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ABSTRACT 
When observing a design space expansion during teamwork, several studies found that cumulative 
solution-related issues' occurrence follows a linear trend. Such findings contradict the hypothesis of 
solution-related issues being characteristic for the later design stages. This work relies on agent-based 
simulations to explore the emerging patterns in design solution space expansion during teamwork. The 
results demonstrate trends that accord with the empirical findings, suggesting that a cognitive effort in 
solution space expansion remains constant throughout a design session. The collected data on agents' 
cognitive processes and solution space properties enabled additional insights, which led to the 
detection of four distinct regimes of design solution space expansion. 
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1 DESIGN SPACE EXPANSION 

A design space can be defined as a changing space of potentialities created by a designer while 

designing (Kan and Gero, 2018). The change in a design space stems from designers' cognitive actions 

denoted as framing and reframing that iteratively shape both a problem and solution space (Dorst, 

2015). During design the problem and the solution spaces are considered to co-evolve (Maher et al., 

1996). A co-evolution model of design has been verified in empirical studies (Dorst and Cross, 2001; 

Yu et al., 2015) and simulated using computational models (Maher, 2000; Maher and Tang, 2003). 

As new design issues are created and introduced, the design space changes through expansion. Design 

space expansion has been linked to creativity (Dorst and Cross, 2001): researchers argued that a larger 

design space creates more opportunities for generating novel, useful and surprising, i.e., creative 

designs (Alsager Alzayed et al., 2019; Gero and Kan, 2016). Studies (e.g., Shah et al., 2000) have 

demonstrated that design space expansion leads to greater design variety and solutions of a higher 

quality and effectiveness. Therefore, it is not surprising that numerous works aimed at studying 

(Alsager Alzayed et al., 2019) and supporting design space expansion through the use of, for example, 

heuristics (Daly et al., 2012) or computational tools (Gero and Kumar, 1993; Han et al., 2018). 

Relatedly, several studies explored the rate at which the design space expands in a team setting (e.g., 

Gero and Kan, 2016; Martinec et al., 2020). For this purpose, studies utilised a cumulative graph of 

issues' occurrences. Kan and Gero (2017) argued that the cumulative occurrence of design issues 

demonstrates a cumulative cognitive effort across the design session. By noting each issue's first 

occurrence (externalised in speech, gesture or sketch), cumulative graphs depict the change in the 

production of issues over the design session. Building on the theories outlined in (Asimov, 1962; 

Kannengiesser and Gero, 2012; Pahl and Beitz, 2007), studies have hypothesised that the trend of 

cumulative new issues' occurrence should follow a logarithmic function with the majority of design 

issues introduced at the session beginning, followed by a decrease in new occurrences as the session 

reaches later stages (Gero and Kan, 2016; Martinec et al., 2020).  

Contrary to these expectations, these studies consistently found a linear trend in the occurrence of 

solution-related issues. While the rate at which new problem-related issues are introduced declines 

towards the session end, new solution-related issues appear at a constant rate throughout the design 

session. Empirical studies further examined if the different patterns in solution-related occurrence 

would emerge when a design task, domain or participants' expertise and education level are varied 

(Gero, Kannengiesser and Pourmohamadi, 2014; Gero, Kannengiesser and Williams, 2014; 

Kannengiesser et al., 2015). Surprisingly, the linear trend in solution space expansion was found 

across all cases studied. 

This work aims at furthering the study of design solution space expansion in teams by simulating a 

large number of design sessions and observing the trends in solution generation. A computational 

model of a design team was developed building on a theory of human cognition (Kahneman, 2011; 

Miyake and Shah, 1999) and design (Gero, 1990; Gero and Kannengiesser, 2004), and its capability to 

replicate several empirical results was demonstrated in the previous work (Perišić et al., 2019a; 

2019b). In this study, the trends in solution generation emerging from the simulations are contrasted to 

the empirical results. The following research question is explored: 

When working in teams, what are the patterns in the temporal change of the size of design solution 

space? 

