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Abstract. We discuss the half-liberation operation X → X∗, for the algebraic
submanifolds of the unit sphere, X ⊂ SN−1

� . There are several ways of constructing
this correspondence, and we take them into account. Our main results concern the
computation of the affine quantum isometry group G+(X∗), for the sphere itself.
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1. Introduction. The notion of noncommutative space goes back to an old
theorem of Gelfand, which states that any commutative C∗-algebra must be of the
form C(X), for a certain compact space X . One can therefore define the category of
“noncommutative compact spaces” to be the category of C∗-algebras, with the arrows
reversed. The category of usual compact spaces embeds then covariantly into this
category, via X → C(X).

We will be interested here in noncommutative analogues of the compact algebraic
manifolds X ⊂ �N . These are by definition the duals of the universal C∗-algebras
defined with generators z1, . . . , zN , subject to (noncommutative) polynomial relations:

C(X) = C∗(z1, . . . , zN
∣∣Pi(z1, . . . , zN) = 0)

The Gelfand theorem tells us that this construction covers all the compact algebraic
manifolds X ⊂ �N . In general, the axiomatization of the algebras on the right is quite
a tricky problem. Instead of getting into details here, let us just say that the family of
noncommutative polynomials {Pi} must be by definition such that the biggest C∗-norm
on the universal ∗-algebra 〈z1, . . . , zN |Pi(z1, . . . , zN) = 0〉 is bounded.

The compact quantum Lie groups, axiomatized by Woronowicz in [23, 24], and
their homogeneous spaces, provide some key examples of such manifolds. Technically
speaking, one problem with such quantum groups is that they lack an analogue of a
Lie algebra. As explained in [23, 24], one solution to this issue comes from the intensive
use of representation theory, in order to overcome the lack of geometric techniques.

The aim of this paper is to use some quantum group ideas, coming from
representation theory, in the complex manifold setting. Let X be as above, and
consider its classical version Xclass ⊂ �N , obtained by dividing the algebra C(X) by its
commutator ideal:

C(Xclass) = C∗
comm

(
z1, . . . , zN

∣∣∣Pi(z1, . . . , zN) = 0
)

.
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We can think then of X as being a “liberation” of Xclass, and the problem is that
of understanding how the correspondence Xclass → X can appear.

This latter question was solved in the quantum group case in [5], by using some
inspiration from Wang’s papers [20, 21], from the Weingarten formula [3, 12, 22], and
from free probability theory [7, 18, 19]. Among the findings there, and from the related
papers [6, 8, 10], is the fact that, for liberation purposes, the usual commutation
relations ab = ba can be successfully replaced by the half-commutation relations
abc = cba. This is actually a quite non-trivial phenomenon, which comes from the
fact that the half-commutation relations abc = cba have a deep categorical meaning.
See [5].

As explained in [8, 10], there are several possible ways of half-liberating a manifold
X ⊂ SN−1

� , and we will take this into account. We will show here that, under suitable
assumptions on X ⊂ SN−1

� , we have a half-liberation diagram for it, as follows:

X �� X∗∗ �� X∗

X− ��

��

X◦

��

�� X#

��

.

Our main results will concern the sphere X = SN−1
� itself. More specifically, we

will be interested in computing the quantum isometry groups of its various half-
liberations. Our approach here will be based on the affine quantum isometry group
formalism [11, 13, 15, 16], with various technical ingredients from [1, 6, 10, 17]. We
will prove that the affine quantum isometry groups of the six half-liberated spheres are
as follows:

SN−1
�

�� SN−1
�,∗∗ �� SN−1

�,∗

�SN−1
�

��

��

SN−1
�,◦

��

�� SN−1
�,#

��

−→

UN �� U∗∗
N

�� U∗
N

�ON
��

��

U◦
N

��

�� U#
N

��

.

In other words, our result will state that, for the sphere X = SN−1
� itself, the

quantum isometry groups of the half-liberations are the half-liberations of the usual
isometry group. This could be thought of as being related to the various rigidity results
in [9, 14].

The paper is organized as follows: in 1–2 we discuss the half-liberation operation
for the complex sphere itself, in 3–4 we study the associated quantum isometry groups,
and in 5–6 we discuss the case of more general algebraic manifolds X ⊂ SN−1

� .

