STABILITY OF DISCRETE ORTHOGONAL PROJECTIONS FOR CONTINUOUS SPLINES

R.D. Grigorieff and I.H. Sloan

In this paper L_{p} stability and convergence properties of discrete orthogonal projections on the finite element space S_{h} of continuous polynomial splines of order r are proved. The discrete inner products are defined by composite quadrature rules with positive weights on a sequence of nonuniform grids. It is assumed that the basic quadrature rule Q has at least r quadrature points in order to resolve S_{h}, but no accuracy is required. The main results are derived under minimal further assumptions, for example the rule Q is allowed to be non-symmetric, and no quasi-uniformity of the mesh is required. The corresponding stability of the orthogonal L_{2}-projections has been studied by de Boor [1] and by Crouzeix and Thomée [2]. Stability of the first derivative of the projection is also proved, under an assumption (unless $p=1$) of local quasi-uniformity of the mesh.

1. Introduction

This paper establishes stability and convergence properties of discrete orthogonal projections onto the standard finite element spaces S_{h} of continuous polynomial splines of degree at most $r-1$ on an interval, with $r \geqslant 2$.

To be precise, let

$$
\begin{equation*}
\pi_{h}^{\prime}:=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=L\right\} \tag{1.1}
\end{equation*}
$$

be an arbitrary partition of the interval $[0, L]$. Then

$$
S_{h}:=\left\{\psi \in C[0, L]: \psi \mid\left[x_{k}, x_{k+1}\right] \in \mathbb{P}_{r-1}, \quad k=0, \cdots, n-1\right\}
$$

where $\psi \mid[x, y]$ denotes the restriction of ψ to $[x, y]$ and \mathbb{P}_{d} the space of polynomials of degree at most d. Let

$$
\begin{equation*}
Q g:=\sum_{j=1}^{J} w_{j} g\left(\xi_{j}\right) \sim \int_{0}^{1} g(x) d x \tag{1.2}
\end{equation*}
$$

Received 3rd March, 1998
The support of the Australian Research Council is gratefully acknowledged, as is the hospitality of the Mittag-Leffler Institute where the present version of this work was completed.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.
be a basic quadrature rule with quadrature points or nodes

$$
0 \leqslant \xi_{1}<\xi_{2}<\cdots<\xi_{J} \leqslant 1
$$

and weights $w_{j}>0$; the positivity of the weights plays a crucial role in the theory. We denote by h the mesh-size vector

$$
h:=\left(h_{0}, h_{1}, \cdots, h_{n-1}\right),
$$

where $h_{k}:=x_{k+1}-x_{k}$ for $k=0, \cdots, n-1$, and introduce the composite quadrature rule

$$
\begin{equation*}
Q_{h} g:=\sum_{k=0}^{n-1} h_{k} \sum_{j=1}^{J} w_{j} g\left(x_{k, j}\right) \sim \int_{0}^{L} g(x) d x \tag{1.3}
\end{equation*}
$$

with

$$
x_{k, j}:=x_{k}+h_{k} \xi_{j}, \quad k=0, \cdots, n-1, \quad j=1, \cdots, J
$$

We then introduce the positive semidefinite, Hermitian, sesquilinear form

$$
\begin{equation*}
(f, g)_{h}:=Q_{h}(f \bar{g}), \quad f, g \in C[0, L] . \tag{1.4}
\end{equation*}
$$

This sesquilinear form is shown in Proposition 2.1 to be an inner product on S_{h} if and only if $J \geqslant r$. In this situation we may define a projection $R_{h}: C[0, L] \rightarrow S_{h}$ by

$$
\begin{equation*}
\left(R_{h} f, \psi\right)_{h}=(f, \psi)_{h} \quad \forall \psi \in S_{h} \tag{1.5}
\end{equation*}
$$

It is this discrete orthogonal projection R_{h} that we study in this paper.
One of our main resuits (see Theorems 5.1 and 4.4) is that for each $p \in[1, \infty]$, and for $h_{\max }:=\max _{k} h_{k}$, we have

$$
\begin{equation*}
\left\|R_{h} f-f\right\|_{L_{p}(0, L)} \rightarrow 0 \text { as } h_{\max } \rightarrow 0 \quad \forall f \in C[0, L] \tag{1.6}
\end{equation*}
$$

and also, for $\ell=1, \cdots, r$,

$$
\begin{equation*}
\left\|R_{h} f-f\right\|_{L_{p}(0, L)} \leqslant C h_{\max }^{\ell}\left\|f^{(\ell)}\right\|_{L_{p}(0, L)}, f \in W_{p}^{\ell}(0, L) \tag{1.7}
\end{equation*}
$$

under only the most basic assumptions on the quadrature rule: we do not even insist that the rule be symmetric. On the other hand, for all $J \geqslant r$ it is sufficient that Q be symmetric; and if $J=r$ and Q is not symmetric it is sufficient that $\xi_{1}=0$ and $\xi_{J}=1$. There are no other constraints on the choice of quadrature points, and (apart from positivity) no constraints on the weights. Observe in (1.6) and (1.7) that R_{h} is defined with the aid of point evaluation of f, while the convergence holds in the $L_{p^{-}}$ norm. These convergence results require no restriction of any kind on the partition π_{h}^{\prime}, provided $h_{\text {max }} \rightarrow 0$.

The quadrature rule (1.3), and the sesquilinear form (1.4), can also be defined in a natural way on the space G_{h} of 'grid functions', that is, of the complex-valued functions on the grid

$$
\begin{equation*}
\pi_{h}:=\left\{x_{k, j}: k=0, \cdots, n-1, j=1, \cdots, J\right\} \tag{1.8}
\end{equation*}
$$

(where we use the convention that $x_{k, J}$ is considered different from $x_{k+1,1}$ even if their values coincide, which of course happens if $\xi_{J}=1$ and $\xi_{1}=0$). The convergence properties (1.6) and (1.7) rest on a corresponding stability property

$$
\begin{equation*}
\left\|R_{h} f\right\|_{L_{p}(0, L)} \leqslant C\|f\|_{h, p}, \quad f \in C[0, L] \text { or } G_{h} \tag{1.9}
\end{equation*}
$$

where

$$
\begin{align*}
\|f\|_{h, p} & :=Q_{h}\left(|f|^{p}\right)^{1 / p}, \quad f \in C[0, L] \text { or } G_{h}, \quad p \in[1, \infty) \tag{1.10}\\
\|f\|_{h, \infty} & :=\max \left\{\left|f\left(x_{k, j}\right)\right|: \quad k=0, \cdots, n-1, j=1, \cdots, J\right\} .
\end{align*}
$$

Here and throughout the paper C denotes a generic constant independent of h and other significant quantities.

In Theorem 6.1 we state a stability result for the derivative ($\left.R_{h} f\right)^{\prime}$, in the same setting, but this time with a quasi-uniformity assumption on the grid unless $p=1$.

In the final section, Section 7, we give results, again for rather general rules Q and arbitrary meshes, for the stability of the discrete orthogonal projection R_{h}^{0} on the space $S_{h}^{0} \subset S_{h}$, which is obtained from S_{h} by imposing zero boundary conditions. The main results for R_{h}^{0} are contained in Theorem 7.2. It turns out that R_{h}^{0} shares the main features of R_{h}, and also has some additional new properties.

The continuous counterpart of (1.9) for the orthogonal L_{2}-projection P_{h} on S_{h} without any restriction on the partition π_{h}^{\prime} has first been proved by Dupont (see de Boor [1]), extending earlier work of Douglas, Dupont and Wahlbin [5] for quasiuniform grids. The proof in [1] relies essentially on the total positivity of the Gram matrix for the B-spline basis of S_{h}. It carries over directly to our discrete case if the quadrature rule is symmetric, but its extension to the non-symmetric case, and to the study of the first derivative of the projection, is less obvious. In the present paper we follow more closely the reasoning of Crouzeix and Thomee [2], who in turn based their arguments on the earlier work of Descloux [4]. Those papers are mainly concerned with higher dimensional problems, but the paper [2] also gives an explicit treatment of the continuous 1-dimensional problem that serves as a starting point for the present investigation. In that paper the stability of P_{h} in the 1-dimensional case is related to the diagonal dominance of a tridiagonal matrix, in an argument that is more elementary and gives easier control of the constants determining stability than the total positivity argument. In our discrete case the corresponding way of reasoning enables us to consider also nonsymmetric rules Q. Thus, for example, the above-mentioned general case $J=r$ and $\xi_{1}=0, \xi_{J}=1$ is included,
which is of special interest because then R_{h} is an interpolatory projection or collocation projection for collocating in the points of π_{h}. The diagonal dominance argument also allows, as in [2], extension to a stability argument for the first derivative of $R_{h} f$.

It might be useful to remark that the extension of the 1-dimensional arguments of [2] to the discrete case is not entirely straightforward, since the proof of diagonal dominance of the tridiagonal matrix in the cited paper relies on being able to obtain explicitly, via integration by parts, a certain polynomial; and thence to integrate exactly certain integrals involving this polynomial. In our case the corresponding orthogonality is with respect to a discrete version of the inner product, so explicit knowledge of this kind is not available, not least because integration by parts is no longer valid. We may remark that for some other methods extension from the continuous to the discrete case is easier. In particular, as pointed out in [6], the extension is straightforward, under very general conditions, for the continuous-case arguments used in [5]. However the style of argument used in that work seems inevitably to impose restrictions on the mesh.

It is well known that the stability property of P_{h} is the key to proving L_{p} convergence results for finite element methods with trial space S_{h} on nonuniform partitions; see for example [11]. In the same way (1.9) is basic to the analysis of Galerkin methods with quadrature. Some differential equation applications of (1.9) to a discrete Petrov-Galerkin method are given in [9, 10]. For the (relatively trivial) special case $r=2$ some of the results obtained in this paper have been obtained previously in [9], where they were used to analyse a discrete Petrov-Galerkin method for boundary and eigenvalue problems associated with m-th order ordinary differential equations. Applications of (1.9) to certain non-linear differential and integro-differential problems are discussed in [8].

In this paper we do not treat R_{h} as a small perturbation of the corresponding continuous orthogonal projection operator P_{h}, nor do we assume that the rule Q has any polynomial degree of precision, as for example in the analysis of approximate Galerkin methods in [7, Theorem XII 1.15]. The admission of general quadrature formulas in this paper may lead to new classes of fully discrete methods for 1-dimensional differential, integro-differential and integral equation problems that are, in our view, of independent interest, while at the same time permitting analysis of some existing methods, ranging from collocation methods to perturbations of Galerkin-type methods.

2. The map R_{h}

We begin by characterising conditions under which (1.4) is an inner product on S_{h}. In this case R_{h} is well-defined by (1.5).

Proposition 2.1. The positive semidefinite Hermitian form (., $)_{h}$ defined in (1.4) is an inner product on S_{h} if and only if $J \geqslant r$.

