § 2 we will make use of the following results.
1.4 Theorem. Let $1 \leqq p<2$.
(i) (Helgason [12]) $L^{p}(G)_{0}=L^{2}(G)$.
(ii) $($ Grothendieck $[\mathbf{1 0} ; \mathbf{1 1}]) S^{p}(G)=L^{2}(G)$.
(iii) (Grothendieck [11]) If φ is a complex-valued function on Γ such that $\epsilon \varphi \in M(G)$ for all ϵ with $\epsilon(\gamma)= \pm 1$, then $\varphi \in l^{2}(\Gamma)$.

Part (iii) is a generalization of a theorem of Littlewood. For related results, see also [12, Theorem 10; 18, $V(8.13) ; \mathbf{5}]$.
2. Multipliers which have an unconditionally converging Fourier series or are in the derived algebra. We first give several equivalent conditions for a multiplier to have an unconditionally converging Fourier series.
2.1 Theorem. Let $1 \leqq p \leqq 2,1 \leqq q \leqq 2$, and let φ be a complex-valued function on Γ. Then the following statements are equivalent.
(i) $\varphi \in M_{p}{ }^{q}(\Gamma)$ and has an unconditionally converging Fourier series.
(ii) $\varphi \in m_{p}{ }^{2}(\Gamma)$.
(iii) $a \varphi \in m_{p}{ }^{q}(\Gamma)$ for all $a \in l^{\infty}(\Gamma)$.
(iv) $\epsilon \varphi \in m_{p}{ }^{q}(\Gamma)$ for all ϵ with $\epsilon(\gamma)= \pm 1$.

Proof. (i) implies (ii). Let S denote the set of elements in $M_{p}{ }^{q}(\Gamma)$ with an unconditionally converging Fourier series, and let $R \subset M_{p}{ }^{q}(\Gamma)$ denote the set of compact multipliers from $L^{p}(G)$ to $S^{q}(G)$, with norm $\|\cdot\|_{R}$. Since $S^{q}(G)=$ $L^{2}(G), R=m_{p}{ }^{2}(\Gamma)$. We will show that $R=S$, and hence (ii) follows.

If $\psi \in C_{c}(\Gamma)$, then

$$
\begin{aligned}
\|\psi\|_{R} & =\sup _{\|f\|_{p \leq 1}}\left\|T_{\psi} f\right\|_{S^{q}} \\
& =\sup _{\|f\|_{p \leq 1}} \sup _{J}\left\|\sum_{J} \psi(\gamma) \hat{f}(\gamma) \gamma\right\|_{q} \\
& =\sup _{J}\left\|\psi \chi_{J}\right\|_{(p, q)} \\
& =\|\psi\|_{s .}
\end{aligned}
$$

Since $C_{c}(\Gamma)$ is dense in each of the spaces R and $S, R=S$.
(ii) implies (iii). If $a \in l^{\infty}(\Gamma)=M_{2}{ }^{2}(\Gamma)$, then

$$
a \varphi \in m_{p}^{2}(\Gamma) M_{2}^{2}(\Gamma) \subset m_{p}^{2}(\Gamma) \subset m_{p}^{q}(\Gamma)
$$

(iii) implies (iv) is immediate.
(iv) implies (i). Choosing $\epsilon(\gamma)=1$ for all γ, we have that $\varphi \in m_{p}{ }^{q}(\Gamma)$.

Let Γ_{1} denote the support of φ and let

$$
B=\left\{\psi \in m_{p}^{q}(\Gamma): \psi(\gamma)=0, \gamma \notin \Gamma_{1}\right\}
$$

Then B is a Banach space. It follows from Lemma 1.1 (i) that Γ_{1} is countable and that B is separable.

Let $\Gamma_{1}=\left(\gamma_{n}\right)$ and define $\left(b_{n}\right) \subset B,\left(\beta_{n}\right) \subset B^{*}$ by

$$
b_{n}(\gamma)=\left\{\begin{array}{l}
1, \gamma=\gamma_{n} \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
\beta_{n}(\psi)=\psi\left(\gamma_{n}\right), \psi \in B, n=1,2, \ldots .
$$

