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STABILITY OF DISCRETE ORTHOGONAL PROJECTIONS

FOR CONTINUOUS SPLINES

R.D. GRIGORIEFF AND I.H. SLOAN

In this paper Lp stability and convergence properties of discrete orthogonal projec-

tions on the finite element space 5/, of continuous polynomial splines of order r axe

proved. The discrete inner products are defined by composite quadrature rules with

positive weights on a sequence of nonuniform grids. It is assumed that the basic

quadrature rule Q has at least r quadrature points in order to resolve S/,, but no ac-

curacy is required. The main results are derived under minimal further assumptions,

for example the rule Q is allowed to be non-symmetric, and no quasi-uniformity of

the mesh is required. The corresponding stability of the orthogonal /^-projections

has been studied by de Boor [1] and by Crouzeix and Thomee [2]. Stability of the

first derivative of the projection is also proved, under an assumption (unless p = 1)

of local quasi-uniformity of the mesh.

1. INTRODUCTION

This paper establishes stability and convergence properties of discrete orthogonal

projections onto the standard finite element spaces Sh of continuous polynomial splines

of degree at most r — 1 on an interval, with r ^ 2.

To be precise, let

(1.1) v'h:={0 = xo<xi<---<xn = L}

be an arbitrary partition of the interval \0,L]. Then

Sh := [ip 6 C[0, L] : ifi\[xk,xk+1] € Pr_i, k = 0, • • • ,n - l } ,

where 4>\\x, v] denotes the restriction of tp to [x, y] and Pj the space of polynomials of
degree at most d. Let

(1.2) Qg:=Y,wi9{Zi)
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(1.3) Qhg ••= 1 3 hkY,wi9(xkj) ~ / g(x)dx,
fc=0 j=l JO
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be a basic quadrature rule with quadrature points or nodes

0 ^ f i < 6 < • • • < i, ^ 1

and weights m, > 0; the positivity of the weights plays a crucial role in the theory. We
denote by h the mesh-size vector

h : = (h0,hi,- • • ,hn-i),

where hk := xk+i — xk for k — 0, • • •, n — 1, and introduce the composite quadrature rule

n- l

13
fc=0

with
xkj •= xk + hk£j, k = 0, • • •, n - 1, j = 1, • • •, J.

We then introduce the positive semidefinite, Hermitian, sesquilinear form

(1.4) {f,9)k~Qh{fg), f,geC[0,L].

This sesquilinear form is shown in Proposition 2.1 to be an inner product on S/, if and
only if J ^ r. In this situation we may define a projection R^ : C[0, L] —¥ Sh by

(1.5) (Rhf^)h = {fA)h V ^ 5 h .

It is this discrete orthogonal projection R^ that we study in this paper.

One of our main resuits (see Theorems 5.1 and 4.4) is that for each p € [l,oo], and

for hmax :— max. hk, we have

(1.6) \\Rhf ~ / H M O * ) -> ° «s ^ a x -> 0 V / 6 C [ 0 , L ] ,

and also, for £ = 1, • • •, r,

(1.7) \\Rhf - /|U,(o.L) ^ C/Cll/WllMo^). / € W#0, L),

under only the most basic assumptions on the quadrature rule: we do not even insist
that the rule be symmetric. On the other hand, for all J ^ r it is sufficient that Q
be symmetric; and if J = r and Q is not symmetric it is sufficient that £i = 0 and
£j = 1. There are no other constraints on the choice of quadrature points, and (apart
from positivity) no constraints on the weights. Observe in (1.6) and (1.7) that i?/, is
defined with the aid of point evaluation of / , while the convergence holds in the Lp-
norm. These convergence results require no restriction of any kind on the partition n'h,
provided /imax —> 0.
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[3] Continuous splines 309

The quadrature rule (1.3), and the sesquilinear form (1.4), can also be defined in a

natural way on the space Gh of 'grid functions', that is, of the complex-valued functions

on the grid

(1.8) *h:=

(where we use the convention that xk,j is considered different from a;*+i,i even if their val-
ues coincide, which of course happens if £/ — 1 and £i = 0). The convergence properties
(1.6) and (1.7) rest on a corresponding stability property

(1-9) II*/ . / IIMO,L) ^ C-H/IU,, / G C[0, L] or Gh>

where

(1.10) H/IU, := Qh(\f\p)1/P, feC[0,L}orGh, p 6 [ l , o o ) ,

||/||hiOO := max{|/(zfc>i)| : k = 0, • • • ,n - 1, j = 1, • • •, j}.

Here and throughout the paper C denotes a generic constant independent of h and other
significant quantities.

In Theorem 6.1 we state a stability result for the derivative (Rhf)', in the same
setting, but this time with a quasi-uniformity assumption on the grid unless p — 1.

In the final section, Section 7, we give results, again for rather general rules Q and
arbitrary meshes, for the stability of the discrete orthogonal projection R% on the space
S° C Sft, which is obtained from 5/, by imposing zero boundary conditions. The main
results for R^ are contained in Theorem 7.2. It turns out that R^ shares the main features
of i?h, and also has some additional new properties.

The continuous counterpart of (1.9) for the orthogonal ^-projection P/, on S/, with-
out any restriction on the partition 7rh has first been proved by Dupont (see de Boor [1]),
extending earlier work of Douglas, Dupont and Wahlbin [5] for quasiuniform grids. The
proof in [1] relies essentially on the total positivity of the Gram matrix for the B-spline
basis of 5^. It carries over directly to our discrete case if the quadrature rule is symmetric,
but its extension to the non-symmetric case, and to the study of the first derivative of
the projection, is less obvious. In the present paper we follow more closely the reasoning
of Crouzeix and Thomee [2], who in turn based their arguments on the earlier work of
Descloux [4]. Those papers are mainly concerned with higher dimensional problems, but
the paper [2] also gives an explicit treatment of the continuous 1-dimensional problem
that serves as a starting point for the present investigation. In that paper the stability
of Ph. in the 1-dimensional case is related to the diagonal dominance of a tridiagonal
matrix, in an argument that is more elementary and gives easier control of the constants
determining stability than the total positivity argument. In our discrete case the cor-
responding way of reasoning enables us to consider also nonsymmetric rules Q. Thus,
for example, the above-mentioned general case J = r and fi — 0, £/ = 1 is included,
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which is of special interest because then Rh is an interpolatory projection or collocation
projection for collocating in the points of 717,. The diagonal dominance argument also
allows, as in [2], extension to a stability argument for the first derivative of /?/,/.