2. Noncommutative spheres. According to [2, 4], which were based on the
previous work of Wang in [20], the free analogue of the complex unit sphere SN−1

�

is constructed as follows:
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DEFINITION 2.1. Associated to any N ∈ � is the universal C∗-algebra

C(SN−1
�,+ ) = C∗

(
z1, . . . , zN

∣∣∣∑
i

ziz∗
i =

∑
i

z∗
i zi = 1

)
,

whose abstract spectrum SN−1
�,+ is called free analogue of SN−1

� .

Observe that the classical version of SN−1
�,+ , obtained by assuming in addition that

the standard coordinates zi and their adjoints z∗
i commute, is the usual sphere SN−1

� .
This follows indeed from the Stone–Weierstrass and Gelfand theorems. See [2, 4].

We will be interested in what follows in various half-liberated analogues of SN−1
� .

We have the following constructions here, which go back to the work in [2]:

DEFINITION 2.2. We have the following subspheres of SN−1
�,+ :

(1) SN−1
�,∗ : obtained via the relations ab∗c = cb∗a, with a, b, c ∈ {zi}.

(2) SN−1
�,∗∗ : obtained via the relations abc = cba, with a, b, c ∈ {zi, z∗

i }.
(3) SN−1

�,# : obtained via the relations ab∗ = ba∗, a∗b = b∗a, with a, b ∈ {zi}.
(4) SN−1

�,◦ : obtained as an intersection, SN−1
�,◦ = SN−1

�,# ∩ SN−1
�,∗∗ .

Once again, we use here the general C∗-algebra philosophy, which allows us to
define noncommutative compact subspaces SN−1

× ⊂ SN−1
�,+ , by dividing the algebra

C(SN−1
�,+ ) by various algebraic relations, and then by taking the abstract spectrum.

See [2].
In addition to the above 4 noncommutative spheres, and to the sphere SN−1

� itself,
we have as well the following “subsphere” of SN−1

� , which is of interest for us:

�SN−1
� =

{
(ux1, . . . , uxN) ∈ SN−1

�

∣∣∣u ∈ �, (x1, . . . , xN) ∈ SN−1
�

}
.

Here, and in what follows, � is the unit circle in the complex plane.
When adding the above new “sphere” to the five examples that we have so far, we

obtain a set of objects which is stable by intersections, as follows:

PROPOSITION 2.3. We have the following diagram, with all maps being inclusions:

SN−1
�

�� SN−1
�,∗∗ �� SN−1

�,∗

�SN−1
�

��

��

SN−1
�,◦

��

�� SN−1
�,#

��

In addition, this is an intersection diagram, in the sense that any intersection X ∩ Y
appears on the diagram, as the biggest object contained in both X, Y.

Proof. The upper horizontal inclusions are all clear. The lower horizontal
inclusions are clear as well, with �SN−1

� ⊂ SN−1
�,◦ coming from the fact that the standard

coordinates zi = uxi on �SN−1
� satisfy the relations ab∗ = ba∗ = a∗b = b∗a.
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The two vertical inclusions on the left are clear. The remaining vertical inclusion,
on the right, comes from the fact that, by using ab∗ = ba∗, a∗b = b∗a, we obtain:

ab∗c = ba∗c = bc∗a = cb∗a.

The intersection claim on the right is clear from the definition of SN−1
�,◦ . Regarding

the intersection claim on the left, this states that SN−1
�,− = SN−1

� ∩ SN−1
�,◦ equals �SN−1

� .

We have SN−1
�,− ⊂ SN−1

� , so consider a point z ∈ SN−1
�,− . Since we have SN−1

�,− ⊂ SN−1
�,# ,

the coordinates of z must satisfy the relations ab∗ = ba∗, a∗b = b∗a, so we have ziz̄j =
zjz̄i. In the case zi, zj �= 0, we obtain zi/z̄i = zj/z̄j, and we deduce that the numbers zi/z̄i

are all equal, independently of the index i satisfying zi �= 0. Now by multiplying by a
suitable scalar u ∈ �, we can assume that we have zi/z̄i = 1, for any i such that zi �= 0.
Thus, up to the multiplication by a scalar u ∈ �, we have z ∈ SN−1

� , as desired. �
As already mentioned, the above six spheres were introduced in [2]. In order to

explain where these spheres come from, let us recall from [2] that we have:

PROPOSITION 2.4. We have the following intersection diagram,

SN−1
�,+ �� SN−1

�,+

��
SN−1

�,∗

��

SN−1
�

�� SN−1
�,∗∗ �� SN−1

�,∗

��

SN−1
�

��

��

�SN−1
�

��

��

SN−1
�,◦

��

�� SN−1
�,#

��

with the spheres on the left being the real versions (zi = z∗
i ) of the spheres on the right.