Proof: Assume initially $J \geqslant r$, and let $\psi \in S_{h}$. Because the definition of $\|f\|_{h, 2}$ uses the values of f only at the quadrature points, clearly, $\|\psi\|_{h, 2}=0$ if and only if

$$
\begin{equation*}
\psi\left(x_{k, j}\right)=0, \quad k=0, \cdots, n-1, j=1, \cdots, J \tag{2.1}
\end{equation*}
$$

Now consider $\psi \mid \triangle_{k}$, the restriction of ψ to \triangle_{k}, where

$$
\begin{equation*}
\Delta_{k}:=\left[x_{k}, x_{k+1}\right], k=0, \cdots, n-1 \tag{2.2}
\end{equation*}
$$

Since $\psi \mid \triangle_{k} \in \mathbb{P}_{r-1}$, it is clear for $J \geqslant r$ that (2.1) can hold only if $\psi=0$. Thus $\|\psi\|_{h, 2}=0$ implies $\psi=0$ if $J \geqslant r$. Assume now $J \leqslant r-1$. Then there exists a polynomial $q \in \mathbb{P}_{r-1}, q \neq 0$, satisfying $q\left(\xi_{j}\right)=0, j=1, \cdots, J$. We define

$$
\begin{equation*}
\psi(x):=\alpha_{k} q\left(\frac{x-x_{k}}{h_{k}}\right), \quad x \in\left(x_{k}, x_{k+1}\right), k=0, \cdots, n-1 \tag{2.3}
\end{equation*}
$$

and choose the constants α_{k}, not all zero, in such a way that ψ can be continued to a non-zero function in $C[0, L]$ which by construction vanishes at $x_{k, j}, k=0, \cdots, n-1$, $j=1, \cdots, J$. For example, if $q(0) \neq 0$, one can choose $\alpha_{0}=1$ and then define ψ on consecutive intervals, beginning with the interval $\left(x_{0}, x_{1}\right)$. Similarly, in the case $q(0)=0$ but $q(1) \neq 0$ we start with $k=n-1$. If $q(0)=q(1)=0$, then we can take $\alpha_{k}=1$ for all k.

In accordance with this result we assume $J \geqslant r$ in the rest of this paper, so that R_{h} is always well-defined.

The next step (following a line of argument in [2]) is to split the spline space S_{h} into a direct sum

$$
\begin{equation*}
S_{h}=S_{h, 1}+S_{h, 2} \tag{2.4}
\end{equation*}
$$

in such a way that $S_{h, 2}$ has a purely local basis (that is, with support in a single Δ_{k} only), and $S_{h, 1}$ is orthogonal to $S_{h, 2}$ with respect to the discrete inner product (.,. $)_{h}$. The spaces in (2.4) are thus given by

$$
\begin{align*}
S_{h, 2}: & =\left\{\psi \in S_{h}: \psi\left(x_{k}\right)=0, k=0, \cdots, n\right\} \tag{2.5}\\
S_{h, 1}: & =\left\{\psi \in S_{h}:\left(\psi, \phi_{h}\right)_{h}=0 \forall \phi_{h} \in S_{h, 2}\right\} \tag{2.6}
\end{align*}
$$

The dimension of $S_{h, 1}$ is $\operatorname{dim} S_{h, 1}=n+1$, which is independent of r. The dimension of $S_{h, 2}$ is $n\left(r-2\right.$). (In the case $r=2$ one has $S_{h, 2}=\{0\}$).

We now construct a basis of $S_{h, 1}$. Let $\psi^{(i)} \in \mathbb{P}_{r-1}, i=0,1$, be the polynomials defined by

$$
\begin{align*}
& Q\left(\psi^{(i)} \phi\right)=0 \quad \forall \phi \in \mathbb{P}_{r-1}^{\infty} \tag{2.7}\\
& \psi^{(0)}(0)=1, \quad \psi^{(0)}(1)=0, \psi^{(1)}(0)=0, \psi^{(1)}(1)=1
\end{align*}
$$

where \mathbb{P}_{d}^{0} denotes the subspace of polynomials $\phi \in \mathbb{P}_{d}$ such that $\phi(0)=\phi(1)=0$. The uniqueness, and hence existence, of $\psi^{(i)}$ for fixed i follows from the fact that according to
(2.7) the difference ψ of two candidate polynomials lies in $\mathbb{P}_{\boldsymbol{r}-1}^{\boldsymbol{o}}$ and satisfies $Q(\psi \phi)=0$ for all $\phi \in \mathbb{P}_{r-1}^{\infty}$, from which follows $Q\left(\psi^{2}\right)=0$, and hence $\psi=0$ since the polynomial ψ is at most of degree $r-1$ and vanishes at the r points ξ_{1}, \cdots, ξ_{r}. Note that only quadrature points lying in $(0,1)$ influence the definition of $\psi^{(0)}$ and $\psi^{(1)}$, since $\phi(0)=\phi(1)=0$. Note too that if the contribution to the quadrature formula from the open interval $(0,1)$ is symmetric then

$$
\begin{equation*}
\psi^{(1)}(x)=\psi^{(0)}(1-x), x \in[0,1] \tag{2.8}
\end{equation*}
$$

The polynomials $\psi^{(i)}$ are real, because the quadrature weights w_{j} are real. Now let

$$
\begin{aligned}
\psi_{0}(x) & :=\psi^{(0)}\left(\frac{x}{h_{0}}\right), x \in \Delta_{0}, \\
\psi_{k}(x) & :=\left\{\begin{array}{ll}
\psi^{(1)}\left(\frac{x-x_{k-1}}{h_{k-1}}\right), & x \in \Delta_{k-1} \\
\psi^{(0)}\left(\frac{x-x_{k}}{h_{k}}\right), & x \in \Delta_{k}
\end{array}\right\}, k=1, \cdots, n-1, \\
\psi_{n}(x) & :=\psi^{(1)}\left(\frac{x-x_{n-1}}{h_{n-1}}\right), x \in \Delta_{n-1},
\end{aligned}
$$

and zero elsewhere. Evidently, $\psi_{k} \in S_{h}, k=0, \cdots, n$, and $\psi_{k}\left(x_{\ell}\right)=\delta_{k \ell,} 0 \leqslant k, \ell \leqslant n$.
In the sequel we use the notation

$$
\begin{equation*}
(f, g)_{h}^{(k)}:=h_{k} \sum_{j=1}^{J} w_{j} f\left(x_{k, j}\right) \bar{g}\left(x_{k, j}\right), k=0, \cdots, n-1 \tag{2.9}
\end{equation*}
$$

and the analogous notation $\|f\|_{h, p}^{(k)}$. Clearly we have

$$
(f, \dot{g})_{h}=\sum_{k=0}^{n-1}(f, g)_{h}^{(k)}
$$

Lemma 2.2. $\left\{\psi_{0}, \cdots, \psi_{n}\right\}$ is a basis for $S_{h, 1}$.
Proof: Since the ψ_{k} are clearly linearly independent and $\operatorname{dim} S_{h, 1}=n+1$, the assertion is proved if we know $\psi_{k} \in S_{h, 1}$. We show this explicitly for the case $k \in[1, n-1]$ only. Choose any $\phi \in S_{h, 2}$. Then

$$
\left(\psi_{k}, \phi\right)_{h}=\left(\psi_{k}, \phi\right)_{h}^{(k-1)}+\left(\psi_{k}, \phi\right)_{h}^{(k)}
$$

where

$$
\begin{align*}
\left(\psi_{k}, \phi\right)_{h}^{(k)} & =h_{k} \sum_{j=1}^{J} w_{j}\left(\psi_{k} \bar{\phi}\right)\left(x_{k}+h_{k} \xi_{j}\right) \tag{2.10}\\
& =h_{k} \sum_{j=1}^{J} w_{j} \psi^{(0)}\left(\xi_{j}\right) \bar{\phi}\left(x_{k}+h_{k} \xi_{j}\right)=0
\end{align*}
$$

The last step follows from (2.7) because $\bar{\phi}\left(x_{k}+h_{k} \xi\right)$ as a function of ξ is in $\mathbb{P}_{r-1}^{\infty}$. In the same way we can show that $\left(\psi_{k}, \phi\right)_{h}^{(k-1)}=0$. Thus $\left(\psi_{k}, \phi\right)_{h}=0$, and $\psi_{k} \in S_{h, 1}$. The results for $k=0$ and n follow similarly.

The decomposition of $\psi \in S_{h}$ that corresponds to (2.4) is easily achieved, once the functions ψ_{k} have been constructed.

Lemma 2.3. Assume $J \geqslant r$. An arbitrary $\psi \in S_{h}$ may be represented uniquely as

$$
\psi=\psi_{h, 1}+\psi_{h, 2}, \psi_{h, 1} \in S_{h, 1}, \psi_{h, 2} \in S_{h, 2}
$$

Moreover

$$
\psi_{h, 1}=\sum_{k=0}^{n} \psi\left(x_{k}\right) \psi_{k}
$$

Proof: The uniqueness is clear since (2.4) is an orthogonal decomposition. To prove existence, let $\psi \in S_{h}$ be given, and note that

$$
\sum_{k=0}^{n} \psi\left(x_{k}\right) \psi_{k} \in S_{h, 1}, \quad \psi-\sum_{k=0}^{n} \psi\left(x_{k}\right) \psi_{k} \in S_{h, 2}
$$

the latter holding because (on recalling $\psi_{k}\left(x_{\ell}\right)=\delta_{k \ell}$) the given expression vanishes at x_{ℓ} for $\ell=0, \cdots, n$. Thus $\psi_{h, 1}=\Sigma_{k} \psi\left(x_{k}\right) \psi_{k}$.

We now split the mapping R_{h} according to the above splitting of S_{h}. To this end we define $R_{h, i}: G_{h} \rightarrow S_{h, i}$ for $i=1,2$ by

$$
\begin{equation*}
\left(R_{h, i} f, \psi\right)_{h}=(f, \psi)_{h} \quad \forall \psi \in S_{h, i} \tag{2.11}
\end{equation*}
$$

Note that $R_{h, 1}$ and $R_{h, 2}$ are well defined for $J \geqslant r$, since by Proposition $2.1(\cdot, \cdot)_{h}$ is an inner product on $S_{h, i} \subset S_{h}$.

Lemma 2.4. Assume $J \geqslant r$. Then $R_{h}=R_{h, 1}+R_{h, 2}$.
Proof: Any element $\psi \in S_{h}$ can be written as $\psi=\phi_{1}+\phi_{2}$ with $\phi_{\ell} \in S_{h, \ell}, \ell=1,2$. Taking (2.6) into account it is seen that

$$
\begin{aligned}
\left(\left(R_{h, 1}+R_{h, 2}\right) f, \psi\right)_{h} & =\left(R_{h, 1} f+R_{h, 2} f, \phi_{1}+\phi_{2}\right)_{h} \\
& =\left(R_{h, 1} f, \phi_{1}\right)_{h}+\left(R_{h, 2} f, \phi_{2}\right)_{h}
\end{aligned}
$$

where the cross terms vanish. Thus

$$
\left(\left(R_{h, 1}+R_{h, 2}\right) f, \psi\right)_{h}=\left(f, \phi_{1}\right)_{h}+\left(f, \phi_{2}\right)_{h}=(f, \psi)_{h}=\left(R_{h} f, \psi\right)_{h},
$$

which with Proposition 2.1 proves the assertion.
If we represent $R_{h, 1} f$ in the form

$$
\begin{equation*}
R_{h, 1} f=\sum_{\ell=0}^{n} c_{\ell} \psi_{\ell} \tag{2.12}
\end{equation*}
$$

then (2.11) for $i=1$ is equivalent to the linear system

$$
\begin{equation*}
\sum_{\ell=0}^{n} A_{k \ell} c_{\ell}=b_{k}, \quad k=0, \cdots, n \tag{2.13}
\end{equation*}
$$

where we have introduced the scaled Gram matrix A_{h} of the basis $\left\{\psi_{k}\right\}$, with elements

$$
\begin{equation*}
A_{k \ell}:=\frac{\left(\psi_{k}, \psi_{\ell}\right)_{h}}{h_{k-1}+h_{k}}, \quad k, \ell=0, \cdots, n \tag{2.14}
\end{equation*}
$$

and corresponding right-hand sides

$$
\begin{equation*}
b_{k}:=\frac{\left(f, \psi_{k}\right)_{h}}{h_{k-1}+h_{k}}, k=0, \cdots, n \tag{2.15}
\end{equation*}
$$

with $h_{-1}:=h_{n}:=0$. Note that $R_{h, 2}=0$ if $r=2$, since in that case $S_{h, 2}=\{0\}$.