Then $\left(b_{n}, \beta_{n}\right)$ is a biorthogonal sequence in B, and $\left(\beta_{n}\right)$ is total. Condition (iv) implies that, given a sequence $\left(a_{n}\right)$, with $a_{n}=0$ or 1 , there exists $\psi \in B$ such that $\beta_{n}(\psi)=a_{n} \beta_{n}(\varphi)$. Thus by $\left[\mathbf{3}\right.$, Theorem 1], $\boldsymbol{\Sigma}_{n} \beta_{n}(\varphi) b_{n}$ converges unconditionally to φ in B. But this is precisely the statement that

$$
\lim _{\{J \mid}\left\|\varphi \chi_{J}-\varphi\right\|_{(p, q)}=0 .
$$

We now give conditions equivalent to a multiplier being in the derived algebra.
2.2 Theorem. Let $1 \leqq p \leqq 2,1 \leqq q \leqq 2$, and let φ be a complex-valued function on Γ. Then the following statements are equivalent.
(i) $\varphi \in M_{p}{ }^{2}(\Gamma)$.
(ii) $a \varphi \in m_{p}{ }^{q}(\Gamma)$ for all $a \in C_{0}(\Gamma)$.
(iii) $a \varphi \in M_{p}{ }^{q}(\Gamma)$ for all $a \in C_{0}(\Gamma)$.
(iv) $a_{\varphi} \in M_{p_{p}}{ }^{q}(\Gamma)$ for all $a \in l^{\infty}(\Gamma)$.
(v) $\epsilon \varphi \in M_{p}{ }^{q}(\Gamma)$ for all ϵ with $\epsilon(\gamma)= \pm 1$.

If $p \leqq q$, then the above are equivalent to
(vi) φ is in the derived algebra of $M_{p}{ }^{q}(\Gamma)$.

Proof. "(i) implies (ii)" and "(i) implies (iv)" both follow in a manner similar to "(ii) implies (iii)" of Theorem 2.1.
"(ii) implies (iii)" and "(iv) implies (v)" are immediate.
(iii) implies (i). If $f \in L^{p}(G)$, then $a \varphi \hat{f} \in L^{q}(G)^{\wedge}$ for all $a \in C_{0}(\Gamma)$. Thus, by [12, Theorem 2],

$$
\varphi \hat{f} \in\left(L^{q}(G)_{0}\right)^{\wedge}=l^{2}(\Gamma)
$$

so $\varphi \in M_{p}{ }^{2}(\Gamma)$.
"(v) implies (i)" follows as above, using Theorem 1.4 (iii).
(i) implies (vi). Let $\psi \in M_{p}{ }^{q}(\Gamma)$ and let $\tilde{\psi}$ denote the Gelfand transform of ψ. Then $\|\psi\|_{\infty} \leqq\|\tilde{\psi}\|_{\infty}$.

If $f \in L^{p}(G)$, then

$$
\begin{aligned}
\left\|T_{\varphi \psi} f\right\|_{q} & \leqq\|\varphi \psi \hat{f}\|_{2} \\
& \leqq\|\psi\|_{\infty}\|\varphi f\|_{2} \\
& \leqq\|\tilde{\psi}\|_{\infty}\|\varphi\|_{(p, 2)}\|f\|_{p}
\end{aligned}
$$

so $\|\varphi \psi\|_{(p, q)} \leqq\|\varphi\|_{(p, 2)}\|\tilde{\psi}\|_{\infty}$. Thus $\varphi \in M_{p}{ }^{q}(\Gamma)_{0}$.
(vi) implies (iii). If $a \in C_{c}(\Gamma)$, then $\|\tilde{a}\|_{\infty}=\|a\|_{\infty}$ so

$$
\|a \varphi\|_{(p, q)} \leqq\|\varphi\|_{0}\|\tilde{a}\|_{\infty}=\|\varphi\|_{0}\|a\|_{\infty}
$$

Since $C_{c}(\Gamma)$ is dense in $C_{0}(\Gamma)$, this implies that $a \rightarrow a \varphi$ is a bounded operator from $C_{0}(\Gamma)$ to $M_{p}{ }^{q}(\Gamma)$. Thus (iii) holds.