It might be useful to remark that the extension of the 1-dimensional arguments of [2]
to the discrete case is not entirely straightforward, since the proof of diagonal dominance
of the tridiagonal matrix in the cited paper relies on being able to obtain explicitly,
via integration by parts, a certain polynomial; and thence to integrate exactly certain
integrals involving this polynomial. In our case the corresponding orthogonality is with
respect to a discrete version of the inner product, so explicit knowledge of this kind is
not available, not least because integration by parts is no longer valid. We may remark
that for some other methods extension from the continuous to the discrete case is easier.
In particular, as pointed out in [6], the extension is straightforward, under very general
conditions, for the continuous-case arguments used in [5]. However the style of argument
used in that work seems inevitably to impose restrictions on the mesh.

It is well known that the stability property of Ph is the key to proving Lp convergence
results for finite element methods with trial space 5/, on nonuniform partitions; see for
example [11]. In the same way (1.9) is basic to the analysis of Galerkin methods with
quadrature. Some differential equation applications of (1.9) to a discrete Petrov-Galerkin
method are given in [9, 10]. For the (relatively trivial) special case r = 2 some of the
results obtained in this paper have been obtained previously in [9], where they were
used to analyse a discrete Petrov-Galerkin method for boundary and eigenvalue problems
associated with m-th order ordinary differential equations. Applications of (1.9) to certain
non-linear differential and integro-differential problems are discussed in [8].

In this paper we do not treat Rh as a small perturbation of the corresponding
continuous orthogonal projection operator Ph, nor do we assume that the rule Q has any
polynomial degree of precision, as for example in the analysis of approximate Galerkin
methods in [7, Theorem XII 1.15]. The admission of general quadrature formulas in this
paper may lead to new classes of fully discrete methods for 1-dimensional differential,
integro-differential and integral equation problems that are, in our view, of independent
interest, while at the same time permitting analysis of some existing methods, ranging
from collocation methods to perturbations of Galerkin-type methods.

2. T H E MAP Rh

We begin by characterising conditions under which (1.4) is an inner product on Sh-

in this case Rh is well-defined by (1.5).

PROPOSITION 2 . 1 . The positive semidefinite Hermitian form (., .)h defined in
(1.4) is an inner product on Sh if and only if J ^ r.
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PROOF: Assume initially J ^ r, and let tp G Sh. Because the definition of ||/||/,,2
uses the values of / only at the quadrature points, clearly, ||^||/,,2 = 0 if and only if

(2.1) i > ( x k J ) = 0 , k = 0 , - - - , n - l , j = l,--.,J.

Now consider ip\Ak, the restriction of %j) to A*, where

(2.2) A f c : = [ x k , x k + 1 ] , k = 0 , - - - , n - l .

Since ip\Ak € Pr_i , it is clear for J ^ r that (2.1) can hold only if ip = 0. Thus
\\ip\\h,2 = 0 implies ip = 0 if J ^ r. Assume now J ^ r - 1. Then there exists a
polynomial q e Pr_i , 9 ^ 0 , satisfying q(£j) = 0 , j = 1, • • •, J. We define

(2.3) ip{x) := 0*9

and choose the constants a^, not all zero, in such a way that ip can be continued to a
non-zero function in C[0,L] which by construction vanishes at xkj, k = 0, • • • ,n — 1,
j = 1, • • •, J. For example, if q(0) # 0, one can choose a0 = 1 and then define if) on
consecutive intervals, beginning with the interval (XQ,XI). Similarly, in the case q(0) = 0
but q(l) / O w e start with k = n — 1. If q(0) = q(l) — 0, then we can take ak — 1 for all

k. D
In accordance with this result we assume J ~£ r in the rest of this paper, so that J?/,

is always well-defined.

The next step (following a line of argument in [2]) is to split the spline space 5/, into
a direct sum
(2.4) Sh = S M + S h , 2 ,

in such a way that S/,,2 has a purely local basis (that is, with support in a single A*
only), and 5h:i is orthogonal to S/,,2 with respect to the discrete inner product (., .)h. The
spaces in (2.4) are thus given by

(2.5) 5 A , 2 : = {ip e Sh : tP{xk) = 0, fc =

(2.6) 5fc l l : = {TP € Sh : (tf,<j>h)h = 0 V

The dimension of S^i is dim Sh,i = ra + 1, which is independent of r. The dimension of

S/,,2 is n ( r — 2). (In the case r = 2 one has 5/,>2 = {0}).

We now construct a basis of Sh,i- Let V(t) € Pr_i , i = 0 ,1 , be the polynomials
defined by

pM(0) 1 ^°>(l) = 0, ^ ( O ) = 0,

where PJ denotes the subspace of polynomials <p 6 Pd such that 0(0) = 0(1) = 0. The
uniqueness, and hence existence, of tp^ for fixed i follows from the fact that according to
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(2.7) the difference ip of two candidate polynomials lies in IP^_1 and satisfies Q(ipcj>) — 0
for all 4> € IF?_i, from which follows Q(tp2) = 0, and hence ip = 0 since the polynomial ip is
at most of degree r — 1 and vanishes at the r points fi, • • •, fr- Note that only quadrature
points lying in (0,1) influence the definition of ip^ and ip^l\ since 0(0) = 0(1) = 0. Note
too that if the contribution to the quadrature formula from the open interval (0,1) is
symmetric then

(2.8) V ( 1 ) ( * ) = t f ( 0 ) ( l - * ) , * € [0,1].