3. Properties of A_{h}

Our proof of the stability property (1.9) hinges on showing that under appropriate circumstances the tridiagonal matrix A_{h} defined by (2.14) is row diagonally dominant; and moreover that the maximum difference of a diagonal element and the corresponding row sum of absolute values of the off-diagonal elements is bounded away from zero. It is convenient to establish these matrix properties immediately. The desired diagonal dominance result is Proposition 3.2. The result is re-expressed as an inverse stability property of A_{h} in Proposition 3.6.

To simplify the statement of the following lemma, we define

$$
A_{0,-1}:=A_{n, n+1}:=0
$$

and introduce

$$
\alpha_{k}:=\frac{h_{k-1}}{h_{k}+h_{k-1}}, k=0, \cdots, n .
$$

Note that $0 \leqslant \alpha_{k} \leqslant 1$ for $k=0, \cdots, n$ and $\alpha_{0}=0, \alpha_{n}=1$.
Lemma 3.1. The matrix A_{h} is tridiagonal and has positive diagonal elements. Moreover, for $k=0, \cdots, n$ we have

$$
\begin{align*}
\sigma_{h, k}:= & A_{k k}-\left|A_{k, k-1}\right|-\left|A_{k, k+1}\right| \tag{3.1}\\
= & \alpha_{k} Q\left(\psi^{(1) 2}\right)+\left(1-\alpha_{k}\right) Q\left(\psi^{(0) 2}\right)-\left|Q\left(\psi^{(1)} \psi^{(0)}\right)\right| \\
= & \frac{1}{2} Q\left(\left|\psi^{(1)}-\psi^{(0)} \operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right)\right|^{2}\right) \\
& +\left(\alpha_{k}-\frac{1}{2}\right)\left(Q\left(\psi^{(1) 2}\right)-Q\left(\psi^{(0) 2}\right)\right),
\end{align*}
$$

where $\operatorname{sgn} t:=1$ or -1 for $t \geqslant 0$ or $t<0$, respectively.

Proof: By definition of ψ_{k}, one calculates $\left(\psi_{k}, \psi_{\ell}\right)_{h}=0$ for $|k-\ell| \geqslant 2$, and

$$
\begin{aligned}
\left(\psi_{k}, \psi_{k}\right)_{h} & =h_{k-1} Q\left(\psi^{(1) 2}\right)+h_{k} Q\left(\psi^{(0) 2}\right) \\
\left(\psi_{k}, \psi_{k-1}\right)_{h} & =h_{k-1} Q\left(\psi^{(1)} \psi^{(0)}\right) \\
\left(\psi_{k}, \psi_{k+1}\right)_{h} & =h_{k} Q\left(\psi^{(1)} \psi^{(0)}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
A_{k k} & =\alpha_{k} Q\left(\psi^{(1) 2}\right)+\left(1-\alpha_{k}\right) Q\left(\psi^{(0) 2}\right) \\
A_{k, k-1} & =\alpha_{k} Q\left(\psi^{(1)} \psi^{(0)}\right) \\
A_{k, k+1} & =\left(1-\alpha_{k}\right) Q\left(\psi^{(1)} \psi^{(0)}\right)
\end{aligned}
$$

from which (3.1) is obtained immediately.
In the rest of the paper we consider a sequence H of gridsize vectors h such that $h_{\max } \rightarrow 0(h \in H)$ and corresponding grids $\pi_{h}^{\prime}, h \in H$.

Lemma 3.2. For each $h \in H$ let

$$
\sigma_{h}:=\min \left\{\sigma_{h, k}: k=0, \cdots, n\right\}
$$

Then

$$
\begin{equation*}
\sigma_{h}=\sigma:=\min \left(Q\left(\psi^{(1) 2}\right), Q\left(\psi^{(0) 2}\right)\right)-\left|Q\left(\psi^{(1)} \psi^{(0)}\right)\right|, \quad h \in H \tag{3.2}
\end{equation*}
$$

Proof: From (3.1) we obtain immediately $\sigma_{h, k} \geqslant \sigma, k=0, \cdots, n$. Equality holds because $\alpha_{0}=0, \alpha_{n}=1$.

The following proposition states sufficient conditions for the existence of a suitable positive number bounding $\sigma_{h, k}$ below, that is, for $\sigma>0$. In other cases $\sigma>0$ can be tested by computation of σ from the representation (3.2).

Proposition 3.3. Assume $J \geqslant r$. Sufficient conditions for the constant σ defined in (3.2) to satisfy $\sigma>0$ are:
(a) $Q\left(\psi^{(1) 2}\right)=Q\left(\psi^{(0) 2}\right)$
(b) Q is symmetric
(c) Q integrates exactly all $p \in \mathbb{P}_{2 r-4}$ with respect to the weight function $w(x):=x(1-x)$, that is,

$$
\int_{0}^{1} p(x) w(x) d x=Q(p w), \quad p \in \mathbb{P}_{2 r-4}
$$

(d) $Q\left(\psi^{(1)} \psi^{(0)}\right)=0$
(e) $J=r$ and $\xi_{1}=0, \xi_{J}=1$
(f) $\min \left(Q\left(\psi^{(1)}\right), Q\left(\psi^{(0)}\right), Q\left((2 x-1) \psi^{(1)}\right), Q\left((1-2 x) \psi^{(0)}\right)\right)>0$.

Proof: If $Q\left(\psi^{(1) 2}\right)=Q\left(\psi^{(0) 2}\right)$ then it follows from Lemma 3.2 and the last form of (3.1) that

$$
\begin{equation*}
\sigma=\frac{1}{2} Q\left(\left|\psi^{(1)}-\psi^{(0)} \operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right)\right|^{2}\right) \geqslant 0 \tag{3.3}
\end{equation*}
$$

with equality possible only if $\psi:=\psi^{(1)}-\psi^{(0)} \operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right)$ vanishes at each quadrature point. Since $J \geqslant r$ and $\psi \in \mathbb{P}_{r-1}$ this implies $\psi=0$, contradicting $\psi(1)=1$.

If Q is symmetric then we have observed already that $\psi^{(1)}(x)=\psi^{(0)}(1-x)$, from which $Q\left(\psi^{(1) 2}\right)=Q\left(\psi^{(0) 2}\right)$ follows. Thus this case is covered by case (a).

If Q integrates exactly all polynomials of degree at most $2 r-4$ with respect to the weight function w then the condition $Q\left(\psi^{(i)} \phi\right)=0$ for all $\phi \in \mathbb{P}_{r-1}^{\infty}$ in the definition (2.7) can be replaced by the corresponding integral (since $\phi(x)=x(1-x) \tau(x)$ with $\tau \in \mathbb{P}_{r-3}$), from which it follows that $\psi^{(1)}(x)=\psi^{(0)}(1-x)$, so that again the case is covered by (a).

If $Q\left(\psi^{(1)} \psi^{(0)}\right)=0$ the result follows immediately from Lemma 3.2, since $Q\left(\psi^{(1) 2}\right) \geqslant$ 0 , with equality excluded because $\psi^{(1)}$ vanishing at all quadrature points would imply $\psi^{(1)}=0$, contradicting $\psi^{(1)}(1)=1$. Thus case (d) is proved.

If $J=r$ and $\xi_{1}=0, \xi_{J}=1$ then there are exactly $J-2=r-2$ interior nodes $\xi_{2}, \cdots, \xi_{J-1}$ for the rule Q. Let $\left\{\phi_{j}: j=2, \cdots, J-1\right\} \subset \mathbb{P}_{r-3}$ be the set of fundamental Lagrange polynomials for the $J-2$ interior nodes, that is,

$$
\begin{equation*}
\phi_{j} \in \mathbb{P}_{r-3}, \phi_{j}\left(\xi_{j^{\prime}}\right)=\delta_{j j^{\prime}}, 2 \leqslant j, j^{\prime} \leqslant J-1 \tag{3.4}
\end{equation*}
$$

Then $x(1-x) \phi_{j}(x) \in \mathbb{P}_{r-1}^{o}$, and from (2.7) we have

$$
Q\left(x(1-x) \psi^{(i)} \phi_{j}\right)=0, \quad j=2, \cdots, J-1, \quad i=0,1
$$

which implies, given (3.4) and $w_{j}>0$, that

$$
\psi^{(i)}\left(\xi_{j}\right)=0 \text { for } j=2, \cdots, J-1, \quad i=0,1
$$

so that $\psi^{(i)}$ vanishes at each interior node. Since also $\psi^{(0)}(0)=\psi^{(1)}(1)=1$ and $\psi^{(0)}(1)=$ $\psi^{(1)}(0)=0$ it follows that $Q\left(\psi^{(1)} \psi^{(0)}\right)=0$, thus the result for case (e) follows from case (d).

Turning to case (f) we note that

$$
\begin{aligned}
Q\left(\psi^{(1) 2}\right)-\left|Q\left(\psi^{(1)} \psi^{(0)}\right)\right| & =Q\left(\psi^{(1) 2}-\psi^{(1)} \psi^{(0)} \operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right)\right) \\
& =Q\left(\psi^{(1)}\left[\psi^{(1)}-\psi^{(0)} \operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right)\right]\right)
\end{aligned}
$$

Now observe that

$$
\begin{aligned}
\psi^{(1)}+\psi^{(0)}-1 & \in \mathbb{P}_{r-1}^{o} \\
\psi^{(1)}-\psi^{(0)}-(2 x-1) & \in \mathbb{P}_{r-1}^{o}
\end{aligned}
$$

On writing $\psi^{(1)}+\psi^{(0)}=1+\phi$ and $\psi^{(1)}-\psi^{(0)}=(2 x-1)+\psi$, with $\phi, \psi \in \mathbb{P}_{r-1}^{\infty}$, it follows from $Q\left(\psi^{(1)} \phi\right)=Q\left(\psi^{(1)} \psi\right)=0$ that

$$
Q\left(\psi^{(1) 2}\right)-\left|Q\left(\psi^{(1)} \psi^{(0)}\right)\right|= \begin{cases}Q\left(\psi^{(1)}\right) & \text { if } Q\left(\psi^{(1)} \psi^{(0)}\right)<0, \\ Q\left(\psi^{(1)}(2 x-1)\right) & \text { if } Q\left(\psi^{(1)} \psi^{(0)}\right) \geqslant 0 .\end{cases}
$$

An analogous result holds with $\psi^{(1)}$ replaced by $\psi^{(0)}$ if $2 x-1$ is replaced by $1-2 x$. This proves case (f).

Remark 3.4. The condition (c) in Proposition 3.3 is satisfied, for instance, by the ($r-1$)-point Gauss-Jacobi rule belonging to the weight $x(1-x)$ (see [3, Section 2.7]) together with an adjoined quadrature point $\xi_{r}:=1$ (to bring the total number of points up to r), with any positive number allowed for ω_{r}. It is also satisfied by any rule which is exact for polynomials of degree at most $2 r-2$, such as the r-point Radau rules (which are unsymmetric, see [3, Section 2.7.1]), or the r-point Gauss-Legendre rule.

