ON MULTIPLIERS WITH UNCONDITIONALLY CONVERGING FOURIER SERIES

GREGORY F. BACHELIS AND LOUIS PIGNO

Let G be a compact abelian group with dual group Γ . For $1 \leq p < \infty$, $1 \leq q < \infty$, let $M_p^q(\Gamma)$ denote the Banach space of complex-valued functions on Γ which are multipliers of type (p, q) and $m_p^q(\Gamma)$ the subspace of compact multipliers.

Grothendieck [10; 11] has proven that a function in $L^p(G)$, $1 \leq p < 2$, has an unconditionally converging Fourier series in $L^p(G)$ if and only if it is in $L^2(G)$, and Helgason [12] has proven that the derived algebra of $L^p(G)$, $1 \leq p < 2$, is $L^2(G)$. Using these results we show in § 2 that a multiplier of type (p, q), $1 \leq p \leq 2$, $1 \leq q \leq 2$, has an unconditionally converging Fourier series in $M_p^q(\Gamma)$ if and only if it is in $m_p^2(\Gamma)$ (Theorem 2.1), and that, for $1 \leq p \leq q \leq 2$, the derived algebra of $M_p^q(\Gamma)$ is $M_p^2(\Gamma)$ (Theorem 2.2). Statements equivalent to the above are also given. Thus, by a result of the first author and John Gilbert [2] the derived algebra of $M_p^q(\Gamma)$ is the double dual of the (p, q) multipliers with unconditionally converging Fourier series. This last result is valid for $1 \leq p \leq q < \infty$ (Remark 2.5) and is in contrast to the situation for $L^p(G)$, where the unconditionally converging Fourier series coincide with the derived algebra [1] and form a reflexive Banach space [2].

Figà-Talamanca and Gaudry [7] have given an example of an element of $C_0(\mathbf{Z})$ (i.e., a function on the integers vanishing at infinity) which is also in $M_p^2(\mathbf{Z})$ but not in $m_p^p(\mathbf{Z})$, where 1 . In § 3 we show that the absolute value of this function gives that

$$m_p^{2}(\mathbf{Z}) \underset{\neq}{\subseteq} M_p^{2}(\mathbf{Z}) \cap m_p^{q}(\mathbf{Z}), \quad 1$$

and that

 $m_p^2(\mathbf{Z}) \not\supseteq L^s(T)^{\wedge} \cap M_p^2(\mathbf{Z}), 1$

The first inequality is due to Haskell Rosenthal.

1. Preliminaries. We use freely the notation and basic results in Rudin's book [17]. We use without reference fundamental facts about multipliers as presented in Edward's book [6]. The fact that results are stated there only for $G = \mathbf{T}$ (the circle group) should cause the reader no difficulty.

Let $1 \leq p < \infty$, $1 \leq q < \infty$. A complex-valued function φ defined on Γ is said to be a *multiplier* of type (p, q) if it determines an operator from $L^{p}(G)$ to

Received May 21, 1971 and in revised form, October 14, 1971.

 $L^{q}(G), T_{\varphi}$, given by

$$(T_{\varphi}f)^{\wedge} = \varphi \hat{f} \quad (f \in L^p(G)).$$

Let $M_p^q(\Gamma)$ denote the set of multipliers of type (p, q). Then $M_p^q(\Gamma)$ is a Banach space where the norm $||\cdot||_{(p,q)}$ of the multiplier φ is defined to be the norm of the multiplier operator T_{φ} . We denote by $m_p^q(\Gamma)$ the set of *compact multipliers* of type (p, q), that is, the set of $\varphi \in M_p^q(\Gamma)$ for which the corresponding operator T_{φ} is compact. The set $m_p^q(\Gamma)$ is a closed subspace of $M_p^q(\Gamma)$.

We have:

1.1 LEMMA. Let $1 \leq p < \infty$, $1 \leq q < \infty$. Then

(i) $m_p^q(\Gamma)$ is the closure of $C_c(\Gamma)$ in $M_p^q(\Gamma)$. If $\varphi \in m_p^q(\Gamma)$ then φ can be approximated in $M_p^q(\Gamma)$ by functions in $C_c(\Gamma)$ with supports contained in that of φ .

(ii) (cf. Hormander [14]). If $p \leq q$, then $M_p^q(\Gamma)$ is a commutative semi-simple Banach algebra whose maximal ideal space contains Γ . The set $m_p^q(\Gamma)$ is a closed ideal in $M_p^q(\Gamma)$ whose maximal ideal space equals Γ .