Proof. Observe first that SN−1
� is the real version of SN−1

�,# , because when assuming
that the coordinates are self-adjoint, the relations ab∗ = ba∗, a∗b = b∗a read ab = ba.

Also, we have an inclusion SN−1
�,∗ ⊂ SN−1

�,∗∗ , because when taking the real version

SN−1
�,∗ of the sphere SN−1

�,∗ , the defining relations ab∗c = cb∗a read abc = cba.
With these observations in hand, the fact that we have the diagram in the statement,

and that this is an intersection diagram, are clear from Proposition 1.3. �
The point now is that the above 10 spheres have a number of common features:

PROPOSITION 2.5. The above 10 spheres appear from SN−1
�,+ via relations of type

ze1
i1 . . . zek

ik = zd1
iσ (1) . . . zdk

iσ (k)
,∀i1, . . . , ik,

where σ ∈ Sk is a permutation, and where ei, di ∈ {1, ∗} are exponents.

Proof. The 10 spheres appear indeed from SN−1
�,+ via the following relations:

a = a∗, ab = ba, ab∗ = b∗a, ab∗ = ba∗, a∗b = b∗a,

abc = cba, abc∗ = c∗ba, ab∗c = cb∗a.

Now since all these relations are as in the statement, this proves the result. �
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As explained in [2], the formalism in Proposition 1.5 is in fact too wide. The solution
proposed in [2] is that of starting with SN−1

� ⊂ SN−1
�,∗ ⊂ SN−1

�,+ , which are conjecturally
the only real examples, and then by performing 3 operations:

(1) Mirroring: this produces the spheres SN−1
� ⊂ SN−1

�,∗∗ ⊂ SN−1
�,+ .

(2) Free complexification: this produces the extra spheres SN−1
�,# ⊂ SN−1

�,∗ .

(3) Taking intersections: this produces the remaining spheres �SN−1
� ⊂ SN−1

�,◦ .

Summarizing, the above 10 spheres are expected to be the “only ones”, under some
strong axioms, which are however not available yet. See [2].

Let us try now to better understand the half-liberated spheres. Given SN−1
× ⊂ SN−1

�,+ ,

the associated projective space is the quotient SN−1
× → PN

× given by the fact that
C(PN

×) ⊂ C(SN−1
× ) is the subalgebra generated by the variables pij = ziz∗

j . We have
then:

THEOREM 2.6. The projective spaces for the six half-liberated spheres are

PN
� PN

� PN
�

PN
�

��

PN
�

��

PN
�

��

,

where PN
� , PN

� are the usual real and complex projective spaces.

Proof. We use the following presentation results, coming from the Gelfand
theorem:

C(PN
� ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = pt = p∗ = p2, Tr(p) = 1
)

,

C(PN
� ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, Tr(p) = 1
)

.

By functoriality, the projective spaces for our six spheres are as follows:

PN
�

�� PN
�,∗∗ �� PN

�,∗

PN
�

��

��

PN
�,◦

��

�� PN
�,#.

��

In order to finish, it is enough to prove that we have PN
�,∗ ⊂ PN

� , PN
�,# ⊂ PN

� .
PN

�,∗ ⊂ PN
� . From ab∗c = cb∗a we obtain ab∗cd∗ = cb∗ad∗ = cd∗ab∗, so the

variables pij = ziz∗
j commute. In addition, we have p = p∗ = p2, Tr(p) = 1, and we

are done.
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PN
�,# ⊂ PN

� . From ab∗ = ba∗ we deduce that the matrix pij = ziz∗
j is symmetric, and

so PN
�,# ⊂ PN

�,∗ = PN
� follows to be a subspace of PN

� , as desired. �

We should mention that the above result has an extension to the 10-sphere
framework of Proposition 1.4, with the three rows of spheres corresponding to the
three types of projective spaces (real, complex, free). Indeed, we have PN

�,∗ = PN
� , and

the inclusion PN
�,+ ⊂ PN

�,+ is known to be an isomorphism at the level of reduced
versions. See [2, 4].