Remark 3.5. If condition (e) of Proposition 3.3 is satisfied it can be seen from the proof that $Q\left(\psi^{(0) 2}\right)=w_{1}, Q\left(\psi^{(1) 2}\right)=w_{J}$ and hence $\sigma=\min \left(w_{1}, w_{J}\right)$.
REmark 3.6. If there are at least $r-2$ interior nodes in Q then the functions $\psi^{(i)}, i=$ 0,1 , are already well-defined, and hence A_{h} is well-defined. Thus under this assumption it makes sense to consider the possibility of diagonal dominance of A_{h} even for $J=r-2$ and $J=r-1$.

The following results can be shown. If $J=r-2$ and all nodes are interior then $A_{h}=0$. If $J=r-1$ and there are exactly $r-2$ interior nodes then $\sigma=0$. If all $J=r-1$ nodes are interior, and if also Q is symmetric then $\sigma_{h, k}=0, k=0, \cdots, n$, and A_{h} is singular. For Q not symmetric still $\sigma \leqslant 0$ holds in this case. (Proofs of these results can be obtained on the basis of (7.15) and (3.1).)

Definition 3.7: Given $p \in[1, \infty]$, the sequence of matrices $\left\{A_{h}\right\}_{H}$ is said to be inversely p-stable if

$$
\begin{equation*}
\gamma_{p}:=\inf \left\{\left|A_{h} c\right|_{h, p}: c \in G_{h}^{\prime},|c|_{h, p}=1, h \in H\right\}>0 \tag{3.5}
\end{equation*}
$$

where G_{h}^{\prime} denotes the vector space of grid functions defined on π_{h}^{\prime}, and

$$
\begin{align*}
|c|_{h, p} & :=\left(\sum_{k=0}^{n} \frac{h_{k-1}+h_{k}}{2}\left|c_{k}\right|^{p}\right)^{1 / p}, p \in[1, \infty) \tag{3.6}\\
\mid c_{h, \infty} & :=\max _{k=0, \cdots, n}\left|c_{k}\right|=:|c|_{\infty}
\end{align*}
$$

The next lemma shows that it is sufficient to establish the inverse p-stability of $\left\{A_{h}\right\}_{H}$ for $p=1$ or $p=\infty$ in order to obtain it for all p.

Lemma 3.8. For $p \in(1, \infty), \gamma_{1}=\gamma_{\infty} \leqslant \gamma_{p}$.

Proof: For the vector $\tilde{c} \in \mathbb{C}^{n+1}$ with components

$$
\tilde{c}_{k}:=\frac{h_{k-1}+h_{k}}{2} c_{k}, \quad k=0, \cdots, n
$$

we have $|c|_{h, 1}=|\tilde{c}|_{1}$, and after a short calculation it is also verified that

$$
\left|A_{h} c\right|_{h, 1}=\left|A_{h}^{*} \tilde{c}\right|_{1}
$$

where A_{h}^{*} denotes the adjoint matrix of $A_{h},|\cdot|_{p}$ is the usual ℓ_{p} norm and $|A|_{p}$ denotes the matrix norm induced by the vector norm $|\cdot|_{p}$. Because A_{h} is square, it is clear that A_{h}^{*} is injective if and only if A_{h} is injective, and that in the case they are injective

$$
\left|\left(A_{h}^{*}\right)^{-1}\right|_{1}=\left|A_{h}^{-1}\right|_{\infty}
$$

Consequently, if we introduce

$$
\gamma_{h, p}:=\inf \left\{\left|A_{h} c\right|_{h, p}: c \in G_{h}^{\prime},|c|_{h, p}=1\right\}, \quad h \in H
$$

we have either $\gamma_{h, 1}=\gamma_{h, \infty}=0$ or

$$
\gamma_{h, \infty}=\left|A_{h}^{-1}\right|_{\infty}^{-1}=\left|\left(A_{h}^{*}\right)^{-1}\right|_{1}^{-1}=\gamma_{h, 1}, \quad h \in H
$$

On taking the infimum over $h \in H$ this shows $\gamma_{1}=\gamma_{\infty}$. And $\gamma_{1} \leqslant \gamma_{p}$ then follows by an application of the Riesz-Thorin interpolation theorem.

Now we use Lemma 3.2 to obtain a result for the inverse p-stability of $\left\{A_{h}\right\}_{H}$.
Proposition 3.9. Assume $\sigma>0$ in (3.2). Then $\left\{A_{h}\right\}_{H}$ is inversely ∞-stable with $\gamma_{\infty} \geqslant \sigma$. If any of the conditions (a)-(c) in Proposition 3.3 is satisfied then $\gamma_{\infty}=\sigma$.

Proof: It follows from Lemma 3.2 that $\sigma_{h, k} \geqslant \sigma$ for $k=0, \cdots, n$. For given $c \in \mathbb{C}^{n+1}$, let j be such that $\left|c_{j}\right|=|c|_{\infty}$. Then with $c_{-1}:=c_{n+1}:=0$ we have

$$
\begin{align*}
\left|A_{h} c\right|_{\infty} & \geqslant\left|A_{j j} c_{j}+A_{j, j-1} c_{j-1}+A_{j, j+1} c_{j+1}\right| \tag{3.7}\\
& \geqslant\left(A_{j j}-\left|A_{j, j-1}\right|-\left|A_{j, j+1}\right|\right)\left|c_{j}\right|=\sigma_{h, j} \mid c_{\infty}
\end{align*}
$$

and so $\gamma_{\infty} \geqslant \sigma$. Any of the conditions (a)-(c) in Proposition 3.3 implies $Q\left(\psi^{(1) 2}\right)=$ $Q\left(\psi^{(0) 2}\right)$, and from (3.1) and Lemma 3.2 follows $\sigma_{h, k}=\sigma$ for $k=0, \cdots, n$. On choosing c to be the vector with components

$$
c_{k}:=\left(-\operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right)\right)^{k}, \quad k=0, \cdots, n
$$

it is easily verified that $\left|A_{h} c\right|_{\infty}=\sigma|c|_{\infty}$; note the second inequality in (3.7), which in this case is an equality. Consequently $\gamma_{\infty} \leqslant \sigma$, and the proof is complete.

4. Stability of $\left\{R_{h}\right\}_{H}$ and inverse stability of $\left\{A_{h}\right\}_{H}$.

In this section we establish the stability of $\left\{R_{h}\right\}_{H}$. The main result is Theorem 4.4. Let $p \in[1, \infty]$, and as before let H denote any sequence of mesh-size vectors h such that $h_{\max } \rightarrow 0$. The sequence $\left\{R_{h}\right\}_{H}$ is called p-stable if there exists a constant C such that

$$
\begin{equation*}
\left\|R_{h} f\right\|_{L_{p}(0, L)} \leqslant C\|f\|_{h, p}, \quad f \in G_{h}, \quad h \in H, \tag{4.1}
\end{equation*}
$$

and p-stability for $\left\{R_{h, i}\right\}_{H}, i=1,2$, is defined in the same way. The next lemma shows that $\left\{R_{h, 2}\right\}_{H}$ is always p-stable. The proof is straightforward because $R_{h, 2}$ has essentially a local definition. Recall that $R_{h, 2}=0$ if $r=2$.

Lemma 4.1. Let $r \geqslant 3$ and let

$$
C_{1}:=\sup _{0 \neq q \in \mathbb{P}_{r-1}^{\mathrm{o}}} \max \left\{\frac{1}{Q\left(|q|^{2}\right)} \int_{0}^{1}|q(\xi)| d \xi \xi_{j=1, \cdots, J}\left|q\left(\xi_{j}\right)\right|, \frac{Q(|q|)}{Q\left(|q|^{2}\right)} \max _{\xi \in[0,1]}|q(\xi)|\right\} .
$$

Then, for all $p \in[1, \infty]$

$$
\begin{equation*}
\left\|R_{h, 2} f\right\|_{L_{p}(0, L)} \leqslant C_{1}\|f\|_{h, p}, f \in G_{h}, h \in H \tag{4.2}
\end{equation*}
$$

Proof: We first prove the result for $p=1$. Let $f \in G_{h}$ be given. Choose any $k \in[0, n-1]$, and define

$$
\psi(x):=R_{h, 2} f(x), \quad x \in \Delta_{k}
$$

and $\psi(x):=0$ elsewhere. Then by (2.5) $\psi \in S_{h, 2}$, and by the definition (2.11) of $R_{h, 2}$ we have

$$
(\psi, \psi)_{h}^{(k)}=(\psi, \psi)_{h}=\left(R_{h, 2} f, \psi\right)_{h}=(f, \psi)_{h}=(f, \psi)_{h}^{(k)}
$$

or

$$
\left(\|\psi\|_{h, 2}^{(k)}\right)^{2}=(f, \psi)_{h}^{(k)} \leqslant\|f\|_{h, 1}^{(k)}\|\psi\|_{h, \infty}^{(k)},
$$

and consequently, if $\psi \neq 0$,

$$
\begin{equation*}
\left\|R_{h, 2} f\right\|_{L_{1}\left(\Delta_{k}\right)}=\|\psi\|_{L_{1}\left(\Delta_{k}\right)} \leqslant \frac{\left.\|\psi\|_{L_{1}\left(\Delta_{k}\right)}\right)\|\psi\|_{h, \infty}^{(k)}}{\left(\|\psi\|_{h, 2}^{(k)}\right)^{2}}\|f\|_{h, 1}^{(k)} \leqslant C_{1}\|f\|_{h, 1}^{(k)} \tag{4.3}
\end{equation*}
$$

where we have taken into account that ψ restricted to the subinterval $\Delta_{k}=\left[x_{k}, x_{k+1}\right]$ is a polynomial of degree at most $r-1$ satisfying $\psi\left(x_{k}\right)=\psi\left(x_{k+1}\right)=0$. After summing with respect to k, inequality (4.2) is proved for $p=1$.

Similarly,

$$
\left(\|\psi\|_{h, 2}^{(k)}\right)^{2} \leqslant\|f\|_{h, \infty}^{(k)}\|\psi\|_{h, 1}^{(k)}
$$

and reasoning as in (4.3),

$$
\begin{equation*}
\left\|R_{h, 2} f\right\|_{L_{\infty}\left(\Delta_{k}\right)}=\|\psi\|_{L_{\infty}\left(\Delta_{k}\right)} \leqslant C_{1}\|f\|_{h, \infty}^{(k)} \tag{4.4}
\end{equation*}
$$

follows, from which (4.2) for $p=\infty$ is derived. For the remaining values $p \in(1, \infty)$ the assertion is obtained by an application of the Riesz-Thorin interpolation theorem.

By virtue of Lemma 4.1 the p-stability of $\left\{R_{h}\right\}_{H}$ is equivalent to the p-stability of $\left\{R_{h, 1}\right\}_{H}$. As a first step towards proving this p-stability, we relate it to the inverse p-stability of the sequence $\left\{A_{h}\right\}_{H}$ from (2.12).

Lemma 4.2. Let $p \in[1, \infty]$. If $\left\{A_{h}\right\}_{H}$ is inversely p-stable then $\left\{R_{h}\right\}_{H}$ is p stable.