The polynomials tp^ are real, because the quadrature weights Wj are real. Now let

f 1 ) . ^ € AB_lf

and zero elsewhere. Evidently, 4 6 Sj , k = 0, • • •, n, and tpk{%e) = hi, 0 < fc, £ ^ n.

In the sequel we use the notation

(2.9) (/, g)l£> := hk £ t V f o j ) ^ * * j ) , * = 0, • • •, n - 1,

and the analogous notation ||/| |j,p. Clearly we have

E
LEMMA 2 . 2 . {V»o, • • •, i>n) is a basis for Sh,\•

P R O O F : Since the %pk are clearly linearly independent and dim Sh,\ = ra + 1, the
assertion is proved if we know ipk € Sh,\- We show this explicitly for the case k € [l,n —1]
only. Choose any <j> € Sh>2- Then

where

(2.10)
3=1

= hk £ u»><°> (&)?(** + /»*&•) = 0.
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The last step follows from (2.7) because <j>(xk + hk£) as a function of £ is in P ^ . In the
same way we can show that (ipk,<P)^~^ = 0- Thus {~4>k,4>)h

 = 0> a ° d V** € Sh,i- The
results for k = 0 and n follow similarly. D

The decomposition of ip € 5/, that corresponds to (2.4) is easily achieved, once the
functions ipk have been constructed.

LEMMA 2 . 3 . Assume J ^ r. An arbitrary ip 6 Sh may be represented uniquely
as

•4> - tph,i + ^/.,2, iph,i € S/,,1, VA,2 € 5/,i2.

Moreover

n

1ph,l =

P R O O F : The uniqueness is clear since (2.4) is an orthogonal decomposition. To
prove existence, let ip € 5/, be given, and note that

the latter holding because (on recalling ij}k(xt) — 8kt) the given expression vanishes at xi

for I = 0, • • •, n. Thus Vh,i = T.kil>{xk)i>k. D

We now split the mapping i?/, according to the above splitting of Sh- To this end
we define R^i : GA —»• 5/,,j for i = 1,2 by

(2.11) (Rh,if,^)h = (f^)h WeSh,i-

Note that i?/,,i and i ? ^ are well defined for J ^ r, since by Proposition 2.1 (•, -)A is an
inner product on Sh<i C Sh-

LEMMA 2 . 4 . Assume J ^ r. Then i?/, = .R/,,1 + fift,2-

P R O O F : Any element ip 6 5/, can be written as V = <j>\ + <t>2 with <\>t e 5/,,/, ^ = 1,2.
Taking (2.6) into account it is seen that

where the cross terms vanish. Thus

which with Proposition 2.1 proves the assertion.

If we represent Rh,\f in the form

(2.12) Rh,if
1=0
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then (2.11) for i = 1 is equivalent to the linear system

(2.13) YJAktct = bk, k = 0,---,n,
e=o

where we have introduced the scaled Gram matrix Ah of the basis {if>k}, with elements

(2.14) Aki : = -—'•—j*-, k,£ = 0, • • • ,n,

and corresponding right-hand sides

(2.15) bk:= }f'^\ , * = 0,-,n,

with /i_i := hn := 0. Note that i?/,i2 = 0 if r — 2, since in that case 5/,i2 = {0}.

3. PROPERTIES OF Ah

Our proof of the stability property (1.9) hinges on showing that under appropriate
circumstances the tridiagonal matrix A^ defined by (2.14) is row diagonally dominant;
and moreover that the maximum difference of a diagonal element and the corresponding
row sum of absolute values of the off-diagonal elements is bounded away from zero. It
is convenient to establish these matrix properties immediately. The desired diagonal
dominance result is Proposition 3.2. The result is re-expressed as an inverse stability
property of A^ in Proposition 3.6.

To simplify the statement of the following lemma, we define

A>,-i := An<n+i := 0,

and introduce
ak := *"1—, k = 0,---,n.

Note that 0 ^ ak ^ 1 for k — 0, • • •, n and a0 = 0, an = 1.

LEMMA 3 . 1 . The matrix Ah is fcridiagonai and has positive diagonal elements.
Moreover, for k = 0, • • •, n we have

(3.1) <Jh,k : = A k k -

where sgn t := 1 or - 1 for t ^ 0 or t < 0, respectively.
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P R O O F : By definition oiipk, one calculates (ipk,ipt)h — 0 f° r I* — ^| ^ 2, and

It follows that

Aklk-i =

AkM1 = ( l -

from which (3.1) is obtained immediately. D

In the rest of the paper we consider a sequence H of gridsize vectors h such that
/imax —t 0 {h € H) and corresponding grids n'h, h € H.

LEMMA 3 . 2 . For eaci h e H let

ah := min{ff/liA; : k = 0, • • •, n } .

Then

(3.2) ah = a:= min ( Q ( ^ > 2 ) , Q ( ^ 2 ) ) - | Q ( ^ V 0 ) ) | > h € if.

PROOF: From (3.1) we obtain immediately oh,k ^ a, k = 0, • • •, n. Equality holds
because a0 = 0, an = 1. D

The following proposition states sufficient conditions for the existence of a suitable
positive number bounding 07,̂  below, that is, for a > 0. In other cases a > 0 can be
tested by computation of a from the representation (3.2).

