A. $3r^2$ B. $2r^2$ C. $3r^2\sqrt{\frac{3}{4}}$ D. $r^2\sqrt{3}$ E. $3r^2\sqrt{3}$

22. The number 121_b written in the integral base, b, is the square of an integer for:

A. b=10 only B. b=10 and b=5 only C. $2 \le b \le 10$ D. b>2 E. no value of b.

23. In \triangle ABC, CD is the altitude to AB, and AE the altitude to BC. If the lengths of AB, CD, and AE are known, the length of DB is:

A. not determined by the information given B. determined only if A is acute C. determined only if B is acute D. determined only if ABC is an acute \triangle E. none of these is correct.

40. The limiting sum of the infinite series $1|10+2|10^2+3|10^3+\ldots$ whose nth term is $n/10^n$, is:

A. $\frac{1}{9}$ B. $\frac{10}{81}$ C. $\frac{1}{8}$ D. $\frac{17}{72}$ E. larger than any finite quantity.

The Editor. The Mathematical Gazette.

Dear Sir,—Following a reference by Mr A. P. Rollett, during a recent lecture, to the minimum length of road required to connect the four corners of a square, I have tried to reduce the problem to a simple form. Take a piece of wood, 3 tin-tacks, and a piece of string, and tie one end of the string to corner B. Carry the string around corner A, and centre O, and up and around the mid-point of string AB. Pull down, and the maximum length of the loose end will indicate the minimum lay-out of the road system i.e. AM plus MB plus OM, together with a similar figure in the lower half of the square. If a pencil were attached to the loose end, and the eye of a needle employed to keep the junction in position, the relevant graph could be drawn, and would support the result, readily obtainable by using the calculus, that $\angle AMB = 120^{\circ}$

Yours faithfully, R. C. Thomas

Aish House, Stoke Gabriel, Devon.