Proof: According to Lemma 4.1 we have only to show the p-stability of $\left\{R_{h, 1}\right\}_{H}$. Recall the definition of the basis $\left\{\psi_{k}\right\}$ of $S_{h, 1}$. If χ_{k} denotes the characteristic function for the interval ($x_{k}-h_{k-1}, x_{k}+h_{k}$) then

$$
\left|\left(f, \psi_{k}\right)_{h}\right| \leqslant\left\|\chi_{k} f\right\|_{h, p}\left\|\psi_{k}\right\|_{h, p^{\prime}}
$$

where $1 / p+1 / p^{\prime}=1$. Consider the case $p \in(1, \infty)$. Then

$$
\begin{aligned}
\left\|\psi_{k}\right\|_{h, p^{\prime}}^{p^{\prime}} & =h_{k-1} \sum_{j=1}^{J} w_{j}\left|\psi^{(1)}\left(\xi_{j}\right)\right|^{p^{\prime}}+h_{k} \sum_{j=1}^{J} w_{j}\left|\psi^{(0)}\left(\xi_{j}\right)\right|^{p^{\prime}} \\
& \leqslant C_{2}^{p^{\prime}}\left(h_{k-1}+h_{k}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
C_{2}:=\max _{i=0,1}\left(\sum_{j=1}^{J} w_{j}\left|\psi^{(i)}\left(\xi_{j}\right)\right|^{p^{\prime}}\right)^{1 / p^{\prime}} \tag{4.5}
\end{equation*}
$$

Thus we obtain from (2.15) and (3.6)

$$
\begin{aligned}
|b|_{h, p}^{p} & =\sum_{k=0}^{n} \frac{h_{k-1}+h_{k}}{2}\left|\frac{\left(f, \psi_{k}\right)_{h}}{h_{k-1}+h_{k}}\right|^{p} \leqslant C_{2}^{p} \sum_{k=0}^{n} \frac{1}{2}\left(h_{k-1}+h_{k}\right)^{1+p / p^{\prime}-p}\left\|\chi_{k} f\right\|_{h, p}^{p} \\
& =C_{2}^{p} \sum_{k=0}^{n} \frac{1}{2}\left\|\chi_{k} f\right\|_{h, p}^{p} \leqslant C_{2}^{p} \sum_{k=0}^{n}\left(\|f\|_{h, p}^{(k)}\right)^{p}=C_{2}^{p}\|f\|_{h, p}^{p}
\end{aligned}
$$

where we used $1+p / p^{\prime}-p=p\left(1 / p+1 / p^{\prime}-1\right)=0$. Now let $c \in \mathbb{C}^{n+1}$ be the solution of (2.13). With the aid of the assumed inverse p-stability of $\left\{A_{h}\right\}_{H}$ we obtain

$$
\gamma_{p}|c|_{h, p} \leqslant\left|A_{h} c\right|_{h, p}=|b|_{h, p} \leqslant C_{2}\|f\|_{h, p}
$$

An inspection of the proof shows that this estimate also holds in the cases $p=1$ and $p=\infty$. On recalling (2.12), the assertion now follows with the aid of the easily verified inequality

$$
\left\|R_{h, 1} f\right\|_{L_{p}(0, L)}=\left\|\sum_{k=0}^{n} c_{k} \psi_{k}\right\|_{L_{p}(0, L)} \leqslant C_{3}|c|_{h, p}
$$

where

$$
\begin{equation*}
C_{3}:=2^{1 / p}\left(\int_{0}^{1}\left(\left|\psi^{(0)}(\xi)\right|^{p^{\prime}}+\left|\psi^{(1)}(\xi)\right|^{p^{\prime}}\right)^{p / p^{\prime}} d \xi\right)^{1 / p} \tag{4.6}
\end{equation*}
$$

the last step following by application of the Hölder inequality to the integrand on the right of the identity

$$
\left\|\sum_{k=0}^{n} c_{k} \psi_{k}\right\|_{L_{p}(0, L)}^{p}=\sum_{j=0}^{n-1} h_{j} \int_{0}^{1}\left|c_{j} \psi^{(0)}(\xi)+c_{j+1} \psi^{(1)}(\xi)\right|^{p} d \xi
$$

Corollary 4.3. If $\left\{A_{h}\right\}_{H}$ is inversely ∞-stable then $\left\{R_{h}\right\}_{H}$ is p-stable for all $p \in[1, \infty]$ and the stability constant can be chosen independently of p.

Proof: Combining Lemmas 3.5 and 4.2, the sequence $\left\{R_{h}\right\}_{H}$ is seen to be p-stable for all $p \in[1, \infty]$. By tracing the dependence of the stability constant for $\left\{R_{h, 1}\right\}_{H}$ in the proof of Lemma 4.2 we see that it can be chosen to be independent of p, since $\gamma_{p} \geqslant \gamma_{\infty}$ and C_{3} can be bounded independently of p. The stability constant C_{1} for $\left\{R_{h, 2}\right\}_{H}$ is also independent of p.

Now we are able to state our main result on the p-stability of $\left\{R_{h}\right\}_{H}$.
Theorem 4.4. Assume $J \geqslant r$ and $\sigma>0$ in (3.2). Then $\left\{R_{h}\right\}_{H}$ is p-stable for $p \in[1, \infty]$, with the stability constant able to be chosen independently of p.

Proof: Combine Proposition 3.6 with Corollary 4.3.
Before leaving this section, we note the corresponding p-stability result that comes from replacing the quadrature rule Q in (1.2) by the exact integral I. In this case $(\cdot, \cdot)_{h}$ is replaced by the L_{2} inner product

$$
(f, g):=\int_{0}^{L} f(x) \bar{g}(x) d x
$$

the projection R_{h} defined by (1.5) is replaced by the L_{2}-orthogonal projection P_{h} on S_{h}, and the norm $\|\cdot\|_{h, p}$ on the space of grid functions defined by (1.10) becomes the L_{p} norm $\|\cdot\|_{L_{p}(0,1)}$. The following theorem is essentially [2, Theorem 1], except that the earlier work used in place of S_{h} the subspace S_{h}^{0} of functions with zero boundary conditions. It is also an easy consequence of [1 , Theorem 2].

Theorem 4.5. Let P_{h} be the L_{2}-orthogonal projection on S_{h}, and let $p \in[1, \infty]$. Then

$$
\left\|P_{h} g\right\|_{L_{p}(0, L)} \leqslant C\|g\|_{L_{p}(0, L)}, \quad g \in L_{p}(0, L), h \in H
$$

where C does not depend on p.
A proof could mirror the proof of (4.1), if we use the correspondences above, and note that the integral has all the properties of a symmetric quadrature rule with $J \geqslant r$. It is also possible to give a proof based on Theorem 4.4. We omit the details.

5. Convergence properties of $\left\{R_{h}\right\}_{H}$.

Theorem 5.1. Let $p \in[1, \infty]$ and let $\left\{R_{h}\right\}_{H}$ be p-stable. Then

$$
\begin{align*}
\left\|R_{h} f\right\|_{L_{p}(0, L)} & \leqslant C\|f\|_{h, \infty}, f \in G_{h}, h \in H \tag{5.1}\\
\left\|R_{h} g-g\right\|_{L_{p}(0, L)} & \rightarrow 0(h \in H), g \in C[0, L] \tag{5.2}\\
\left\|R_{h} g-g\right\|_{L_{p}(0, L)} & \leqslant C h_{\max }^{\ell}\left\|g^{(\ell)}\right\|_{L_{p}(0, L)}, g \in W_{p}^{\ell}(0, L) \tag{5.3}
\end{align*}
$$

for $\ell=1, \cdots, r$.
Proof: The estimate (5.1) is an immediate consequence of the p-stability of $\left\{R_{h}\right\}_{H}$ defined in (4.1), since

$$
\|f\|_{h, p} \leqslant\left(L \sum_{j=1}^{J} w_{j}\right)^{1 / p}\|f\|_{h, \infty}
$$

Since $R_{h} g_{h}=g_{h}$ for $g_{h} \in S_{h}$, the convergence property (5.2) follows from

$$
\begin{aligned}
\left\|R_{h} g-g\right\|_{L_{p}(0, L)} & \leqslant\left\|R_{h}\left(g-g_{h}\right)\right\|_{L_{p}(0, L)}+\left\|g-g_{h}\right\|_{L_{p}(0, L)} \\
& \leqslant C\left\|g-g_{h}\right\|_{h, p}+\left\|g-g_{h}\right\|_{L_{p}(0, L)}
\end{aligned}
$$

if we choose g_{h} to be piecewise linear interpolant of g interpolating at the breakpoints x_{0}, \cdots, x_{n}, which satisfies

$$
\left\|g-g_{h}\right\|_{C[0, L]} \rightarrow 0(h \in H)
$$

For the proof of (5.3), for given $g \in W_{p}^{\ell}(0, L)$ use the same argument, but with $g_{h} \in S_{h}$ the interpolating function from Lemma A 1 or A 2 for $\ell=1$ or $\ell>1$ respectively.

6. An estimate for the derivative of $R_{h} f$

In [2, Theorem 2] the bound

$$
\begin{equation*}
\left\|\left(P_{h} g\right)^{\prime}\right\|_{L_{p}(0, L)} \leqslant C\left\|g^{\prime}\right\|_{L_{p}(0, L)}, g \in \stackrel{\circ}{W}_{p}^{1}(0, L) \tag{6.1}
\end{equation*}
$$

for $p \in[1, \infty]$, has been proved for the orthogonal projection P_{h} on S_{h}^{0}. It is shown in [2] that some restriction has to be imposed on the nonuniformity of the partition π_{h}^{\prime} for (6.1) to hold, unless $p=1$. We shall assume that π_{h}^{\prime} is locally quasiuniform, that is, for some constant $\gamma>1$ the condition

$$
\begin{equation*}
\gamma^{-1} \leqslant \frac{h_{k-1}}{h_{k}} \leqslant \gamma, k=1, \cdots, n-1, h \in H \tag{6.2}
\end{equation*}
$$

holds, and that with a constant $\delta \geqslant 1$ to be specified later,

$$
\begin{equation*}
\frac{h_{k-1}+h_{k}}{h_{\ell-1}+h_{\ell}} \leqslant C \delta^{|k-\ell|}, k, \ell=0, \cdots, n \tag{6.3}
\end{equation*}
$$

In [2] a similar bound to that in (6.3) is assumed to hold for i_{k} / h_{ℓ} instead. It was pointed out by de Boor [1] that the weaker assumption (6.3) is sometimes advantageous.