From Theorems 2.1, 2.2, and [12, Theorem 2] the following corollary is immediate:
2.3 Corollary. Let $1 \leqq p \leqq 2,1 \leqq q \leqq 2$. Then:
(i) An element $\varphi \in m_{p}{ }^{q}(\Gamma)$ has an unconditionally converging Fourier series if and only if $\varphi \in m_{p}{ }^{2}(\Gamma)$.
(ii) If $p \leqq q$, then the derived algebra of $m_{p}{ }^{q}(\Gamma)$ is $M_{p}{ }^{2}(\Gamma) \cap m_{p}{ }^{q}(\Gamma)$.
2.4 Remark. For $1 \leqq p \leqq \infty, q>2$, let $M\left(p, S^{q}\right)$ denote the set of (p, q) multipliers φ for which $T_{\varphi}\left(L^{p}\right) \subset S^{q}$, and let $m\left(p, S^{q}\right)$ denote the subspace for which T_{φ} is compact as an operator into S^{q}. Then the results of this section all hold, with $M_{p}{ }^{2}(\Gamma)$ replaced by $M\left(p, S^{q}\right)$ and $m_{p}{ }^{2}(\Gamma)$ replaced by $m\left(p, S^{q}\right)$. The proofs are identical, since all properties of $L^{2}(G)$ used above are valid for $S^{q}(G)$ as well. (See [1] and [2] for details about S^{q}.)
2.5 Remark. Let $1 \leqq p \leqq q<\infty$. Since $L^{2}(G), L^{p}(G)$, and $S^{q}(G)$ are reflexive homogeneous Banach spaces, by $\left[\mathbf{2}\right.$, Theorem 3.8] $m_{p}{ }^{2}(\Gamma)^{* *}=M_{p}{ }^{2}(\Gamma)$ and $m\left(p, S^{q}\right)^{* *}=M\left(p, S^{q}\right)$. In view of Theorems 2.1, 2.2, and the above Remark, this means that, in every case, the derived algebra of $M_{p}{ }^{q}(\Gamma)$ is the double dual of the (p, q) multipliers with unconditionally converging Fourier series.

Let $1<p \leqq q<2,1 / p+1 / p^{\prime}=1$. Now $M_{p}{ }^{2}(\Gamma) \not \subset C_{0}(\Gamma)$, since the characteristic function of a $\Lambda_{p^{\prime}}$ set is in $M_{p}{ }^{2}(\Gamma)$ [13, Theorem 37.9]. In addition, $m_{p}{ }^{q}(\Gamma) \subset C_{0}(\Gamma)$. Thus

$$
m_{p}{ }^{q}(\Gamma) \cap M_{p}{ }^{2}(\Gamma) \neq M_{p}{ }^{2}(\Gamma)=m_{p}{ }^{2}(\Gamma)^{* *},
$$

so Corollary 2.3 shows that the derived algebra of $m_{p}{ }^{q}(\Gamma)$ is not the double dual of the compact (p, q) multipliers with unconditionally converging Fourier series. The example of the next section shows that for $G=\mathbf{T}$, the derived algebra does not coincide with the unconditionally converging compact (p, q) multipliers either, that is,

$$
m_{p}{ }^{2}(\mathbf{Z}) \subsetneq m_{p}{ }^{q}(\mathbf{Z}) \cap M_{p}{ }^{2}(\mathbf{Z}), \quad 1<p \leqq q<2 .
$$

3. An example. We now give an example of a multipiier on \mathbf{Z} which helps clarify the relationship between some of the spaces mentioned in the previous section. Throughout we assume that $1<p<2$ and that $r=2 p /(2-p)$.

For $n=0,1, \ldots$ define ψ_{n} on \mathbf{Z} by

$$
\psi_{n}(k)= \begin{cases}\frac{1}{2^{n / r}}, & k=2^{n}, 2^{n}+1, \ldots, 2^{n+1}-1 \\ 0, & \text { otherwise },\end{cases}
$$

and let

$$
\psi(k)=\sum_{n=0}^{\infty} \psi_{n}(k), \quad k \in \mathbf{Z} .
$$

The following proposition is due to Haskell Rosenthal.
3.1 Proposition. The function ψ is in $M_{p}{ }^{2}(\mathbf{Z}) \cap m_{p}{ }^{q}(\mathbf{Z}), p \leqq q<2$, but not in $m_{p}{ }^{2}(\mathbf{Z})$.