Proof. (i) See [2, Theorem 3.1] or [8, Theorem 4.2.2]. We note that $\varphi \in C_c(\Gamma)$ if and only if T_{φ} is given by convolution with a trigonometric polynomial.

(ii) If $p \leq q$, then $L^q(G) \subset L^p(G)$ and $||\cdot||_q \geq ||\cdot||_p$. From this it follows that $M_p^q(\Gamma)$ is a commutative Banach algebra under pointwise multiplication. Its maximal ideal space contains Γ , since $\varphi \to \varphi(\gamma)$ is a multiplicative linear functional. In particular, $M_p^q(\Gamma)$ is semi-simple. Since $C(G)^{\wedge} \subset m_p^q(\Gamma) \subset C_0(\Gamma)$, it follows that the maximal ideal space of $m_p^q(\Gamma)$ is Γ . Since $M_p^q(\Gamma) \subset M_p^p(\Gamma)$, if follows from operator theory that $m_p^q(\Gamma)$ is an ideal in $M_p^q(\Gamma)$.

We next discuss the notions of unconditional convergence and the derived algebra.

1.2 Definition. Let $\{J\}$ denote the collection of finite subsets of Γ , directed by inclusion, and let $\chi_J \in C_c(\Gamma)$ denote the characteristic function of J. If $\varphi \in M_p^{q}(\Gamma)$, we say that φ has an unconditionally converging Fourier series if

$$\lim_{\{J\}} ||\varphi\chi_J - \varphi||_{(p,q)} = 0.$$

The motivation for this terminology is as follows: If $\varphi = \hat{f}$ for some $f \in L^1(G)$ then $T_{\varphi}(g) = f * g$, and the operator corresponding to $\varphi \chi_J$ is convolution by the trigonometric polynomial, $\sum_{\gamma \in J} \hat{f}(\gamma)\gamma$. Thus φ has an unconditionally converging Fourier series, in our terminology, if and only if the Fourier series for f converges unconditionally to f in the (p,q)- multiplier norm; that is,

$$\lim_{\{J\}} \sup_{\||g\||_p \leq 1} \left\| \sum_{J} \hat{f}(\gamma) \hat{g}(\gamma) \gamma - f * g \right\|_q = 0.$$

For basic facts on unconditional convergence, the reader is referred to Day's book [4]. It is straightforward to verify that the set of elements of $M_p^q(\Gamma)$ or

478

 $m_p^{q}(\Gamma)$ with an unconditionally converging Fourier series is a Banach space with the norm given by

$$||\varphi||_{S} = \sup_{J} ||\varphi\chi_{J}||_{(p,q)}$$

and that, for such φ ,

$$\lim_{\{J\}} ||\varphi - \varphi \chi_J||_S = 0.$$

1.3 Definition (Helgason [12]). If A is a commutative semi-simple Banach algebra with maximal ideal space \mathcal{M} , define the *derived algebra*, A_0 , to be the the set of $x \in A$ such that

$$\sup_{y\in A}\frac{||xy||}{||\tilde{y}||_{\infty}}\equiv ||x||_{0}<\infty,$$

where \tilde{y} denotes the Gelfand transform of y, so that

 $||\tilde{y}||_{\infty} = \sup\{|\tilde{y}(M)|: M \in \mathscr{M}\}.$

If $q \leq p$, and $A = M_p^q(\Gamma)$ or $m_p^q(\Gamma)$, one verifies that A_0 is a Banach algebra and that $||\cdot||_0 \geq ||\cdot||_{(p,q)}$.

Let $S^{p}(G)$ denote the set of functions in $L^{p}(G)$ with unconditionally converging Fourier series in $L^{p}(G)$. In § 2 we will make use of the following results.

1.4 THEOREM. Let $1 \leq p < 2$.

(i) (Helgason [12]) $L^{p}(G)_{0} = L^{2}(G)$.

(ii) (Grothendieck [10; 11]) $S^{p}(G) = L^{2}(G)$.

(iii) (Grothendieck [11]) If φ is a complex-valued function on Γ such that $\epsilon \varphi \in M(G)$ for all ϵ with $\epsilon(\gamma) = \pm 1$, then $\varphi \in l^2(\Gamma)$.

Part (iii) is a generalization of a theorem of Littlewood. For related results, see also [12, Theorem 10; 18, V(8.13); 5].

2. Multipliers which have an unconditionally converging Fourier series or are in the derived algebra. We first give several equivalent conditions for a multiplier to have an unconditionally converging Fourier series.