In contrast to the existing computational approaches simulating design space expansion (Gero and 

Kazakov, 1998; Maher and Tang, 2003) that rely on genetic algorithms, the model used in this study 

represents the details of the designer's cognitive behaviour in an agent. The agent-based model 

developed bases the individual designer's (i.e., agent's) behaviour on existing design literature and 

cognitive studies, and the team-level behaviour emerges as a consequence of the interactions among 

the agents. Thus, utilising the model to study the research question provides the means to gain deeper 

insights into the cognitive processes potentially underlying the trends observed in empirical studies. In 

addition to studying whether the individual processes implemented could give rise to the observed 

team-level trends, utilising the computational simulations enables collecting a large number of design 

sessions whose analysis could uncover potential, but less prominent, patterns in design space 

exploration. 
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2 COMPUTATIONAL MODEL OF A DESIGN TEAM 

The agent-based model used in this simulation study comprises cognitive, situated agents working in 

teams. Each agent's knowledge is represented as a network of design issues, and the agent's cognitive 

processes are modelled as an activation spreading over the network. Building on the Function-

Behaviour-Structure (FBS) ontology (Gero, 1990), each network node represents either a function, 

behaviour or a structure, and the activation spreading from one node to another corresponds to a 

particular FBS process. For example, activation spreading over a link connecting a function and a 

behaviour node represents Formulation. Similarly, when the activation is spread from behaviour nodes 

to structure nodes, the process is interpreted as Synthesis. Following Gero and Kannengiesser (2004) 

there are no links between nodes of the same type, nor direct links from function to structure nodes. 

The design agents should be capable of generating new structures (i.e., structure nodes) and assessing 

the structure behaviour to enable Evaluation, Analysis and Reformulation I processes. Since design 

structures are commonly regarded as networks of parts, each structure node within the agent's mental 

model is associated with a binary, undirected network, Figure 1. Each behaviour node is associated 

with a particular network property. These modelling decisions create a natural association between 

behaviour and structure nodes, thus equipping the agents with the mechanism to determine if a specific 

behaviour-structure link should exist. For example, one behaviour node may correspond to "having 

network density below 0.1". By calculating the associated networks' properties, the agents can 

determine which structure nodes should be connected to this behaviour node. Here, the network's 

properties calculation corresponds to Analysis, while the process of comparing the sets of obtained 

and expected behaviour nodes represents Evaluation. If during evaluation, the agent detects a 

mismatch with the expectations, an activation impulse is sent to function and behaviour nodes relevant 

to the unmet expectations (Reformulations II and III in the FBS ontology). 

Finally, two mechanisms for new structures generation are implemented to enable solution space 

expansion and simulation of the Reformulation I process. The first structure generation mechanism is 

based on the act of combining two structures into one. This union occurs when two structure nodes are 

simultaneously sufficiently active in the agent's mental model and consists of overlaying one structure's 

network over the other. The second structure generation mechanism - concatenation - collapses two 

nodes within the structure's network into one. This mechanism was based on the act of coupling two 

structure parts (e.g., a keyboard and a screen) into one (a touchscreen). Utilising the two structure-

generating mechanisms, the agents can continuously expand the solution space, and the newly generated 

structures have the potential to display behaviours different from that of the originating structures. 

 

Figure 1. Agent's mental model 

A design task is represented as a set of behaviour nodes that a structure has to accommodate to be 

regarded as a solution. In other words, the task poses requirements on the structure network's 

properties. At the commencement of a simulation, a task is generated and presented to the agents. The 
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agents have a memory containing the past tasks' details which enables them to make inferences on 

which function nodes are relevant for the task at hand. The relevant function nodes activate, and the 

activation is passed over the knowledge network. However, the knowledge network links differ in 

their activation transfer capacity. The weight of a link represents ease of its processing, and the 

amount of activation which can be passed over the link in a single simulation step is proportional to 

this weight. As the link is used, its weight increases, thus simulating that the knowledge the link 

represents got more grounded and consequently becomes easier to process.  