In the space of grid functions G_{h} on π_{h} we introduce the mapping D_{h},

$$
\begin{equation*}
D_{h} f\left(x_{k, j}\right):=h_{k}^{-1} f\left(x_{k, j}\right), j=1, \cdots, J, k=0, \cdots, n-1 \tag{6.4}
\end{equation*}
$$

We shall prove the following.
Theorem 6.1. Let $p \in[1, \infty]$. Assume that $\sigma>0$ in (3.2). Then

$$
\begin{equation*}
\rho:=\frac{\left|Q\left(\psi^{(1)} \psi^{(0)}\right)\right|}{\min \left(Q\left(\psi^{(1) 2}\right), Q\left(\psi^{(0) 2}\right)\right)}<1 \tag{6.5}
\end{equation*}
$$

If $p>1$ assume additionally that π_{h}^{\prime} is locally quasiuniform and that (6.3) holds with

$$
\begin{equation*}
\delta<\rho^{-p /(p-1)} . \tag{6.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\left(R_{h} f\right)^{\prime}\right\|_{L_{p}(0, L)} \leqslant C\left\|D_{h} f\right\|_{h, p}, f \in G_{h}, h \in H . \tag{6.7}
\end{equation*}
$$

REmark 6.2. The estimate (6.7) takes a more familiar form if we apply it to a grid function

$$
f:=g-g_{h}
$$

where $g \in W_{p}^{1}(0, L)$ and g_{h} is the piecewise linear interpolant of g in the breakpoints x_{0}, \cdots, x_{n}. With the aid of (A1) we then obtain

$$
\begin{aligned}
\left\|D_{h}\left(g-g_{h}\right)\right\|_{h, p}^{p} & =\sum_{k=0}^{n-1} h_{k} \sum_{j=1}^{J} w_{j} h_{k}^{-p}\left|\left(g-g_{h}\right)\left(x_{k, j}\right)\right|^{p} \\
& \leqslant C \sum_{k=0}^{n-1}\left\|g^{\prime}\right\|_{L_{p}\left(\Delta_{k}\right)}^{p}=C\left\|g^{\prime}\right\|_{L_{p}(0, L)}^{p}
\end{aligned}
$$

(Here we assume $p \in[1, \infty)$, but the corresponding result is easily seen to hold also for $p=\infty$.) Since $R_{h} g_{h}=g_{h}$, we obtain from (6.7),

$$
\begin{align*}
\left\|\left(R_{h} g\right)^{\prime}\right\|_{L_{p}(0, L)} & \leqslant\left\|\left(R_{h}\left(g-g_{h}\right)\right)^{\prime}\right\|_{L_{p}(0, L)}+\left\|g_{h}^{\prime}\right\|_{L_{p}(0, L)} \\
& \leqslant C\left\|g^{\prime}\right\|_{L_{p}(0, L)} \tag{6.8}
\end{align*}
$$

for $g \in W_{p}^{1}(0, L), h \in H$, where the known estimate $\left\|g_{h}^{\prime}\right\|_{L_{p}(0, L)} \leqslant\left\|g^{\prime}\right\|_{L_{p}(0, L)}$ was used.
We prepare for the proof of Theorem 6.1 with some lemmas.
Lemma 6.3. The following estimate holds for $p \in[1, \infty]$:

$$
\begin{equation*}
\left\|\left(R_{h, 2} f\right)^{\prime}\right\|_{L_{p}(0, L)} \leqslant C\left\|D_{h} f\right\|_{h, p}, f \in G_{h}, h \in H \tag{6.9}
\end{equation*}
$$

Proof: Since $R_{h, 2} f \mid \triangle_{k} \in \mathbb{P}_{r-1}^{\infty}$ and vanishes at x_{k} and x_{k+1}, the inverse estimate

$$
\left\|\left(R_{h, 2} f\right)^{\prime}\right\|_{L_{p}\left(\Delta_{k}\right)} \leqslant C_{3} h_{k}^{-1}\left\|R_{h, 2} f\right\|_{L_{p}\left(\Delta_{k}\right)}
$$

holds for $k=0, \cdots, n-1$, with

$$
C_{3}:=\max _{0 \neq q \in \mathbf{P}_{r-1}^{\mathrm{o}}} \frac{\left\|q^{\prime}\right\|_{L_{p}(0,1)}}{\|q\|_{L_{p}(0,1)}} .
$$

The estimate (6.9) now follows with the aid of the piecewise version of Lemma 4.1,

$$
\begin{equation*}
\left\|R_{h, 2} f\right\|_{L_{p}\left(\Delta_{k}\right)} \leqslant C\|f\|_{h, p}^{(k)}, f \in G_{h} \tag{6.10}
\end{equation*}
$$

after summing with respect to k the p-th powers (for $p \in[1, \infty$)) of the resulting inequality.

In the next lemma we need the diagonal part of the matrix A_{h},

$$
B_{h}:=\operatorname{diag}\left(A_{k k}\right)
$$

and also

$$
E_{h}:=B_{h}^{-1}\left(A_{h}-B_{h}\right)
$$

Lemma 6.4. If (6.5) holds then

$$
\begin{equation*}
\left|\left|E_{h}\right|^{\ell}\right|_{p} \leqslant(2 \ell+1)^{1 / p} \rho^{\ell}, \ell \in \mathbb{N}, p \in[1, \infty] . \tag{6.11}
\end{equation*}
$$

Here $\left|E_{h}\right|$ denotes the matrix obtained by taking the absolute values of the elements in E_{h}, and as before, $\left|F_{h}\right|_{p}$ denotes the least upper bound norm of a matrix F_{h} with respect to the usual ℓ_{p} norm.

Proof: Observe that E_{h} is tridiagonal with zero diagonal. In the proof of Lemma 3.1 we have calculated the $A_{k \ell}$. From there we see, using also (6.5) and $0 \leqslant \alpha_{k} \leqslant 1$, that

$$
\left|E_{h}\right|_{\infty}=\max _{k} \frac{\left|Q\left(\psi^{(1)} \psi^{(0)}\right)\right|}{\alpha_{k} Q\left(\left|\psi^{(1)}\right|^{2}\right)+\left(1-\alpha_{k}\right) Q\left(\left|\psi^{(0)}\right|^{2}\right)} \leqslant \rho,
$$

and hence

$$
\left|\left|E_{h}\right|^{\ell}\right|_{\infty} \leqslant\left|E_{h}\right|_{\infty}^{l} \leqslant \rho^{\ell}
$$

The matrix E_{h}^{ℓ} is a banded matrix with at most $(2 \ell+1)$ diagonals, from which it follows that

$$
\left|\left|E_{h}\right|^{\ell}\right|_{1} \leqslant\left.\left.(2 \ell+1)| | E_{h}\right|^{\ell}\right|_{\infty} \leqslant(2 \ell+1) \rho^{\ell}
$$

The assertion then follows by interpolation.
For the formulation of the next lemma we introduce the $(n+1) \times(n+1)$ diagonal matrix

$$
T_{h}:=\left(\operatorname{diag}\left(h_{k-1}+h_{k}\right)\right)_{k=0}^{n}
$$

LEmma 6.5. Under the assumptions of Theorem 6.1

$$
\begin{equation*}
\left|\left(T_{h}^{-1 / p^{\prime}} A_{h} T_{h}^{1 / p^{\prime}}\right)^{-1}\right|_{p} \leqslant C, h \in H, p \in[1, \infty] \tag{6.12}
\end{equation*}
$$

Proof: We have the representation

$$
\begin{aligned}
T_{h}^{-1 / p^{\prime}} A_{h} T_{h}^{1 / p^{\prime}} & =T_{h}^{-1 / p^{\prime}}\left(B_{h}+A_{h}-B_{h}\right) T_{h}^{1 / p^{\prime}} \\
& =B_{h}\left(I_{h}+T_{h}^{-1 / p^{\prime}} E_{h} T_{h}^{1 / p^{\prime}}\right)
\end{aligned}
$$

where I_{h} is the identity matrix. Since the diagonal elements of A_{h} and hence also of B_{h} satisfy

$$
\begin{aligned}
A_{k k} & =\alpha_{k} Q\left(\left|\psi^{(1)}\right|^{2}\right)+\left(1-\alpha_{k}\right) Q\left(\left|\psi^{(0)}\right|^{2}\right) \\
& \geqslant \min \left(Q\left(\left|\psi^{(1)}\right|^{2}\right), Q\left(\left|\psi^{(0)}\right|^{2}\right)\right)>0
\end{aligned}
$$

it is easily seen that $\left|B_{h}^{-1}\right|_{p} \leqslant C$. So (6.12) is proved if we show that the Neumann series for $\left(I_{h}+T_{h}^{-1 / p^{\prime}} E_{h} T_{h}^{1 / p^{\prime}}\right)^{-1}$ has, uniformly with respect to $h \in H$, a convergent majorant in the p norm. That this is in fact the case is seen from the following estimate, which takes (6.3) and Lemma 6.4 into account, together with the ($2 \ell+1$)-diagonal nature of E_{h}^{ℓ},

$$
\begin{aligned}
\left|T_{h}^{-1 / p^{\prime}} E_{h}^{\ell} T_{h}^{1 / p^{\prime}}\right|_{p} & \leqslant\left.\left.\max _{|i-k| \leqslant \ell}\left(\frac{h_{i-1}+h_{i}}{h_{k-1}+h_{k}}\right)^{1 / p^{\prime}}| | E_{h}\right|^{\ell}\right|_{p} \\
& \leqslant C(2 \ell+1)^{1 / p}\left(\delta^{1 / p^{\prime}} \rho\right)^{\ell}
\end{aligned}
$$

where $\delta^{1 / p^{\prime}} \rho<1$ due to condition (6.6). Thus the Neumann series converges as desired, and the result is proved.

Proof of Theorem 6.1: In view of Lemma 6.3 it is sufficient to prove the bound for $\left(R_{h, 1} f\right)^{\prime}$ only. Now $R_{h, 1} f$ can be written in the form

$$
R_{h, 1} f=\sum_{\ell=0}^{n} c_{\ell} \psi_{\ell}
$$

where the vector $c=\left(c_{0}, \cdots, c_{n}\right)$ is determined by the linear system (2.13). Then with $c_{-1}:=c_{n+1}:=0$, since $\left.\psi_{\ell}\right|_{\Delta_{j}}=0$ unless $\ell=j$ or $\ell=j+1$,

$$
\begin{aligned}
\left\|\left(R_{h, 1} f\right)^{\prime}\right\|_{L_{p}(0, L)}^{p} & =\sum_{j=0}^{n-1} h_{j}^{1-p} \int_{0}^{1}\left|c_{j} \psi^{(0)^{\prime}}(\xi)+c_{j+1} \psi^{(1)^{\prime}}(\xi)\right|^{p} d \xi \\
& \leqslant \int_{0}^{1}\left(\left|\psi^{(0)^{\prime}}\right|^{p^{\prime}}+\left|\psi^{(1)^{\prime}}\right|^{p^{\prime}}\right)^{p / p^{\prime}} d \xi \sum_{j=0}^{n-1} h_{j}^{1-p}\left(\left|c_{j}\right|^{p}+\left|c_{j+1}\right|^{p}\right) \\
& =C \sum_{j=0}^{n}\left(h_{j-1}^{1-p}+h_{j}^{1-p}\right)\left|c_{j}\right|^{p} \\
& \leqslant C \sum_{j=0}^{n}\left(h_{j-1}+h_{j}\right)^{1-p}\left|c_{j}\right|^{p}
\end{aligned}
$$

where $1 / p+1 / p^{\prime}=1$ and we have used in the last inequality, in the case $p>1$ only, the estimate

$$
h_{j-1}^{1-p}+h_{j}^{1-p} \leqslant 2(1+\gamma)^{p-1}\left(h_{j-1}+h_{j}\right)^{1-p},
$$

which is a consequence of (6.2). Thus we have obtained the estimate

$$
\left\|\left(R_{h, 1} f\right)^{\prime}\right\|_{L_{p}(0, L)} \leqslant C\left|T_{h}^{-1 / p^{\prime}} c\right|_{p}
$$

where again $|\cdot|_{p}$ is the usual ℓ_{p} norm in \mathbb{C}^{n+1}. The system (2.13) can be given the form

$$
T_{h}^{-1 / p^{\prime}} A_{h} T_{h}^{1 / p^{\prime}}\left(T_{h}^{-1 / p^{\prime}} c\right)=T_{h}^{-1 / p^{\prime}} b
$$

and Lemma 6.5 then implies the bound

$$
\left|T_{h}^{-1 / p^{\prime}} c\right|_{p} \leqslant C\left|T_{h}^{-1 / p^{\prime}} b\right|_{p}
$$

giving, with (2.15),

$$
\begin{equation*}
\left\|\left(R_{h, 1} f\right)^{\prime}\right\|_{L_{p}(0, L)}^{p} \leqslant C \sum_{j=0}^{n}\left(h_{j-1}+h_{j}\right)^{1-p}\left|b_{j}\right|^{p}=C \sum_{j=0}^{n} \frac{\left|\left(f, \psi_{j}\right)_{h}\right|^{p}}{\left(h_{j-1}+h_{j}\right)^{2 p-1}} \tag{6.13}
\end{equation*}
$$

Finally, we can prove in the same way as in the middle part of the proof of Lemma 4.2 that the right-hand side of (6.13) is bounded by $C\left\|D_{h} f\right\|_{h, p}^{p}$, proving (6.7).