PROPOSITION 3 . 3 . Assume J ̂  r. Sufficient conditions for the constant a

defined in (3.2) to satisfy a > 0 are:

(a) Q(i,^)=Q(^)

(b) Q is symmetric

(c) Q integrates exactly all p € P2r-4 with respect to the weight function
w(x) := x(l - x), that is,

I p(x)w{x) dx = Q(pw), P € P2r-4
Jo

(d) Q^ 1 ' ^ 0 ' ) = 0

(e) J = r and 6 = 0, £/ = 1

(f) min(Q(^1)),Q(^<"),Q((2i-l)V(1)),Q((l-2x)^°))) > 0.
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P R O O F : If <5(^(1)2) = Q(^{ 0 ) 2) then it follows from Lemma 3.2 and the last form
of (3.1) that

(3.3) a = |

with equality possible only if ip := ip^—ip^sgnvQnp^xp^jj vanishes at each quadrature
point. Since J ^ r and ip € Pr-1 this implies ip = 0, contradicting ip(l) = 1.

If Q is symmetric then we have observed already that ^^(a:) = ^°)(1 - z), from
which Q\ip^2j — Q(ip^2) follows. Thus this case is covered by case (a).

If Q integrates exactly all polynomials of degree at most 2r — 4 with respect to the
weight function w then the condition Q(I[>^4>\ — 0 for all cj> 6 1F̂ _1 in the definition (2.7)
can be replaced by the corresponding integral (since <p{x) = x{\ — X)T(X) with r € Pr-3),
from which it follows that ip^\x) = ^ ^ ( 1 — 2;), so that again the case is covered by (a).

If Q(^ ( 1 V ( 0 ) ) = 0 the result follows immediately from Lemma 3.2, since Q(V>(1)2) >
0, with equality excluded because ipW vanishing at all quadrature points would imply
V>(1) = 0, contradicting ^(^( l ) = 1. Thus case (d) is proved.

If J = r and £1 = 0, £7 = 1 then there are exactly J - 2 — r - 2 interior nodes
&> • • •. £/-i f°r the rule Q. Let {<f>j : j = 2, • • •, J - 1} C Pr_3 be the set of fundamental
Lagrange polynomials for the J — 2 interior nodes, that is,

(3.4) 4>j € Pr-3, 0>(fr) = Sjr, 2 < j,f < J - 1.

Then x(l - x)<t>j(x) € P^._lt and from (2.7) we have

Q ( x ( l - z ) V ( % ) = 0, j = 2,---,J-l, t = 0 , l ,

which implies, given (3.4) and Wj > 0, that

= 0 f o r j = 2 , - - - , J - 1 , 1 = 0,1,

so that T/>'*' vanishes at each interior node. Since also ^>(0)(0) = ^^^(1) — 1 and
•0(!)(O) = 0 it follows that <3(^(1)^(0)) = 0, thus the result for case (e) follows from case
(d).

Turning to case (f) we note that

Now observe that

_ (2a; _

https://doi.org/10.1017/S0004972700032263 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032263


[11] Continuous splines 317

On writing ^>(1) + ^( 0 ) = 1 + 0 and ipw -i>m = (2x-l)+tp, with <f>, xp € P?_x, it follows
from Q(tp{1)<j>) = Q(ip{l)rp) = 0 that

An analogous result holds with ip^ replaced by ip^ if 2x — 1 is replaced by 1 — 2x. This
proves case (f). D

REMARK 3.4. The condition (c) in Proposition 3.3 is satisfied, for instance, by the
(r — l)-point Gauss-Jacobi rule belonging to the weight x(l - x) (see [3, Section 2.7])
together with an adjoined quadrature point £r :— 1 (to bring the total number of points
up to r), with any positive number allowed for wr. It is also satisfied by any rule which
is exact for polynomials of degree at most 2r — 2, such as the r-point Radau rules (which
are unsymmetric, see [3, Section 2.7.1]), or the r-point Gauss-Legendre rule.

REMARK 3.5. If condition (e) of Proposition 3.3 is satisfied it can be seen from the
proof that Q(^( 0 ' 2 ) = w\, <2(t/>^2) = wj and hence a = mia(wi,wj).

REMARK 3.6. If there are at least r — 2 interior nodes in Q then the functions tp(*\ i =
0,1, are already well-defined, and hence Ah is well-defined. Thus under this assumption
it makes sense to consider the possibility of diagonal dominance of Ah even for J = r - 2
and J = r — 1.

The following results can be shown. If J = r — 2 and all nodes are interior then
Ah = 0. If J = r - 1 and there are exactly r - 2 interior nodes then a — 0. If all
J = r — 1 nodes are interior, and if also Q is symmetric then <Jh,k = 0, k — 0, • • •, n,
and Ah is singular. For Q not symmetric still a ^ 0 holds in this case. (Proofs of these
results can be obtained on the basis of (7.15) and (3.1).)

DEFINITION 3.7: Given p e [l,oo], the sequence of matrices {Ah}H is said to be
inversely p-stable if

(3.5) 7 p := inf{|i4fcc|h, : c € G'h, \c\h, = 1, h <= H} > 0,

where G'h denotes the vector space of grid functions defined on n'h, and

I n h + h \l^p

(3-6) |c| fc, := E 9 N " , p e [ l , o o ) ,
\ z I*=o

|c|/,,oo := max \ck\ -: \c\oo.

The next lemma shows that it is sufficient to establish the inverse p-stability of
}w for p — 1 or p = oo in order to obtain it for all p.

LEMMA 3 . 8 . Forp e (l,oo), 7, = 7 M ^ -yp.
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P R O O F : For the vector c € Cn + 1 with components

hk-x +hk
c* == 2 Cfc> k = 0 , - - - , n ,

we have \c\h,i = jc|i, and after a short calculation it is also verified that

\Ahc\h>l = \A*hc\i,

where A*h denotes the adjoint matrix of Ah, | - |̂  is the usual £p norm and \A\P denotes
the matrix norm induced by the vector norm | • \p. Because Ah is square, it is clear that
A*h is injective if and only if Ah is injective, and that in the case they are injective

Consequently, if we introduce

jh,P •= inf{|i4hc|/,j,: c6 G'h, \c\h,p = l } , he H,

we have either jh,\ — 7/i,oo = 0 or

7ftloo = \A-h
l\-J = \iAD~X1 = 7h,i, h € H.