The notion of link weight is used to represent an agent's expertise area. Each agent is created as having 

a grounded domain of expertise, which is tied to a combination of behaviour nodes. The relevant links 

connecting the behaviour nodes within its expertise to the function nodes, as well as to structure nodes, 

are well-grounded in the agent's mental model. In other words, each agent is familiar with several 

structures displaying the behaviours specified by its expertise area and is capable of quickly recalling 

such structures.  

A team of agents is created at the simulation's start by randomly selecting agents with diverse 

knowledge and expertise. The team then starts processing the design task and communicating the 

relevant design issues. In each simulation step, the agents can share a knowledge element (a link or a 

structure) that is sufficiently grounded and active in their mental model. If several agents wish to share 

something with others in a particular step, the agent is chosen randomly. The agents can share a 

knowledge link connecting two sufficiently active nodes if the link's weight exceeds a predefined 

threshold. In response, listening agents add or further ground the communicated links in their 

respective mental models. Similarly, if the agent determines that a sufficiently active structure meets 

several requirements (i.e., the relevant links get sufficiently grounded), the agent can propose the 

structure as a solution. The design issues communicated receive an activation impulse in the agents' 

mental models to simulate the effect of attention dedicated to the communicated messages. If the issue 

becomes sufficiently active upon registering the message, the agent's focus changes to include this 

issue. In other words, communication can alter the agent's chain of "thoughts". 

For the simulation to terminate, the whole team has to agree upon a single solution. Each time a 

structure is proposed as a solution, every agent evaluates it against their mental model and presents its 

evaluation to the team. The simulation finishes when the team reaches a consensus on the suitability of 

a particular structure. 

More details on the model's implementation and performance can be found in previous work (Perišić, 

2020). In the context of the study described here, it should be noted, that the model poses no 

restrictions on the content or timing of the messages exchanged among the agents. In other words, the 

agents' exploration of problem and solution space, as well as the generation of new structures, are 

guided solely by each design agent's cognitive processes. 

Simulation settings: The simulated teams consisted of three agents, and the limit on the number of 

simulation steps was set at 1,000. The simulations where the agents found and agreed upon a suitable 

solution were considered, creating a dataset of 1,000 simulations. The design tasks and the agents' 

knowledge and properties were randomly generated at the start of each simulation. Thus, the 

simulations are mutually independent, i.e., every simulation pair differs in both tasks and the agents. 

For each simulation, details of the simulation duration, agent communication, and agents' mental models 

were recorded. In particular, for every structure the agents generated, the data of the structure's properties 

was extracted: the associated network was stored (enabling calculation of network metrics such as 

density, degree centrality or clustering coefficient), and the information on structures used to derive the 

structure at hand was collected. In addition, the first occurrence in the agents' mental models (i.e., the 

structure's creation time stamp), as well as whether and when the structure first appeared in the 

conversation, were extracted. Such a dataset enables tracking the change in the cumulative number of 

structures the agents generated and communicated, thus depicting the design solution space expansion. 

3 RESULTS 

The changes in the cumulative number of structures the agents generated are presented in Figure 2a 

and the cumulative number of structures the agents mentioned is shown in Figure 2b. The figures 

show the data averaged over all simulations. The simulation durations were normalised and, for each 

simulation, a percentage of the overall number of structures generated and communicated was tracked 

as the simulation progressed. Such a transformation preserves the expansion trends and enables 
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comparison among simulations. The average trends and the standard deviations of simulation data are 

presented in Figure 2. 

 

Figure 2. Simulated design solution space expansion: a) the cumulative number of newly 
generated structures, and b) the cumulative number of communicated structures  

(averaged over all simulations, standard deviation shown in lighter colour) 

The data were further studied to determine if particular classes of simulated trends emerged. The 

previously described transformations enabled representing each simulation as a 100-dimensional vector 

capturing the change in percentage of the overall number of mentioned structures. The analysis of such 

data (using silhouette score, as well as the elbow method) indicates the existence of four classes of 

trends, classes A, B, C and D. K-means clustering was used to classify the simulations, and the average 

trends in the cumulative number of mentioned structures for each category are presented in Figure 3. 