7. IMPOSING ZERO BOUNDARY CONDITIONS

In this last section we discuss the case that the space S_{h} is replaced by

$$
\begin{equation*}
S_{h}^{0}:=\left\{v_{h} \in S_{h}: v_{h}(0)=v_{h}(L)=0\right\} \tag{7.1}
\end{equation*}
$$

By $R_{h}^{0}: G_{h} \rightarrow S_{h}^{0}$ we denote the map corresponding to $R_{h}: G_{h} \rightarrow S_{h}$ defined by

$$
\begin{equation*}
\left(R_{h}^{0} f, \psi\right)_{h}=(f, \psi)_{h} \quad \forall \psi \in S_{h}^{0} . \tag{7.2}
\end{equation*}
$$

As we shall see, R_{h}^{0} shares many properties with R_{h} but there are also some differences. The first one is that we obtain in comparison to Proposition 2.1 now the following characterisation that $(., .)_{h}$ is an inner product on S_{h}^{0}.

Proposition 7.1. The positive semidefinite Hermitian form (., . $)_{h}$ is an inner product on S_{h}^{0} if and only if either $J \geqslant r$, or $J=r-1$ and at least one of the extreme quadrature points ξ_{1} or ξ_{J} lies in $(0,1)$.

Proof: Assume $J=r-1$ and $\xi_{1} \in(0,1)$. Again $\|\psi\|_{h, 2}=0$ implies (2.1). Since $\psi(0)=0$ it follows that ψ has r roots in $\left[x_{0}, x_{1}\right]$ and hence $\psi=0$ in Δ_{0}. Due to the continuity of ψ it follows that $\psi\left(x_{1}\right)=0$. The reasoning can then be repeated for the interval $\left[x_{1}, x_{2}\right]$ and so forth, showing that $\psi=0$. If $\xi_{J} \in(0,1)$ one starts with $\left[x_{n-1}, x_{n}\right]$
first. The case $J \geqslant r$ is known already, so that we have shown that the conditions in the proposition are sufficient for (.,. $)_{h}$ to be an inner product. The proof of the necessity, not spelt out here, follows from applying the elementary fact that a homogeneous linear system with fewer equations than unknowns has a non-trivial solution.

We assume in the sequel that $(., .)_{h}$ is an inner product on S_{h}^{0}. In the present case we can give more criteria than in Theorem 4.4 for the stability of $\left\{R_{h}^{0}\right\}_{H}$.

Theorem 7.2. The sequence $\left\{R_{h}^{0}\right\}_{H}$ is p-stable for $p \in[1, \infty]$ if one of the following conditions hold:

$$
\begin{equation*}
\sigma>0 \text { in (3.2) } \tag{7.3}
\end{equation*}
$$

any of the conditions (a)-(f) in Proposition 3.3 holds
$J \geqslant r$ and the partition π_{h}^{\prime} is uniform

$$
\begin{align*}
& J=r-1, \xi_{1}>0, \xi_{J}=1 \text { and } \inf \left\{\alpha_{k}: k=1, \cdots, n-1, h \in H\right\}>0 \tag{7.6}\\
& J=r-1, \xi_{1}=0, \xi_{J}<1 \text { and } \sup \left\{\alpha_{k}: k=1, \cdots, n-1, h \in H\right\}<1
\end{align*}
$$

Proof: Corresponding to (2.4) we split

$$
S_{h}^{0}=S_{h, 1}^{0}+S_{h, 2}
$$

where $S_{h, 2}$ is defined in (2.5) and $S_{h, 1}^{0}=S_{h}^{0} \cap S_{h, 1}$. The functions $\psi_{1}, \cdots, \psi_{n-1}$ form a basis in $S_{h, 1}^{0}$. In place of A_{h} we obtain an $(n-1) \times(n-1)$ matrix A_{h}^{0} with elements

$$
A_{k \ell}^{0}=A_{k \ell}, \quad k, \ell=1, \cdots, n-1
$$

where $A_{k \ell}$ is given by (2.14). The p-stability of $\left\{R_{h}^{0}\right\}_{H}$ is then inferred from the inverse ∞-stability of $\left\{A_{h}^{0}\right\}_{H}$ as in Lemma 4.2. Define $A_{1,0}^{0}:=A_{n-1, n}^{0}:=0$ and

$$
\sigma_{h, k}^{0}:=A_{k k}^{0}-\left|A_{k, k-1}^{0}\right|-\left|A_{k, k+1}^{0}\right|, k=1, \cdots, n-1
$$

It is clear that with $\sigma_{i, k}$ given by (3.1)

$$
\begin{equation*}
\sigma_{h, k}^{0} \geqslant \sigma_{h, k}, k=1, \cdots, n-1 \tag{7.8}
\end{equation*}
$$

So the proof of Proposition 3.9 also gives the inverse ∞-stability of $\left\{A_{h}^{0}\right\}_{H}$, assuming (7.3) or (7.4) to hold. In the case of (7.5) we have $\alpha_{k}=1 / 2, k=1, \cdots, n-1$, and from (3.1) and (7.8) we obtain

$$
\sigma_{h, k}^{0} \geqslant \frac{1}{2} Q\left(\left|\psi^{(1)}-\psi^{(0)} \operatorname{sgn} Q\left(\psi^{(1)} \psi^{(0)}\right)\right|^{2}\right), \quad k=1, \cdots, n-1 .
$$

The latter quantity is positive, as we have shown in the first part of the proof of Proposition 3.3.

Now assume (7.7) to hold; the proof in the case of (7.6) is similar. With a similar argument to that used to prove Proposition 3.3 (e) it can be shown that

$$
\sigma_{h, k}=\left(1-\alpha_{k}\right) w_{1}>0, \quad k=0, \cdots, n
$$

from which follows with (7.7) and (7.8) that

$$
\sigma_{h, k}^{0} \geqslant\left(1-\sup \alpha_{k}\right) w_{1}>0, k=1, \cdots n-1
$$

Theorem 7.3. Let $p \in[1, \infty]$ and let $\left\{R_{h}^{0}\right\}_{H}$ be p-stable. Then

$$
\begin{align*}
& \left\|R_{h}^{0} g-g\right\| \|_{L_{p}(0, L)} \rightarrow 0(h \in \dot{H}), g \in C_{0}[0, L] \tag{7.9}\\
& \left\|R_{h}^{0} g-g\right\|_{L_{p}(0, L)} \leqslant C h_{\max }^{\ell}\left\|g^{(\ell)}\right\|_{L_{p}(0, L)}, g \in \dot{W}_{p}^{\ell}(0, L) \tag{7.10}
\end{align*}
$$

for $\ell=1, \cdots, r$. Here

$$
C_{0}[0, L]:=\{g \in C[0, L]: g(0)=g(L)=0\}
$$

and

$$
\stackrel{\circ}{W}_{p}^{\ell}(0, L):=\left\{g \in W_{p}^{\ell}(0, L): g(0)=g(L)=0\right\}
$$

Proof: The same reasoning as in the proof of Theorem 5.1 applies. The interpolating function $g_{h} \in S_{h}$ used there is now, due to the zero boundary conditions on g, an element of S_{h}^{0}.

The map R_{h}^{0} is well-defined and p-stable in the case $J=r-1$ if the additional conditions given in Theorem 7.2 are satisfied; see (7.6) and (7.7). One might conjecture that p-stability holds also for symmetric quadrature rules when $J=r-1$, but as our final result we show that this is not the case.

Proposition 7.4. Let $J=r-1, \xi_{1}>0$ and the quadrature rule Q be symmetric. Then for all $p \in[1, \infty],\left\{R_{h}^{0}\right\}_{H}$ is not p-stable.

Proof: We construct a null-sequence $\left\{f_{h}\right\}_{H}$ of grid functions such that for all $p \in$ $[0, \infty],\left\{R_{h, 1}^{0} f_{h}\right\}_{H}$ does not converge to zero. Define

$$
\begin{equation*}
f_{h}:=\sum_{k=1}^{n-1} c_{k} \psi_{k}, c_{k}:=(-\tau)^{n-k} \sin \left(\frac{\pi}{L} x_{k}\right) \tag{7.11}
\end{equation*}
$$

where

$$
\tau:=\operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right)
$$

Since

$$
f_{h} \mid \triangle_{k}=c_{k} \psi_{k}+c_{k+1} \psi_{k+1}, \quad k=1, \cdots, n-2
$$

it follows that for $k=1, \cdots, n-2$ and $j=1, \cdots, J$

$$
\begin{aligned}
f_{h}\left(x_{k, j}\right)= & (-\tau)^{n-k-1}\left(-\tau \psi^{(0)}\left(\xi_{j}\right) \sin \left(\frac{\pi}{L} x_{k}\right)+\psi^{(1)}\left(\xi_{j}\right) \sin \left(\frac{\pi}{L} x_{k+1}\right)\right) \\
= & (-\tau)^{n-k-1}\left[\left(\psi^{(1)}\left(\xi_{j}\right)-\tau \psi^{(0)}\left(\xi_{j}\right)\right) \sin \left(\frac{\pi}{L} x_{k+1}\right)\right. \\
& \left.-\tau \psi^{(0)}\left(\xi_{j}\right)\left(\sin \left(\frac{\pi}{L} x_{k}\right)-\sin \left(\frac{\pi}{L} x_{k+1}\right)\right)\right] \\
= & (-\tau)^{n-k} \psi^{(0)}\left(\xi_{j}\right)\left(\sin \left(\frac{\pi}{L} x_{k}\right)-\sin \left(\frac{\pi}{L} x_{k+1}\right)\right)
\end{aligned}
$$

where in the last step Lemma 7.5 below has been taken into account. Hence, for $k=$ $1, \cdots, n-2$

$$
\begin{equation*}
\left|f_{h}\left(x_{k, j}\right)\right| \leqslant C h_{k}, \quad j=1, \cdots, J \tag{7.12}
\end{equation*}
$$

It is easily seen that (7.12) also holds for $k=0$ and $k=n-1$, and consequently

$$
\left\|f_{h}\right\|_{h, p} \rightarrow 0 \quad(h \in H)
$$

On the other hand the vector $c_{h}:=\left(0, c_{1}, \cdots, c_{n-1}, 0\right) \in \mathbb{C}^{n+1}$ satisfies

$$
\begin{aligned}
\left|c_{h}\right|_{h, p} & =\left(\sum_{k=1}^{n-1} \frac{h_{k-1}+h_{k}}{2}\left|\sin \left(\frac{\pi}{L} x_{k}\right)\right|^{p}\right)^{1 / p} \\
& \rightarrow\left(\int_{0}^{L}\left|\sin \left(\frac{\pi}{L} x\right)\right|^{p} d x\right)^{1 / p}>0 \quad(h \in H)
\end{aligned}
$$

Since $f_{h} \in S_{h, 1}^{0}$ we have $R_{h, 1}^{0} f_{h}=f_{h}$. Hence, with the aid of the inequality

$$
\begin{equation*}
|c|_{h, p} \leqslant C\left\|\sum_{k=0}^{n} c_{k} \psi_{k}\right\|_{L_{p}(0, L)}, \quad c \in \mathbb{C}^{n+1} \tag{7.13}
\end{equation*}
$$

(which is obtained by scaling the L_{p}-integrals over the subintervals \triangle_{k} and using the equivalence of all norms in two-dimensional spaces) we conclude that

$$
\left\|R_{h, 1}^{0} f_{h}\right\|_{L_{p}(0, L)}=\left\|f_{h}\right\|_{L_{p}(0, L)} \nrightarrow 0 \quad(h \in H)
$$

which shows the instability of $\left\{R_{h, 1}^{0}\right\}_{H}$. Then also $\left\{R_{h}^{0}\right\}_{H}$ is not stable since we have proved in Lemma 4.1 that $\left\{R_{h, 2}^{0}\right\}_{H}=\left\{R_{h, 2}\right\}_{H}$ is always stable.