2.1 THEOREM. Let $1 \leq p \leq 2$, $1 \leq q \leq 2$, and let φ be a complex-valued function on Γ . Then the following statements are equivalent.

(i) $\varphi \in M_p^q(\Gamma)$ and has an unconditionally converging Fourier series.

(ii) $\varphi \in m_{p^{2}}(\Gamma)$.

(iii) $a\varphi \in m_p^q(\Gamma)$ for all $a \in l^{\infty}(\Gamma)$.

(iv) $\epsilon \varphi \in m_p^q(\Gamma)$ for all ϵ with $\epsilon(\gamma) = \pm 1$.

Proof. (i) implies (ii). Let S denote the set of elements in $M_p^q(\Gamma)$ with an unconditionally converging Fourier series, and let $R \subset M_p^q(\Gamma)$ denote the set of compact multipliers from $L^p(G)$ to $S^q(G)$, with norm $||\cdot||_R$. Since $S^q(G) = L^2(G)$, $R = m_p^2(\Gamma)$. We will show that R = S, and hence (ii) follows.

If $\psi \in C_c(\Gamma)$, then

$$\begin{split} ||\psi||_{R} &= \sup_{\substack{||f||_{p} \leq 1}} ||T_{\psi}f||_{S^{q}} \\ &= \sup_{\substack{||f||_{p} \leq 1}} \sup_{J} \left\| \sum_{J} \psi(\gamma) \hat{f}(\gamma) \gamma \right\|_{q} \\ &= \sup_{J} ||\psi\chi_{J}||_{(p,q)} \\ &= ||\psi||_{S}. \end{split}$$

Since $C_{\mathfrak{c}}(\Gamma)$ is dense in each of the spaces R and S, R = S.

(ii) implies (iii). If $a \in l^{\infty}(\Gamma) = M_{2^{2}}(\Gamma)$, then

$$a\varphi \in m_p^2(\Gamma)M_2^2(\Gamma) \subset m_p^2(\Gamma) \subset m_p^q(\Gamma)$$

(iii) implies (iv) is immediate.

(iv) implies (i). Choosing $\epsilon(\gamma) = 1$ for all γ , we have that $\varphi \in m_p^q(\Gamma)$. Let Γ_1 denote the support of φ and let

$$B = \{ \psi \in m_p^q(\Gamma) : \psi(\gamma) = 0, \ \gamma \notin \Gamma_1 \}.$$

Then B is a Banach space. It follows from Lemma 1.1 (i) that Γ_1 is countable and that B is separable.

Let $\Gamma_1 = (\gamma_n)$ and define $(b_n) \subset B$, $(\beta_n) \subset B^*$ by

$$b_n(\gamma) = \begin{cases} 1, \ \gamma = \gamma_n \\ 0, \ \text{otherwise,} \end{cases}$$

and

$$eta_n(\psi) = \psi(\gamma_n), \ \psi \in B, \ n = 1, 2, \ldots$$

Then (b_n, β_n) is a biorthogonal sequence in B, and (β_n) is total. Condition (iv) implies that, given a sequence (a_n) , with $a_n = 0$ or 1, there exists $\psi \in B$ such that $\beta_n(\psi) = a_n\beta_n(\varphi)$. Thus by [3, Theorem 1], $\Sigma_n\beta_n(\varphi)b_n$ converges unconditionally to φ in B. But this is precisely the statement that

$$\lim_{\{J\}} ||\varphi\chi_J - \varphi||_{(p,q)} = 0.$$

We now give conditions equivalent to a multiplier being in the derived algebra.

2.2 THEOREM. Let $1 \leq p \leq 2$, $1 \leq q \leq 2$, and let φ be a complex-valued function on Γ . Then the following statements are equivalent.

(i) φ ∈ M_p²(Γ).
(ii) aφ ∈ m_p^q(Γ) for all a ∈ C₀(Γ).
(iii) aφ ∈ M_p^q(Γ) for all a ∈ C₀(Γ).
(iv) aφ ∈ M_p^q(Γ) for all a ∈ l[∞](Γ).
(v) εφ ∈ M_p^q(Γ) for all ε with ε(γ) = ±1.
If p ≤ q, then the above are equivalent to
(vi) φ is in the derived algebra of M_p^q(Γ).

480

Proof. "(i) implies (ii)" and "(i) implies (iv)" both follow in a manner similar to "(ii) implies (iii)" of Theorem 2.1.

"(ii) implies (iii)" and "(iv) implies (v)" are immediate.