  

Class A Class B 

  
Class C Class D 

Figure 3. The cumulative number of communicated structures for each class of simulation 
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Since the data used in classification masks the information on the number of steps needed for 

convergence and omits the details on the actual size of the design space, it is interesting to observe if 

the classes differ in these characteristics. The average values and standard deviations of the simulation 

duration, the number of newly generated structures and the number of communicated structures for 

each class are presented in Table 1. The table also shows the average number of created and 

communicated structures that are feasible solutions (i.e., satisfy the task requirements) per simulation 

run. The data permits characterizing each simulation run using additional properties such as the 

process entropy, differences in generated structures' properties (i.e., novelty calculation), PS index, or 

turn-taking among agents and the speakers' dominance. However, here we only report the differences 

in the convergence speed and in the number of generated and communicated structures and solutions.  

The differences among classes were tested using ANOVA and Kruskal-Wallis tests (depending on 

whether the normality assumption was violated). The subsequent pairwise comparisons were 

performed using Tukey test and Wilcoxon rank sum test with Holm correction. For space limitations, 

only the cases where one class was significantly different from all the others are marked. 

Table 1. Statistics for each class (average value and standard deviation) 

Class Class A Class B Class C Class D 

Class size 209 262 356 173 

Simulation duration 

(SD) 

552.90 

(251.70) 

427.10* 

(193.25) 

638.11 

(181.78) 

645.62 

(228.01) 

Created structures 

(SD) 

131.90* 

(64.64) 

203.90 

(87.87) 

329.62* 

(90.01) 

190.43 

(84.91) 

Mentioned structures 

(SD) 

12.83 

(3.27) 

16.44 

(4.63) 

24.83* 

(7.28) 

15.24 

(4.04) 

Created solutions  

(SD) 

4.85 

(8.83) 

13.79 

(23.39) 

36.67* 

(36.99) 

16.95 

(18.55) 

Mentioned solutions 

(SD) 

1.37* 

(0.72) 

3.517 

(2.48) 

7.53* 

(4.61) 

3.85 

(2.37) 
* class different from every other class at the significance level of p < 0.05  

Finally, the trends in the cumulative number of communicated structures are contrasted with the 

corresponding cognitive effort in generating new structures, i.e., to trends in the cumulative number of 

newly generated structures. Figure 4 provides the details on the average change in the cumulative 

number of newly generated structures for each class. 

  
Class A Class B 
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Class C Class D 

Figure 4. The comparison of trends in the cumulative number of newly created structures 
and the cumulative number of communicated structures for each class (green dashed line 
represents the cumulative number of new structures added to the agents' mental models, 

blue line represents the cumulative number of communicated structures) 

4 DISUCUSSION 

As seen in Figure 2, the simulated teams, on average, first list several structures at the simulation start 

and then proceed to introduce new structures into the conversation at the constant rate until the 

solution is found and simulation terminates. While the linear trend in a change of the cumulative 

number of communicated structures observed as the simulation proceeds matches the findings of the 

empirical studies reported in (Gero, Kannengiesser and Pourmohamadi, 2014; Gero, Kannengiesser 

and Williams, 2014; Kannengiesser et al., 2015), the significant number of structures communicated at 

the session start does not correspond to the empirical findings. The reason for such discrepancy lies in 

the simulation setup where each agent has a well-grounded portion of knowledge that likely overlaps 

with the task requirements. The agents, thus, recognise several relevant function nodes and are able to 

traverse the links to reach the structure space quickly. As evidenced by the graph in Figure 2a, the 

structures communicated at the session start are not newly created. Instead, the agents are reusing the 

existing knowledge to introduce the structures that, at first hand, seem relevant. Since none of the 

structures known to the agents at the simulation start satisfies all of the requirements, the agents then 

proceed to explore the structure space in search of a suitable solution. In doing so, the agents introduce 

new potential solutions at a constant rate. 

The consistent rate at which the solutions are generated in the agents' mental models (Figure 2a) 

accords with empirical studies (Kan and Gero, 2016; 2017) suggesting that the cognitive effort 

directed at the structure space expansion remains constant throughout a design session. Rather than 

shifting to the solution space only after the problem space has been set, the agents rely on the solution-

related issues to inform the problem framing (and vice-versa) from the session start. These findings are 

well-aligned with the principles of the co-evolution model of design. 