It remains only to prove the following lemma.
Lemma 7.5. Let the assumptions of Proposition 7.4 hold. Then

$$
\psi^{(1)}\left(\xi_{j}\right)=\psi^{(0)}\left(\xi_{j}\right) \operatorname{sgn}\left(Q\left(\psi^{(1)} \psi^{(0)}\right)\right) \quad j=1, \cdots, J
$$

Proof: Since there are $r-1$ interior nodes the sesquilinear form

$$
\begin{equation*}
Q(x(1-x) \psi \bar{\phi}), \quad \phi, \psi \in \mathbb{P}_{r-2} \tag{7.14}
\end{equation*}
$$

defines an inner product on \mathbb{P}_{r-2}. Let $0 \neq q_{r-2}$ be a real polynomial which is orthogonal to $\mathbb{P}_{\boldsymbol{r}-3}$ with respect to (7.14). From the defining equations (2.7) of $\psi^{(i)}$ we obtain

$$
Q\left(x(1-x) \psi^{(i)} \bar{\phi}\right)=0, \quad \phi \in \mathbb{P}_{r-3}, \quad i=0,1
$$

Thus the vector obtained by restricting $\psi^{(i)}$ to the points $\xi_{j}, j=1, \cdots, r-1$, satisfies the same orthogonality conditions as q_{r-2}. Since the orthogonal complement of \mathbb{P}_{r-3} with respect to (7.14) is one-dimensional, the relation

$$
\begin{equation*}
\psi^{(i)}\left(\xi_{j}\right)=\beta_{i} q_{r-2}\left(\xi_{j}\right), \quad j=1, \cdots, r-1, \quad i=0,1 \tag{7.15}
\end{equation*}
$$

for some real constants β_{0} and β_{1} follows. The symmetry of Q implies $Q\left(\psi^{(1) 2}\right)=$ $Q\left(\psi^{(0) 2}\right)$, and we conclude $\left|\beta_{0}\right|=\left|\beta_{1}\right|$. The assertion follows now by straightforward calculation using (7.15).

In passing we remark also that Theorem 6.1 holds if R_{h} is replaced by R_{h}^{0}.

A. Appendix

For the convenience of the reader we provide the approximation properties of S_{h} needed in Section 5.

Lemma A.1. Let $p \in[1, \infty]$ and $g \in W_{p}^{1}(0, L)$. Then the piecewise linear interpolant g_{h} of g interpolating at the breakpoints x_{0}, \cdots, x_{n} satisfies

$$
\begin{aligned}
\left\|g-g_{h}\right\|_{L_{p}(0, L)} & \leqslant C h_{\max }\left\|g^{\prime}\right\|_{L_{p}(0, L)} \\
\left\|g-g_{h}\right\|_{h, p} & \leqslant C h_{\max }\left\|g^{\prime}\right\|_{L_{p}(0, L)}
\end{aligned}
$$

Proof: Let G denote the Green's function for $d^{2} / d x^{2}$ with Dirichlet boundary conditions at $x=0$ and $x=1$. Then, if $f \in C^{2}[0,1]$ and f_{I} is the linear function interpolating f at 0 and 1 , we have the representation

$$
\begin{aligned}
f(x)-f_{I}(x) & =\int_{0}^{1} G(x, y) f^{\prime \prime}(y) d y \\
& =-\int_{0}^{1} G_{y}(x, y) f^{\prime}(y) d y, \quad x \in[0,1]
\end{aligned}
$$

(It can be verified directly that this identity holds also for $f \in W_{\infty}^{1}(0, L)$.) It follows with Hölder's inequality that

$$
\left\|f-f_{I}\right\|_{L_{\infty}(0,1)} \leqslant \sup _{x \in(0,1)}\left(\int_{0}^{1}\left|G_{y}(x, y)\right|^{p^{\prime}} d y\right)^{1 / p^{\prime}}\left\|f^{\prime}\right\|_{L_{p}(0,1)}
$$

In the usual way we obtain by scaling and taking $f(x):=g\left(x_{k}+h_{k} x\right)$

$$
\begin{equation*}
\left\|g-g_{h}\right\|_{L_{\infty}\left(\Delta_{k}\right)} \leqslant C h_{k}^{1-1 / p}\left\|g^{\prime}\right\|_{L_{p}\left(\Delta_{k}\right)}, \quad k=0, \cdots, n-1 \tag{A1}
\end{equation*}
$$

and hence

$$
\begin{aligned}
\left\|g-g_{h}\right\|_{L_{p}\left(\Delta_{k}\right)}^{p} & \leqslant C h_{k}^{p}\left\|g^{\prime}\right\|_{L_{p}\left(\Delta_{k}\right)}^{p} \\
h_{k} \sum_{j=1}^{J} w_{j}\left|\left(g-g_{h}\right)\left(x_{k, j}\right)\right|^{p} & \leqslant C h_{k}^{p}\left\|g^{\prime}\right\|_{L_{p}\left(\Delta_{k}\right)}^{p} .
\end{aligned}
$$

Summation with respect to k proves the assertions.
Lemma A.2. Let $p \in[1, \infty]$ and $2 \leqslant \ell \leqslant r$. Then, for each $g \in W_{p}^{\ell}(0, L)$ there exists a function $g_{h} \in S_{h}$ interpolating g at the breakpoints x_{0}, \cdots, x_{n} which satisfies

$$
\begin{aligned}
\left\|g-g_{h}\right\|_{L_{p}(0, L)} & \leqslant C h_{\max }^{\ell}\left\|g^{(\ell)}\right\|_{L_{p}(0, L)} \\
\left\|g-g_{h}\right\|_{h, p} & \leqslant C h_{\max }^{\ell}\left\|g^{(\ell)}\right\|_{L_{p}(0, L)}
\end{aligned}
$$

Proof: Choose a set of boundary conditions $B_{k}, k=1, \cdots, \ell$, at $x=0$ and $x=1$ containing derivatives of order $\ell-1$ at most, such that

$$
B_{1} f=f(0), \quad B_{2} f=f(1)
$$

and such that the condition

$$
f \in \mathbb{P}_{\ell-1}, B_{k} f=0, k=1, \cdots, \ell \Rightarrow f=0
$$

holds. Denote by G the Green's function of $(d / d x)^{\ell}$ subject to the corresponding homogeneous boundary conditions. For $f \in W_{p}^{\ell}(0,1)$ choose $f_{I} \in \mathbb{P}_{\ell-1}$ such that

$$
B_{k}\left(f-f_{I}\right)=0, k=1, \cdots, \ell
$$

We then have the representation

$$
f(x)-f_{I}(x)=\int_{0}^{1} G(x, y) f^{(\ell)}(y) d y, \quad x \in(0,1)
$$

and obtain by an application of Hölder's inequality

$$
\begin{equation*}
\left\|f-f_{I}\right\|_{L_{\infty}(0,1)} \leqslant \sup _{x \in(0,1)}\left(\int_{0}^{1}|G(x, y)|^{p^{\prime}} d y\right)^{1 / p^{\prime}}\left\|f^{(\ell)}\right\|_{L_{p}(0,1)} \tag{A2}
\end{equation*}
$$

The function g_{h} is constructed by defining, on each subinterval Δ_{k}, a polynomial in $\mathbb{P}_{\ell-1}$ corresponding to the first part of the proof; this polynomial interpolates g at the endpoints of Δ_{k}. Patching the pieces together, a function $g_{h} \in S_{h}$ is obtained. By a scaling argument one derives from (A1) the bound

$$
\left\|g-g_{h}\right\|_{L_{\infty}\left(\Delta_{k}\right)} \leqslant C h_{k}^{\ell-1 / p}\left\|g^{(\ell)}\right\|_{L_{p}\left(\Delta_{k}\right)}, \quad k=0, \cdots, n-1
$$

The assertion is then proved as in the last part of the proof of Lemma A1.

References

[1] C. de Boor, 'A bound on the L^{∞}-norm of L^{2}-approximation by splines in term of a global mesh ratio', Math. Comp. 30 (1976), 765-771.
[2] M. Crouzeix and V. Thomée, 'The stability in L_{p} and W_{p}^{1} of the L_{2}-projection onto finite element function spaces', Math. Comp. 48 (1987), 521-532.
[3] P.J. Davis and P. Rabinowitz, Methods of numerical integration (Academic Press, New York, 1975).
[4] J. Descloux, 'On finite element matrices', SIAM J. Numer. Anal. 9 (1972), 260-265.
[5] J. Douglas, T. Dupont and L. Wahlbin, 'Optimal L_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems', Math. Comp. 29 (1975), 475-483.
[6] J. Douglas, T. Dupont and L. Wahlbin, 'The stability in L^{q} of the L^{2}-projection into finite element subspaces', Numer. Math. 23 (1975), 193-197.
[7] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology 4 (Springer-Verlag, Berlin, Heidelberg, New York, 1990).
[8] M. Ganesh and I. H. Sloan, 'Optimal order spline methods for nonlinear differential and integro-differential equations', Appl. Numer. Math. (to appear).
[9] R.D. Grigorieff and I.H. Sloan, 'Spline Petrov-Galerkin methods with quadrature', $N u$ mer. Funct. Anal. Optim. 17 (1996), 755-784.
[10] R.D. Grigorieff and I.H. Sloan, 'High-order spline Petrov-Galerkin methods with quadrature', in Proceedings of the International Congress on Industrial and Applied Mathematics Hamburg, 1995,, (G. Alefeld et al., Editors) (Z. Angew Math. Mech. 76, 1996), pp. 15-18.
[11] L. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics 1605 (Springer, Berlin, 1995).

Technische Universität Berlin
Strasse des 17. Juni 135
D-10623 Berlin
Germany
e-mail: grigo@math.tu-berlin.de

School of Mathematics
University of New South Wales
Sydney 2052
Australia
e-mail: I.Sloan@unsw.edu.au