Proof. Let φ be the example constructed in [7, Theorem B]. Then $\varphi \in C_{0}(\mathbf{Z}) \cap M_{p}{ }^{p}(\mathbf{Z})$ but $\varphi \notin m_{p}{ }^{p}(\mathbf{Z})$. Thus $\varphi \notin m_{p}{ }^{2}(\mathbf{Z})$ The proof of Theorem B shows that φ is actually in $M_{p}{ }^{2}(\mathbf{Z})$ and that $\psi=|\varphi|$. Since $\psi=a \varphi$ and $\varphi=b \psi$, where a and b are both sequences of absolute value one, it is clear that $\psi \in M_{p}{ }^{2}(\mathbf{Z})$ and that $\psi \notin m_{p}{ }^{2}(\mathbf{Z})$.

It remains to show that $\psi \in m_{p}{ }^{q}(\mathbf{Z}), p \leqq q<2$. By Interpolation Theory (see e.g. [15, p. 36]) it is enough to show that $\psi \in m_{p}^{p}(\mathbf{Z})$. Let μ_{n} denote the characteristic function of $\left\{2^{n}, \ldots, 2^{n+1}-1\right\}, n=0,1, \ldots$. Since $p>1$, the M. Riesz and Littlewood-Paley Theorems [17, p. 217; 18, p. 224] imply that $\left(\mu_{n}\right)$ is a uniformly bounded sequence in $M_{p}{ }^{p}(\mathbf{Z})$. Thus

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n / r}}\left\|\mu_{n}\right\|_{(p, p)}<\infty .
$$

Now

$$
\psi_{n}=\frac{1}{2^{n / \tau}} \mu_{n}
$$

so $\Sigma_{n=0}^{\infty} \psi_{n}$ converges to ψ in $M_{p}{ }^{p}(\mathbf{Z})$. Since each $\psi_{n} \in C_{c}(\mathbf{Z}), \psi \in m_{p}{ }^{p}(\mathbf{Z})$.
Let $1 / s=1+1 / q-1 / p$. Then Young's Inequality states that $L^{s} * L^{p} \subset L^{q}(\mathbf{T})$. Hence $L^{s}(\mathbf{T})^{\wedge} \subset M_{p}{ }^{q}(\mathbf{Z})$, and since the trigonometric polynomials are dense in $L^{s}(\mathbf{T}), L^{s}(\mathbf{T})^{\wedge} \subset m_{p}{ }^{q}(\mathbf{Z})$. In particular, if $s=r^{\prime}=$
$2 p /(3 p-2)$, then $q=2$, so that $L^{s}(\mathbf{T})^{\wedge} \subset m_{p}{ }^{2}(\mathbf{Z})$. Hence $\psi \notin L^{s}(\mathbf{T})^{\wedge}$. However, we do have:
3.2 Proposition. If $1 \leqq s<2 p /(3 p-2)$, then $\psi \in L^{s}(\mathbf{T})^{\wedge}$, and hence $M_{p}{ }^{2}(\mathbf{Z}) \cap L^{s}(\mathbf{T})^{\wedge} \not \subset m_{p}{ }^{2}(\mathbf{Z})$.

Proof. Let

$$
f_{n}(x)=\sum_{k=2^{n}}^{2^{n+1-1}} \frac{1}{2^{n / r}} e^{i k x}, \quad n=0,1, \ldots
$$

We will show that $\Sigma_{n=0}^{\infty}\left\|f_{n}\right\|_{s}<\infty$. Hence $\Sigma_{n=0}^{\infty} f_{n}$ converges in $L^{s}(\mathbf{T})$ to (say) f, and $\hat{f}=\psi$. Whence the conclusion follows.

Now

$$
f_{n}(x)=\frac{1}{2^{n / r}}\left\{e^{i 2^{n} x} D_{2^{n}}(x)-e^{i 2^{n+1} x}\right\}
$$

where $D_{N}(x)$ denotes the N-th Dirichlet kernel. Since $p<2$ we may assume $s>1$. Thus $\left\|D_{n}\right\|_{s}=O\left(N^{1 / s^{\prime}}\right)$, and hence

$$
\left\|f_{n}\right\|_{s}=O\left(\frac{\left(2^{n}\right)^{1 / s^{\prime}}}{2^{n / r}}\right)=O\left(2^{n\left(1 / s^{\prime}-1 / r\right)}\right)
$$

Since $s<2 p(3 p-2)=r^{\prime}, s^{\prime}>r$, so

$$
\sum_{n=0}^{\infty} 2^{n\left(1 / s^{\prime}-1 / r\right)}<\infty
$$

Thus $\Sigma_{n=0}^{\infty}\left\|f_{n}\right\|_{s}<\infty$.
3.3 Remark. Results analogous to those of this section hold when Γ is an infinite discrete torsion group of bounded order (see $[\mathbf{7}$, Theorem $\mathrm{D} ; \mathbf{9}, \mathrm{p} .92 ; \mathbf{1 6}]$).