A more in-depth study of the dataset revealed that the simulations could be classified as belonging to 

one of the four regimes depicted in Figure 3. Of these classes, the most common one, Class C, shows a 

more linear trend than that obtained by averaging over all simulations. The simulations falling in this 

class closely match the empirical results reported in the literature, demonstrating that the cognitive 

processes implemented are sufficient to generate trends observed in the real world. Nevertheless, the 

remaining classes offer several interesting insights as well. The four classes are discussed: 

1. The first class, denoted as Class A, is characterised by an initial period where several structures 

are introduced, followed by a period of stagnation in design structure space expansion: only a few 

new structures are added to the conversation in the later periods. The inspection of the data 

revealed that the simulations in this class correspond to tasks for which the solutions are scarce 

and modifying a (partial) solution using union or concatenation mechanisms leads to a structure 

that no longer satisfies the requirements. In such a setting, the agents are progressing very slowly. 

The majority of newly generated structures get immediately dismissed as unsatisfactory and are, 

thus, not communicated to the team. Instead, the agents discuss the function and behaviour 

issues, since those remain consistently active in their mental models. As a result of this dynamic, 
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the number of communicated structures remains mostly unchanged. However, once a suitable 

solution is detected, the agents quickly converge to this solution. Namely, the long period of 

discussing the problem-related issues enables the agents to develop similar views on the 

requirements. Once a solution is proposed, the agents quickly recognise its suitability and 

converge. 

2. The second class, Class B, is characterised by a pattern of structure occurrence that follows a 

logarithmic function. In addition, this simulation class contains the shortest simulations, i.e., the 

tasks for which the agents converged quickly. The typical case falling in this category is the one 

where several partial solutions (i.e., meeting most, but not all, of the requirements) are known to 

the agents at the simulation start and modifying them generates new partial solutions. These 

partial solutions remain sufficiently active throughout the simulation, thus creating a basis upon 

which the agents expand the solution space. However, despite a relatively large number of 

generated structures, the structures rarely satisfy all the requirements. Thus, once an agent 

generates a suitable structure, this structure remains the most active in its mental model (i.e., the 

agent becomes fixated) and continuously shares this structure with others. After some time, the 

rest of the agents focus on the proposed structure, and the team eventually accepts it as a solution. 

3. The third class, Class C, is the one where the agents know several partial solutions and modifying 

them does not disturb the network properties upon which the requirements are posed. In contrast 

to Class A, the newly generated structures in this setting do not get dismissed but are reused and 

built upon to generate additional structures. Over the course of the simulations, the agents create 

many structures and manage to find several suitable solutions. However, the larger number of 

solutions prolongs the time needed for convergence as each agent has their solution candidate(s). 

4. The fourth class, Class D, exhibits a trend in the solution space expansion that resembles a cubic 

function. In other words, the fourth class is characterised by a period of stagnation in solution 

space expansion occurring at the beginning or in the middle of a design session. Inspection of the 

data revealed that such pattern commonly results from several agents having insufficient 

knowledge about the task requirements, thus halting their progress past the initial guesses. 

Throughout the simulation, the agents slowly learn about the problem or rely on a more 

knowledgeable (i.e., expert) agent to provide links that would describe the requirements and 

enable reaching the solution space. While new structures can be generated during this process, 

the links connecting structures to relevant behaviour nodes are not sufficiently grounded. Thus, 

the most active knowledge elements in agents' mental models remain those related to the problem 

space. Accordingly, during this session period, the agents discuss the problem rather than the 

solution. Once the problem is sufficiently understood, the agents start revising the past structures 

and introducing new ones, until they finally converge. 

The results in Table 1 demonstrate the magnitude of differences among the classes. For example, the 

simulations in Class A have a significantly smaller number of created structures and mentioned 

solutions than simulations in any other class. The mean number of mentioned solutions is slightly 

above one, showing that in numerous instances the agents accepted the first (and only) solution they 

encountered. On the opposite end of the spectrum regarding the number of communicated and 

generated structures (and solutions) is Class C. The simulations in this class contained, on average, 

more than a double the number of generated solutions than the simulations in other classes. These 

results indicate that the design processes following the patterns displayed by the simulations in Class 

C have the highest probability of resulting in creative outcomes. However, the data also demonstrate 

that generating a large number of suitable structures may significantly delay the convergence.  