(iii) implies (i). If $f \in L^p(G)$, then $a\varphi \hat{f} \in L^q(G)^{\wedge}$ for all $a \in C_0(\Gamma)$. Thus, by [12, Theorem 2],

$$\varphi \hat{f} \in (L^q(G)_0)^{\wedge} = l^2(\Gamma),$$

so $\varphi \in M_{p^2}(\Gamma)$.

"(v) implies (i)" follows as above, using Theorem 1.4 (iii).

(i) implies (vi). Let $\psi \in M_p^q(\Gamma)$ and let $\tilde{\psi}$ denote the Gelfand transform of ψ . Then $||\psi||_{\infty} \leq ||\tilde{\psi}||_{\infty}$.

If $f \in L^p(G)$, then

$$\begin{aligned} ||T_{\varphi\psi}f||_q &\leq ||\varphi\psi\hat{f}||_2\\ &\leq ||\psi||_{\infty} ||\varphi\hat{f}||_2\\ &\leq ||\tilde{\psi}||_{\infty} ||\varphi||_{(p,2)} ||f||_p, \end{aligned}$$

so $||\varphi\psi||_{(p,q)} \leq ||\varphi||_{(p,2)} ||\tilde{\psi}||_{\infty}$. Thus $\varphi \in M_p^{-q}(\Gamma)_0$.

(vi) implies (iii). If $a \in C_{\mathfrak{c}}(\Gamma)$, then $||\tilde{a}||_{\infty} = ||a||_{\infty}$ so

 $||a\varphi||_{(p,q)} \leq ||\varphi||_0 ||\tilde{a}||_{\infty} = ||\varphi||_0 ||a||_{\infty}.$

Since $C_{\mathfrak{c}}(\Gamma)$ is dense in $C_0(\Gamma)$, this implies that $a \to a\varphi$ is a bounded operator from $C_0(\Gamma)$ to $M_p^q(\Gamma)$. Thus (iii) holds.

From Theorems 2.1, 2.2, and [12, Theorem 2] the following corollary is immediate:

2.3 COROLLARY. Let $1 \leq p \leq 2, 1 \leq q \leq 2$. Then:

(i) An element $\varphi \in m_p^q(\Gamma)$ has an unconditionally converging Fourier series if and only if $\varphi \in m_p^2(\Gamma)$.

(ii) If $p \leq q$, then the derived algebra of $m_p^q(\Gamma)$ is $M_p^2(\Gamma) \cap m_p^q(\Gamma)$.

2.4 Remark. For $1 \leq p \leq \infty$, q > 2, let $M(p, S^q)$ denote the set of (p, q)multipliers φ for which $T_{\varphi}(L^p) \subset S^q$, and let $m(p, S^q)$ denote the subspace for which T_{φ} is compact as an operator into S^q . Then the results of this section all hold, with $M_p^2(\Gamma)$ replaced by $M(p, S^q)$ and $m_p^2(\Gamma)$ replaced by $m(p, S^q)$. The proofs are identical, since all properties of $L^2(G)$ used above are valid for $S^q(G)$ as well. (See [1] and [2] for details about S^q .)

2.5 Remark. Let $1 \leq p \leq q < \infty$. Since $L^2(G)$, $L^p(G)$, and $S^q(G)$ are reflexive homogeneous Banach spaces, by [2, Theorem 3.8] $m_p^2(\Gamma)^{**} = M_p^2(\Gamma)$ and $m(p, S^q)^{**} = M(p, S^q)$. In view of Theorems 2.1, 2.2, and the above Remark, this means that, in every case, the derived algebra of $M_p^q(\Gamma)$ is the double dual of the (p, q) multipliers with unconditionally converging Fourier series.

Let 1 , <math>1/p + 1/p' = 1. Now $M_p^2(\Gamma) \not\subset C_0(\Gamma)$, since the characteristic function of a $\Lambda_{p'}$ set is in $M_p^2(\Gamma)$ [13, Theorem 37.9]. In addition, $m_p^q(\Gamma) \subset C_0(\Gamma)$. Thus

$$m_p^q(\Gamma) \cap M_p^2(\Gamma) \neq M_p^2(\Gamma) = m_p^2(\Gamma)^{**},$$

so Corollary 2.3 shows that the derived algebra of $m_p^q(\Gamma)$ is not the double dual of the compact (p, q) multipliers with unconditionally converging Fourier series. The example of the next section shows that for $G = \mathbf{T}$, the derived algebra does not coincide with the unconditionally converging compact (p, q) multipliers either, that is,

$$m_p^{2}(\mathbf{Z}) \underset{\neq}{\subseteq} m_p^{q}(\mathbf{Z}) \cap M_p^{2}(\mathbf{Z}), \quad 1$$

3. An example. We now give an example of a multiplier on **Z** which helps clarify the relationship between some of the spaces mentioned in the previous section. Throughout we assume that 1 and that <math>r = 2p/(2 - p).