On taking the infimum over h E H this shows 71 = 700. And 71 ^ 7P then follows by an
application of the Riesz-Thorin interpolation theorem. D

Now we use Lemma 3.2 to obtain a result for the inverse p-stability of {Ah}H-

PROPOS IT I ON 3 . 9 . Assume a > 0 in (3.2). Then {Ah}H is inversely oo-stable
with 7oo j£ o. If any of the conditions (a)-(c) in Proposition 3.3 is satisfied then 7^ = a.

P R O O F : It follows from Lemma 3.2 tha t 07,^ ^ a for k = 0,---,n. For given

c e C n + 1 , let j be such tha t |c , | = \c\ao. Then with c_! :— c,,+i := 0 we have

(3.7) \Ahc\v, ^ \AjjCj + Ajj^cj-i + Ajd+lcj+i\

jj ~ \A3,i-l\ ~ \AJ,j+l\) \ci\ = 0hj\c\oo,

and so 7oo ^ o- Any of the conditions (a)-(c) in Proposition 3.3 implies Q(ip^2j =

Q(tp^2\ and from (3.1) and Lemma 3.2 follows ah,k = a for A; = 0, • • •, n. On choosing

c to be the vector with components

it is easily verified that I /Uc^ = cr|c|oo; note the second inequality in (3.7), which in this
case is an equality. Consequently 700 ̂  a, and the proof is complete. D
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4. STABILITY OF {#/,}# AND INVERSE STABILITY OF {Ah}H-

In this section we establish the stability of {/?/,}#. The main result is Theorem 4.4.
Let p € [1, oo], and as before let H denote any sequence of mesh-size vectors h such that
/imax -> 0. The sequence {i?/,}tf is called p-stable if there exists a constant C such that

(4.1) \\Rhf\\LAo,L) ^ C\\f\\htP, feGh, heH,

and p-stability for {Rh,i}H, i = 1,2, is defined in the same way. The next lemma shows
that {Rh,2}H is always p-stable. The proof is straightforward because R^ has essentially
a local definition. Recall that i?/,i2 = 0 if r = 2.

LEMMA 4 . 1 . Let r ^ 3 and let

Cx := sup / ' \q(S)\dt max \q(Q\, - M - max \q(0\) .

Tien, for aWp€ [l,oo]

(4.2) | | iWllMo,L) <

P R O O F : We first prove the result for p = 1. Let / € Gh be given. Choose any
/c € [0, n — 1], and define

ip{x) := Rh>2f(x), x e At >

and i/)(z) := 0 elsewhere. Then by (2.5) tp € S/,,2, and by the definition (2.11) of i?h>2 we
have

or

and consequently, if %p i1 0,

M ^ IIP fll
(4.3) ||rt/,,2/||

where we have taken into account that ip restricted to the subinterval A* = [xfc,xfc+i] is
a polynomial of degree at most r — 1 satisfying t/>(xt) = VK -̂fc+i) = 0- After summing
with respect to k, inequality (4.2) is proved for p = 1:

Similarly,

and reasoning as in (4.3),

(4-4) I l
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follows, from which (4.2) for p = oo is derived. For the remaining values p € (l,oo) the
assertion is obtained by an application of the Riesz-Thorin interpolation theorem. D

By virtue of Lemma 4.1 the p-stability of {RH}H is equivalent to the p-stability
of {RII,I}H- AS a first step towards proving this p-stability, we relate it to the inverse
p-stability of the sequence {Ah}H from (2.12).

LEMMA 4 . 2 . Let p S [l,oo]. If {Ah}H is inversely p-stable then {RH}H is p-
stable.

P R O O F : According to Lemma 4.1 we have only to show the p-stability of {.R^i}//.
Recall the definition of the basis {ipk} of Sh,i- If Xk denotes the characteristic function
for the interval (xk — hk-i,xk + hk) then

where 1/p + 1/p' = 1. Consider the case p € (1, oo). Then

where

(4.5) nax

Thus we obtain from (2.15) and (3.6)

" fefc_! + hk

h 2
c?£*llx*/ll

K -\h,P
k=0

H/>,P

± (\\f\\{kiy = c>2\\f\\i,P,
k=o

where we used 1 + p/p' —p — p(l/p + 1/p' - 1) = 0. Now let c 6 Cn + 1 be the solution of
(2.13). With the aid of the assumed inverse p-stability of {Ah}H we obtain

lP\c\h,P = \b\htP ^ C2||/|U,p.

An inspection of the proof shows that this estimate also holds in the cases p = 1 and
p = oo. On recalling (2.12), the assertion now follows with the aid of the easily verified
inequality

where

(4-6) C3 :=

https://doi.org/10.1017/S0004972700032263 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032263


[15] Continuous splines 321

the last step following by application of the Holder inequality to the integrand on the
right of the identity

£T0 \\LP(O,L) ^To

D

COROLLARY 4 . 3 . If {AI,}H is inversely oo-stable then {.R/,}// is p-stable for all
p 6 [1, oo] and t ie stability constant can be chosen independently of p.

P R O O F : Combining Lemmas 3.5 and 4.2, the sequence {Rh}H is seen to be p-stable
for all p € [1, oo]. By tracing the dependence of the stability constant for {Rh,i}ii in the
proof of Lemma 4.2 we see that it can be chosen to be independent of p, since jp ^ 700
and C3 can be bounded independently of p. The stability constant C\ for {Rho\n is also
independent of p. D

Now we are able to state our main result on the p-stability of {Rh}H.

THEOREM 4 . 4 . Assume J ^ r and a > 0 in (3.2). Then {/?/,}« is p-stable for
p € [l,oo], with t ie stability constant able to be chosen independently of p.