For Γ a discrete abelian group, Γ_{1} a subgroup of Γ, and $1 \leqq p \leqq q$, let

$$
i(\varphi)(\gamma)=\left\{\begin{array}{ll}
\varphi(\gamma), & \gamma \in \Gamma_{1} \\
0, & \gamma \notin \Gamma_{1}
\end{array} \quad\left(\varphi \in M_{p}^{q}\left(\Gamma_{1}\right)\right),\right.
$$

and let $r(\varphi)=\varphi \mid \Gamma_{1}, \varphi \in M_{p}{ }^{q}(\Gamma)$. Then i maps $M_{p}{ }^{q}\left(\Gamma_{1}\right)$ into $M_{p}{ }^{q}(\Gamma)$ and r maps $M_{p}{ }^{q}(\Gamma)$ into $M_{p}{ }^{q}\left(\Gamma_{1}\right)$ [9, Lemma 4.6]. Since $i\left(C_{c}\left(\Gamma_{1}\right)\right) \subset C_{c}(\Gamma)$, $r\left(C_{c}(\Gamma)\right) \subset C_{c}\left(\Gamma_{1}\right)$, and i and r are continuous, we see that $i\left(m_{p}{ }^{q}\left(\Gamma_{1}\right)\right) \subset m_{p}{ }^{q}(\Gamma)$ and $r\left(m_{p}{ }^{q}(\Gamma)\right) \subset m_{p}{ }^{q}\left(\Gamma_{1}\right)$. Since $r i$ is the identity on $M_{p}{ }^{q}\left(\Gamma_{1}\right)$, this means that $\varphi \in m_{p}{ }^{q}\left(\Gamma_{1}\right)$ if and only if $i \varphi \in m_{p}{ }^{q}(\Gamma)$. Thus if Γ contains \mathbf{Z} or an infinite torsion group of bounded order, then results analogous to those of this section also hold for Γ.

References

1. G. F. Bachelis, On the ideal of unconditionally convergent Fourier series in $L_{p}(G)$, Proc. Amer. Math. Soc. 27 (1971), 309-312.
2. G. F. Bachelis and J. E. Gilbert, Banach spaces of compact multipliers and their dual spaces (to appear in Math. Z.).
3. G. F. Bachelis and H. P. Rosenthal, On unconditionally converging series and biorthogonal systems in a Banach space, Pacific J. Math. 37 (1971), 1-5.
4. M. M. Day, Normed linear spaces (Academic Press, New York, 1962).
5. R. E. Edwards, Changing signs of Fourier coefficients, Pacific J. Math. 15 (1965), 463-475.
6. - Fourier series: a modern introduction, Vol. II (Holt, Rinehart and Winston, New York, 1967).
7. A. Figà-Talamanca and G. Gaudry, Multipliers of L^{p} which vanish at infinity, J. Functional Analysis 7 (1971). 475-486.
8. G. Gaudry, Quasi-measures and multiplier problems, Ph.D. thesis, Australian National University, Canberra, 1965.
9. -_Bad behavior and inclusion results for multipliers of type (p, q), Pacific J. Math. 35 (1970), 83-93.
10. A. Grothendieck, Resultats nouveaux dans la theorie des operations lineaires., C. R. Acad. Sci. Paris (1954), 577-579.
11. __ Resume de la theorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1-79.
12. S. Helgason, Multipliers of Banach algebras, Ann. of Math. 64 (1956), 240-254.
13. E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. II (Springer, New York, 1970).
14. L. Hormander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
15. J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5-68.
16. J. Peyriere and R. Spector, Sur les multiplicateurs radiaux de $L^{p}(G)$, pour un groupe abelien localement compact totalement discontinu, C. R. Acad. Sci. Paris Ser. A 269 (1969), 973-974.
17. W. Rudin, Fourier analysis on groups (Interscience, New York, 1962).
18. A. Zygmund, Trigonometric series, Vol. II (Cambridge University Press, Cambridge, 1959).

Kansas State University, Manhattan, Kansas

[^0]: Received May 21, 1971 and in revised form, October 14, 1971.