For $n = 0, 1, \ldots$ define ψ_n on **Z** by

$$\psi_n(k) = \begin{cases} \frac{1}{2^{n/\tau}}, & k = 2^n, 2^n + 1, \dots, 2^{n+1} - 1\\ 0, & \text{otherwise,} \end{cases}$$

and let

$$\psi(k) \,=\, \sum_{n=0}^\infty \; \, \psi_n(k), \;\; k \in {f Z}.$$

The following proposition is due to Haskell Rosenthal.

3.1 PROPOSITION. The function ψ is in $M_{p^2}(\mathbb{Z}) \cap m_{p^q}(\mathbb{Z})$, $p \leq q < 2$, but not in $m_{p^2}(\mathbb{Z})$.

Proof. Let φ be the example constructed in [7, Theorem B]. Then $\varphi \in C_0(\mathbb{Z}) \cap M_p{}^p(\mathbb{Z})$ but $\varphi \notin m_p{}^p(\mathbb{Z})$. Thus $\varphi \notin m_p{}^2(\mathbb{Z})$ The proof of Theorem B shows that φ is actually in $M_p{}^2(\mathbb{Z})$ and that $\psi = |\varphi|$. Since $\psi = a\varphi$ and $\varphi = b\psi$, where a and b are both sequences of absolute value one, it is clear that $\psi \in M_p{}^2(\mathbb{Z})$ and that $\psi \notin m_p{}^2(\mathbb{Z})$.

It remains to show that $\psi \in m_p^q(\mathbf{Z})$, $p \leq q < 2$. By Interpolation Theory (see e.g. [15, p. 36]) it is enough to show that $\psi \in m_p^p(\mathbf{Z})$. Let μ_n denote the characteristic function of $\{2^n, \ldots, 2^{n+1} - 1\}$, $n = 0, 1, \ldots$. Since p > 1, the M. Riesz and Littlewood-Paley Theorems [17, p. 217; 18, p. 224] imply that (μ_n) is a uniformly bounded sequence in $M_p^p(\mathbf{Z})$. Thus

$$\sum_{n=0}^{\infty} \frac{1}{2^{n/r}} ||\mu_n||_{(p,p)} < \infty.$$

Now

$$\psi_n=\frac{1}{2^{n/r}}\,\mu_n,$$

so $\sum_{n=0}^{\infty} \psi_n$ converges to ψ in $M_p^p(\mathbb{Z})$. Since each $\psi_n \in C_c(\mathbb{Z}), \psi \in m_p^p(\mathbb{Z})$.

Let 1/s = 1 + 1/q - 1/p. Then Young's Inequality states that $L^s * L^p \subset L^q(\mathbf{T})$. Hence $L^s(\mathbf{T})^{\wedge} \subset M_p^{q}(\mathbf{Z})$, and since the trigonometric polynomials are dense in $L^s(\mathbf{T})$, $L^s(\mathbf{T})^{\wedge} \subset m_p^{q}(\mathbf{Z})$. In particular, if s = r' =

2p/(3p-2), then q = 2, so that $L^{s}(\mathbf{T})^{\wedge} \subset m_{p}^{2}(\mathbf{Z})$. Hence $\psi \notin L^{s}(\mathbf{T})^{\wedge}$. However, we do have:

3.2 PROPOSITION. If $1 \leq s < 2p/(3p-2)$, then $\psi \in L^s(\mathbf{T})^{\wedge}$, and hence $M_{p^2}(\mathbf{Z}) \cap L^s(\mathbf{T})^{\wedge} \not\subset m_{p^2}(\mathbf{Z})$.