PROOF: Combine Proposition 3.6 with Corollary 4.3. D

Before leaving this section, we note the corresponding p-stability result that comes
from replacing the quadrature rule Q in (1.2) by the exact integral I. In this case (•, -)h

is replaced by the Li inner product

(f,9):=JQ
Lf(x)g(x)dx,

the projection R^ defined by (1.5) is replaced by the Z/2-orthogonal projection P^ on S/,,
and the norm || • ||/,iP on the space of grid functions defined by (1.10) becomes the Lp norm
II ' IUP(o,i)- The following theorem is essentially [2, Theorem 1], except that the earlier
work used in place of 5/, the subspace 5° of functions with zero boundary conditions. It
is also an easy consequence of [1, Theorem 2],

THEOREM 4 . 5 . Let Ph be the Li-orthogonal projection on 5/,, and let p € [1,00].
Then

\\Pk9\\LAo,L) ^ C| |5 | |Mo,t), 9 6 MO, L), heH,

where C does not depend on p.

A proof could mirror the proof of (4.1), if we use the correspondences above, and
note that the integral has all the properties of a symmetric quadrature rule with J ^ r.
It is also possible to give a proof based on Theorem 4.4. We omit the details.
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5. CONVERGENCE PROPERTIES OF

THEOREM 5 . 1 . Let p € [1, oo] and let {Rh}H be p-stable. Then

(5.1) H f t k / I U , ( o . L ) ^ C\\f\\hfi0, f e G h , h £

(5.2) \\Rhg - g\\Lp{0,L) - > 0 (/i e # ) , < ? € C[0 , L ] ,

(5.3)

for £ = l , - -- , r .

P R O O F : The estimate (5.1) is an immediate consequence of the p-stability of {Rh}n
defined in (4.1), since

1/P

Since i?hP/i = <//, for 3/, € 5ft, the convergence property (5.2) follows from

\\Rh9 - 9\\LP(O,L) < ||-R/.(ff

if we choose 5A to be piecewise linear interpolant of g interpolating at the breakpoints

xo, • • •, xn, which satisfies

\\9 ~ 9h\\c[o,L) - ^ 0 ( / i £ if).

For the proof of (5.3), for given g G W*(Q,L) use the same argument, but with gh e 5/,
the interpolating function from Lemma Al or A2 for £ = 1 or £ > 1 respectively. D

6. A N ESTIMATE FOR THE DERIVATIVE OF Rhf

In [2, Theorem 2] the bound

(6-1) | ( P * 2 ) ' I M O L ) < Cy\\LAo,L), 9 £Wl(0, L),

for p 6 [l,oo], has been proved for the orthogonal projection Ph on S°. It is shown in
[2] that some restriction has to be imposed on the nonuniformity of the partition ir'h for
(6.1) to hold, unless p = 1. We shall assume that n'h is locally quasiuniform, that is, for
some constant 7 > 1 the condition

(6.2) 7 - ^ ^ ^ 7 , k = l , - - - , n - l , h e H

holds, and that with a constant 5 ̂  1 to be specified later,

£ t ± ± £ < C J l * - « , M=0, . . . ,n .hti + ht
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In [2] a similar bound to that in (6.3) is assumed to hold for !ik/ht instead. It was pointed
out by de Boor [1] that the weaker assumption (6.3) is sometimes advantageous.

In the space of grid functions Gh on TT/, we introduce the mapping D^,

(6.4) Dhf(xkJ) := /i* 7 K ; ) , j = 1, • •", J, k = 0, • • •, n - 1.

We shall prove the following.

THEOREM 6 . 1 . Let p € [1, oo]. Assume that a > 0 in (3.2). Then

(6.5) p := , ' K /l r- < 1.
i(Q(/(1)2) Q(V(°>2))

If p > 1 assume additionally that TTJ, is locally quasiuniform and that (6.3) holds with

(6.6) 6 < p-p/fr-D.

Then

(6.7)

REMARK 6.2. The estimate (6.7) takes a more familiar form if we apply it to a grid
function

/ := 9 ~ 9h,

where g 6 W* (0, L) and gh is the piecewise linear interpolant of g in the breakpoints
x0, • • • ,xn. With the aid of (Al) we then obtain

k=0

Jt=O

(Here we assume p € [l,oo), but the corresponding result is easily seen to hold also for
p — co.) Since Rhgn = 9k, we obtain from (6.7),

(6-8) ^ C\\g'\\LA0,L)

for g € 14^(0, L), h e H, where the known estimate ||5AIUP(O,L) < ||P'IUP(O,L) was used.

We prepare for the proof of Theorem 6.1 with some lemmas.

LEMMA 6 . 3 . The following estimate holds for p € [1, oo]:
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(6-9)

P R O O F : Since /?/,)2/|Ai € P^._l and vanishes at xk and xk+\, the inverse estimate

holds for k = 0, • • •, n — 1, with

- max.— max

The estimate (6.9) now follows with the aid of the piecewise version of Lemma 4.1,

(6-10) l|fl/.,2/|lMAt)<C|l/C f£Gh,

after summing with respect to A; the p-th powers (for p € [1, oo)) of the resulting inequal-

ity. D

In the next lemma we need the diagonal part of the matrix Ah,

Bh ••= dia,g(Akk),

and also

Eh:=B^{Ah-Bh).

LEMMA 6 . 4 . If (6.5) holds then

(6.11) | \Eh\
e\p ^ (21 + 1 ) ' V , t 6 N, p e [1, oo].

Here \Eh\ denotes the matrix obtained by taking the absolute values of the elements in
Eh, and as before, \Fh\p denotes the least upper bound norm of a matrix Fh with respect
to the usual £p norm.