Finally, one can discuss the relation among the cognitive effort - measured through the number of 

newly generated structures - and the cumulative number of communicated structures. Kan and Gero 

(2017) used the cumulative number of communicated structures as a proxy for cognitive effort, 

assuming that the two followed a similar pattern. While these assumptions hold for the majority of 

simulated cases, Figure 4 demonstrates that several instances in Classes A and D deviate from this 

assumption. Namely, while the corresponding cumulative graphs of the structure occurrences imply no 

cognitive effort directed at structure space expansion, the cumulative graphs of the newly generated 

structures in both cases show that new structures are being created. These structures are deemed 

inadequate in the context of the task at hand or are insufficiently active to be mentioned in the 

communication. Thus, the agents opt not to share them with others. 

Table 2 summarizes the discussion by describing a typical simulation from each of the classes.  
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Table 2. Summary describing a typical simulation in each class 

 Simulation properties Team behaviour Outcomes 

Class A - Building on partial 

solutions results in 

structures not satisfying any 

requirements 

- Scarce solutions available 

- Newly generated structures 

dismissed and not reused 

- Small number of structures 

communicated 

- Quick acceptance of the 

proposed solution 

- Logarithmic cumulative 

structure occurrence 

- Very small number of 

solutions 

- Moderately quick 

convergence 

Class B -Building on partial 

solutions results in other 

partial solutions but rarely 

leads to solutions 

- Agents build on the 

generated partial solutions 

- Agent(s) fixate(s) one 

solution and persuade(s) 

others to accept it 

- Logarithmic cumulative 

structure occurrence 

- Moderately high number 

of solutions 

-Quick convergence 

Class C - Building on partial 

solutions preserves 

properties relevant to the 

task 

- Large number of solutions 

available 

- New structures generated at 

a constant rate (building on 

partial solutions) 

- A large number of solution 

candidates proposed 

 - Linear cumulative 

structure occurrence 

- Large number of solutions 

- Slow convergence 

Class D - Similar to C but there is a 

mismatch between agents' 

knowledge and task 

requirements 

- A long period dedicated to 

problem discussion (due to 

incomplete knowledge) 

- Cumulative structure 

occurrence resembles a 

cubic function 

- Slow convergence 

5 CONCLUSION 

This work utilised computational agent-based simulations to explore the trends in the design solution 

space expansion in teams. The results demonstrate that cognitive mechanisms implemented in the 

agents are sufficient for the emergence of a linear trend in a cumulative structure occurrence, agreeing 

with the empirical findings. Similar to real-world studies, the simulated team's cognitive effort in 

exploring and expanding the solution space remains constant throughout a design session.  

To further the study of team solution space expansion, the simulated sessions were inspected to detect 

classes of emerging patterns. The analysis resulted in the detection of four distinct solution space 

expansion regimes displayed by the simulated teams. Further studies should explore whether the 

regimes occur in the empirical data, and simulations can be utilised to suggest approaches that mitigate 

the difficulties in solution space expansion observed in several classes. 

The computational model can be improved in several ways to further the study of solution space 

expansion. Namely, the results revealed a discrepancy with the empirical data in the agents' behaviour 

at the session start. Also, the task-generating algorithm should be refined, and agents should be 

equipped with additional problem-solving strategies and mechanisms for structure generation. 

Currently, tasks are created randomly, sometimes resulting in tasks unsolvable using the existing 

solution-generating mechanisms. 

The detail data on the structure space and the agents' cognitive behaviour provide numerous avenues 

for future research. For example, the future work will explore the link among the solution space 

expansion and the novelty of the generated solutions, informing creativity studies. Similarly, the data 

on the individual cognitive behaviour can be contrasted to that displayed at the team level to gain 

deeper insights into the emergence of team-level phenomena. 
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