Proof. Let

$$f_n(x) = \sum_{k=2^n}^{2^{n+1}-1} \frac{1}{2^{n/r}} e^{ikx}, \quad n = 0, 1, \dots$$

We will show that $\sum_{n=0}^{\infty} ||f_n||_s < \infty$. Hence $\sum_{n=0}^{\infty} f_n$ converges in $L^s(\mathbf{T})$ to (say) f, and $\hat{f} = \psi$. Whence the conclusion follows. Now

$$f_n(x) = \frac{1}{2^{n/r}} \left\{ e^{i2^n x} D_{2^n}(x) - e^{i2^{n+1}x} \right\}$$

where $D_N(x)$ denotes the N-th Dirichlet kernel. Since p < 2 we may assume s > 1. Thus $||D_n||_s = O(N^{1/s'})$, and hence

$$||f_n||_s = O\left(\frac{(2^n)^{1/s'}}{2^{n/r}}\right) = O(2^{n(1/s'-1/r)}).$$

Since s < 2p(3p - 2) = r', s' > r, so

$$\sum_{n=0}^{\infty} 2^{n(1/s'-1/r)} < \infty$$

Thus $\sum_{n=0}^{\infty} ||f_n||_s < \infty$.

3.3 *Remark*. Results analogous to those of this section hold when Γ is an infinite discrete torsion group of bounded order (see [7, Theorem D; 9, p. 92; 16]).

For Γ a discrete abelian group, Γ_1 a subgroup of Γ , and $1 \leq p \leq q$, let

$$i(arphi)(\gamma) = egin{cases} arphi(\gamma), \, \gamma \in \, \Gamma_1 \ 0, \quad \gamma \notin \, \Gamma_1 \ \end{pmatrix} (arphi \in M_p^{-q}(\Gamma_1)),$$

and let $r(\varphi) = \varphi | \Gamma_1, \varphi \in M_p^q(\Gamma)$. Then *i* maps $M_p^q(\Gamma_1)$ into $M_p^q(\Gamma)$ and *r* maps $M_p^q(\Gamma)$ into $M_p^q(\Gamma_1)$ [9, Lemma 4.6]. Since $i(C_c(\Gamma_1)) \subset C_c(\Gamma)$, $r(C_c(\Gamma)) \subset C_c(\Gamma_1)$, and *i* and *r* are continuous, we see that $i(m_p^q(\Gamma_1)) \subset m_p^q(\Gamma)$ and $r(m_p^q(\Gamma)) \subset m_p^q(\Gamma_1)$. Since *ri* is the identity on $M_p^q(\Gamma_1)$, this means that $\varphi \in m_p^q(\Gamma_1)$ if and only if $i\varphi \in m_p^q(\Gamma)$. Thus if Γ contains **Z** or an infinite torsion group of bounded order, then results analogous to those of this section also hold for Γ .

References

- G. F. Bachelis, On the ideal of unconditionally convergent Fourier series in L_p(G), Proc. Amer. Math. Soc. 27 (1971), 309-312.
- 2. G. F. Bachelis and J. E. Gilbert, Banach spaces of compact multipliers and their dual spaces (to appear in Math. Z.).

- 3. G. F. Bachelis and H. P. Rosenthal, On unconditionally converging series and biorthogonal systems in a Banach space, Pacific J. Math. 37 (1971), 1-5.
- 4. M. M. Day, Normed linear spaces (Academic Press, New York, 1962).
- 5. R. E. Edwards, Changing signs of Fourier coefficients, Pacific J. Math. 15 (1965), 463-475.
- 6. —— Fourier series: a modern introduction, Vol. II (Holt, Rinehart and Winston, New York, 1967).
- A. Figà-Talamanca and G. Gaudry, Multipliers of L^p which vanish at infinity, J. Functional Analysis ? (1971). 475-486.
- 8. G. Gaudry, Quasi-measures and multiplier problems, Ph.D. thesis, Australian National University, Canberra, 1965.
- 9. —— Bad behavior and inclusion results for multipliers of type (p, q), Pacific J. Math. 35 (1970), 83–93.
- A. Grothendieck, Resultats nouveaux dans la theorie des operations lineaires., C. R. Acad. Sci. Paris (1954), 577-579.
- Resume de la theorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1–79.
- 12. S. Helgason, Multipliers of Banach algebras, Ann. of Math. 64 (1956), 240-254.
- 13. E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. II (Springer, New York, 1970).
- L. Hormander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93-140.
- J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68.
- J. Peyriere and R. Spector, Sur les multiplicateurs radiaux de L^p(G), pour un groupe abelien localement compact totalement discontinu, C. R. Acad. Sci. Paris Ser. A 269 (1969), 973–974.
- 17. W. Rudin, Fourier analysis on groups (Interscience, New York, 1962).
- 18. A. Zygmund, Trigonometric series, Vol. II (Cambridge University Press, Cambridge, 1959).

Kansas State University, Manhattan, Kansas