P R O O F : Observe that Eh is tridiagonal with zero diagonal. In the proof of Lemma
3.1 we have calculated the Akt- From there we see, using also (6.5) and 0 < ctk ^ 1, that

= max
k

and hence

The matrix E^ is a banded matrix with at most (2£+ 1) diagonals, from which it follows

that

The assertion then follows by interpolation. D

For the formulation of the next lemma we introduce the (n + 1) x (n + 1) diagonal

matrix
Th:=
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LEMMA 6 . 5 . Under the assumptions of Theorem 6.1

C, h € H, p e [1, oo].(6-12) |(Th-
1/p',4/lT,1

1/p')

PROOF: We have the representation

T-l/v'AhT
x
h

lp' =

where //, is the identity matrix. Since the diagonal elements of Ah and hence also of
satisfy

Akk =

it is easily seen that I-B^lp ^ C- So (6.12) is proved if we show that the Neumann series

for (ih + T^ 'p BhTh J has, uniformly with respect to h 6 H, a convergent majorant

in the p norm. That this is in fact the case is seen from the following estimate, which

takes (6.3) and Lemma 6.4 into account, together with the (2£ + l)-diagonal nature of

EL

ThUp'i max

where 5xlp>p < 1 due to condition (6.6). Thus the Neumann series converges as desired ,
and the result is proved. D

PROOF OF THEOREM 6.1: In view of Lemma 6.3 it is sufficient to prove the bound
for (Rh,if)' only. Now Rh,if can be written in the form

Rh,\f =
1=0

where the vector c = (co, • • • ,Cn) is determined by the linear system (2.13). Then with
c_i := Cn+i •= 0, since ipt\Aj = 0 unless I = j or I = j + 1,

f
3=0

j=0

i=o
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where 1/p + 1/p' = 1 and we have used in the last inequality, in the case p > 1 only, the
estimate

h)~_\ + h]~> < 2(1 + 7 r > , - . + hi?'",

which is a consequence of (6.2). Thus we have obtained the estimate

where again | • |p is the usual lv norm in Cn+1. The system (2.13) can be given the form

and Lemma 6.5 then implies the bound

giving, with (2.15),

Finally, we can prove in the same way as in the middle part of the proof of Lemma 4.2
that the right-hand side of (6.13) is bounded by C\\Dhf\\

p
hp, proving (6.7). D

7. IMPOSING ZERO BOUNDARY CONDITIONS

In this last section we discuss the case that the space 5 h is replaced by

(7.1) S

By Ffy : Gh. -> S% we denote the map corresponding to Rh: (?/,—> 5/, defined by

(7.2)

As we shall see, ii° shares many properties with Rh but there are also some differences.
The first one is that we obtain in comparison to Proposition 2.1 now the following char-
acterisation that (., .)h is an inner product on S°.

PROPOSITION 7 . 1 . The positive semideGnite Hermitian form (., .)h is an inner
product on 5° if and only if either J ^ r, or J = r — 1 and at least one of the extreme
quadrature points £i or £j lies in (0,1).

P R O O F : Assume J = r - 1 and fi g (0,1). Again \\ij)\\h,2 — 0 implies (2.1). Since
i/)(0) = 0 it follows that ip has r roots in [zo,a:i] and hence ip — 0 in Ao. Due to the
continuity of rp it follows that ip(xi) = 0. The reasoning can then be repeated for the
interval [z^a^] and so forth, showing that ip = 0. If £j € (0,1) one starts with [a;n_1,a;n]
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first. The case J ^ r is known already, so that we have shown that the conditions in the
proposition are sufficient for (., .)h to be an inner product. The proof of the necessity,
not spelt out here, follows from applying the elementary fact that a homogeneous linear
system with fewer equations than unknowns has a non-trivial solution. D

We assume in the sequel that (., .)h is an inner product on S°. In the present case
we can give more criteria than in Theorem 4.4 for the stability of {R\}H.

THEOREM 7 . 2 . The sequence {R^H is p-stable for p 6 [l,oo] if one of the
following conditions hold:

(7.3) CT>0 in (3.2)

(7.4) any of the conditions (a)-(f) in Proposition 3.3 holds

(7.5) J ^ r and the partition TTJ, is uniform

(7.6) J = r - 1, f i > 0, O = 1 a n d i n f { a f c : k = 1 , - • • , n - 1 , h e H} > 0

(7.7) J = r - 1, fi = 0, £, < 1 and sup{a* : k = 1, • • •, n - 1, h e H} < 1.

PROOF: Corresponding to (2.4) we split

where S/,,2 is denned in (2.5) and 5 ^ = S° D Sh,i- The functions tpi, • • • ,tpn-i form a
basis in Sjj t . In place of Ah we obtain an (n — 1) x (n — 1) matrix A\ with elements

where Aw is given by (2.14). The p-stability of {i?°}// is then inferred from the inverse
co-stability of {A°h}H as in Lemma 4.2. Define A°l0 := A^_ln := 0 and

It is clear that with a^ik given by (3.1)

(7.8) alk

So the proof of Proposition 3.9 also gives the inverse oo-stability of {/1°}//, assuming
(7.3) or (7.4) to hold. In the case of (7.5) we have ak = 1/2, k — 1, • • •, n - 1, and from
(3.1) and (7.8) we obtain

The latter quantity is positive, as we have shown in the first part of the proof of Propo-
sition 3.3.
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Now assume (7.7) to hold; the proof in the case of (7.6) is similar. With a similar
argument to that used to prove Proposition 3.3 (e) it can be shown that

h,k - (1 - <*k)wi > 0, k = 0, • • •, n,

from which follows with (7.7) and (7.8) that

a°h,k ^ (! - sup ak)wi > 0, k = 1, • • • n - 1.

D
THEOREM 7 . 3 . Let p € [1, ooj and let {R°h}j/ be p-stable. Then

(7.9) \\Rlg - g\\Lp{o,L) -+ 0 (h e H), g e Co[0, L],

(7.10) \\Rl9 ~ 9\\LP(.O,L) < CV4JI<7( / ) IIMO,L), J 6 ^ ( O , L ) ,

for £=!,••• ,r. Here

Co[0, Z,] := {<? € tf[0, X] : g(0) = <?(L) = 0

and

We
p(0, L) := {g e W#0, Z,) : <?(0) = g(L) =

PROOF: The same reasoning as in the proof of Theorem 5.1 applies. The interpo-
lating function g^ € S^ used there is now, due to the zero boundary conditions on g, an
element of S°h, Q

The map R°h is well-defined and j£>-stable in the case J = r - 1 if the additional
conditions given in Theorem 7.2 are satisfied; see (7.6) and (7.7). One might conjecture
that p-stability holds also for symmetric quadrature rules when J = r - 1, but as our
final result we show that this is not the case.

PROPOSITION 7 . 4 . Let J = r- 1, & > 0 and t ie quadrature rule Q be

symmetric. Then for all p € [l, oo], {R°}H >S not p-stable.

PROOF: We construct a null-sequence {fh}n of grid functions such that for all p €

[0, oo], {Ri,ifh}n does not converge to zero. Define

(7.11) fh := J2 c^k, ck := ( - r ) n *sin ^ -a

where

Since
/h |A* = ckrpk + Ck+itpk+i, k = 1, • • •, n - 2,
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it follows that for A; = 1, • • •, n — 2 and j = 1, • • •, J

sin gxf c ) + V(1)fe) sin (£

sin g

Cj.) (sin g ^ ) _ sin g
where in the last step Lemma 7.5 below has been taken into account. Hence, for k =

(7.12)

It is easily seen that (7.12) also holds for k = 0 and k = n - 1, and consequently

H M k p - > 0 (ft 6 if).

On the other hand the vector ch := (0, C\, • • •,Cn_i, 0) € Cn + 1 satisfies

sin Qx) I"de) >0 (heH).

Since //, S 5 ° : we have i?°:1//, = //,• Hence, with the aid of the inequality

(7.13) Mfc, < C|| £ > J | , C6C+1,

(which is obtained by scaling the Lp-integrals over the subintervals Ak and using the
equivalence of all norms in two-dimensional spaces) we conclude that

which shows the instability of {R^}^. Then also {R^}H is not stable since we have

proved in Lemma 4.1 that {R°ht2}n — {^,2}// is always stable. D

It remains only to prove the following lemma.

LEMMA 7 . 5 . Let the assumptions of Proposition 7.4 hold. Then

j = 1 , • • •, J.

PROOF: Since there are r — 1 interior nodes the sesquilinear form

(7.14) Q(x(l - i)^0) , 4>, i, e Pr_2,
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defines an inner product on Pr_2- Let 0 ̂  qr-i be a real polynomial which is orthogonal
to Pr_3 with respect to (7.14). From the defining equations (2.7) of ^ ^ we obtain

0, <£ePr_3, t = 0,1.

Thus the vector obtained by restricting ip^ to the points £,-, j = 1, • • •, r - 1, satisfies
the same orthogonality conditions as gr_2. Since the orthogonal complement of Pr_3 with
respect to (7.14) is one-dimensional, the relation

(7.15) ^ W & ) = f t 0 r - 2 ( & ) , j = l , - " , r - l , t = 0,l,

for some real constants /?0 and /?i follows. The symmetry of Q implies

Q(il>(°P), and we conclude \/30\ = \0i\. The assertion follows now by straightforward

calculation using (7.15). D

In passing we remark also that Theorem 6.1 holds if R^ is replaced by i?°.

A. APPENDIX

For the convenience of the reader we provide the approximation properties of S/,
needed in Section 5.

LEMMA A . I . Let p € [1, oo] and g e W*(0, L). Then the piecewise linear inter-
polant gh of g interpolating at the breakpoints xo, • • •, xn satisfies

\\9 - 0h|Up(O,£) ^

\\g-9h\\h,p ^

P R O O F : Let G denote the Green's function for d?/dx2 with Dirichlet boundary con-
ditions at x — 0 and x = 1. Then, if / e C2[0,1] and / / is the linear function interpolating
/ at 0 and 1, we have the representation

f(x)-fj(x) = jQ
1G(x,y)f"(y)dy

(It can be verified directly that this identity holds also for / € W^(0, L).) It follows with
Holder's inequality that

11/ - //llwo.D ^ sup (f \Gy{x,y)\v' dy)1 ' ||/'||Mo,i).
16(0,1) V0 /

In the usual way we obtain by scaling and taking f(x) := g(xk + hkx)

(Al) l l f f - 5 / . l l i 1 / p
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and hence

\\9-9h\\lA*k) < Chp
k\\g'\\lp{Ak),

Summation with respect to A; proves the assertions. D

LEMMA A. 2 . Let p e [1, oo] and 2 ̂  t < r. Then, for each g e W£(0, L) there
exists a function <?/, G Sh interpolating g at the breakpoints XQ, • • •, xn which satisfies

\\9 - 9hhr(o,L) < Chl
mlLX\\gw\\Lp{OtLh

\\9-9h\WP ^ Che
m

P R O O F : Choose a set of boundary conditions Bk, k = 1, • • •, £, at x = 0 and x = 1
containing derivatives of order £ - 1 at most, such that

and such that the condition

holds. Denote by G the Green's function of (d/dx)1 subject to the corresponding homo-
geneous boundary conditions. For / € Wjf (0,1) choose / / G P*_i such that

We then have the representation

ftr} — fri-r^ — / nix <ii\f(Q/n\riii T c- in ~\\j\x) ji\x) — I Lr\x>y)j \y)ayi x fc iui 1)1

Jo

and obtain by an application of Holder's inequality

(A2) | | / - / /HL^O,!) ^

The function <?/, is constructed by defining, on each subinterval At, a polynomial in
P;_i corresponding to the first part of the proof; this polynomial interpolates g at the
endpoints of A*. Patching the pieces together, a function gh e Sh is obtained. By a
scaling argument one derives from (Al) the bound

\\9 ~ 5*||L»(A») ^ C/4-1 / p | |s«>| |M A t ) , * = 0, • • • ,n - 1.

The assertion is then proved as in the last part of the proof of Lemma Al.
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