3. Matrix models. We further advance now on the understanding of the six half-
liberated spheres.

Given a subspace X ⊂ SN−1
�,+ , we can consider the subalgebra C(X̃) ⊂ C(�) ∗ C(X)

generated by the elements wi = uzi, where u ∈ C(�) is the standard generator. Since
we have

∑
i wiw

∗
i = ∑

i w
∗
i wi = 1, we obtain in this way a closed subspace X̃ ⊂ SN−1

�,+ ,
called free complexification of X . See [1, 17]. With this notion in hand, we have:

PROPOSITION 3.1. We have inclusions and equalities as follows:

S̃N−1
�

�� S̃N−1
�,∗ SN−1

�,∗

S̃N−1
�

��

��

S̃N−1
�,#

��

SN−1
�,# ,

��

making correspond standard coordinates to standard coordinates.

Proof. Consider the diagram in Proposition 1.3, with �SN−1
� replaced by SN−1

� . By
functoriality, we have inclusions as follows:

S̃N−1
�

�� S̃N−1
�,∗∗ �� S̃N−1

�,∗

S̃N−1
�

��

��

S̃N−1
�,◦

��

�� S̃N−1
�,# .

��

Thus, we have the square on the left in the statement. In order to prove now the
isomorphisms on the right, consider the space S̃N−1

�,∗ , with coordinates wi = uzi. We
have:

wiw
∗
j wk = uziz∗

j zk = uzkz∗
j zi = wkw

∗
j wi.

Thus, we have S̃N−1
�,∗ ⊂ SN−1

�,∗ . As for the converse inclusion, this follows by using
the following composition, with ε ∗ id on the right, where ε : C(�) → � is the counit:

C(̃SN−1
�,∗ ) ⊂ C(�) ∗ C(SN−1

�,∗ ) → C(SN−1
�,∗ ).
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In order to establish now the lower right isomorphism, consider the space S̃N−1
�,# ,

with coordinates wi = uzi. We have then S̃N−1
�,# ⊂ SN−1

�,# , because:

wiw
∗
j = uxi · x∗

j u∗ = uxj · x∗
i u∗ = wjw

∗
i

w∗
i wj = x∗

i u∗ · uxj = x∗
j u∗ · uxi = w∗

j wi.

As for the converse inclusion, this follows by using the counit, as before. �

Regarding now SN−1
�,∗∗, SN−1

�,◦ , we can use here some 2 × 2 matrix tricks, inspired

from [10]. Given a closed subspace X ⊂ SN−1
�,+ , with coordinates denoted zi, we can

consider the subalgebra C(|X |) ⊂ M2(C(X)) generated by the following elements:

z′
i =

(
0 zi

z∗
i 0

)
.

Since these elements are self-adjoint, and their squares sum up to 1, we have
|X | ⊂ SN−1

�,+ . We call this space |X | doubling of X . We have then the following result:

PROPOSITION 3.2. We have inclusions and equalities as follows:

SN−1
�,∗ SN−1

�,∗ �� SN−1
�,+

|SN−1
� | ��

��

|SN−1
�,∗ |

��

�� |SN−1
�,+ |,

��

mapping the standard coordinates to the standard coordinates.

Proof. The inclusion on the right appears as the particular case X = SN−1
�,+ of the

inclusion |X | ⊂ SN−1
�,+ constructed above. Regarding now the middle inclusion, we have:

z′
iz

′
jz

′
k =

(
0 zi

z∗
i 0

) (
0 zj

z∗
j 0

) (
0 zk

z∗
k 0

)
=

(
0 ziz∗

j zk

z∗
i zjz∗

k 0

)
.

Now by assuming that the elements zi are the standard coordinates of SN−1
�,∗ , we

conclude that we have z′
iz

′
jz

′
k = z′

kz′
jz

′
i, and this gives the middle inclusion. Finally, the

inclusion on the left follows by restricting the inclusion in the middle. �

In order to extend the above notions to the complex case, we begin with a technical
result, regarding the relation between the real and the complex spheres.

We denote by xi the coordinates on the real spheres. In the odd-dimensional case,
we can split half-half the coordinates, and denote them xi, yi. We have then:
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PROPOSITION 3.3. We have the following diagram, given by zi = xi + iyi,

S2N−1
�

�� S2N−1
�,∗ �� S2N−1

�,+

Ṡ2N−1
�

�� Ṡ2N−1
�,∗ ��

��

Ṡ2N−1
�,+

��

SN−1
�

�� SN−1
�,∗∗ �� SN−1

�,+ ,

where each Ṡ2N−1
�,× ⊂ S2N−1

�,× is obtained via the relations
∑

i[xi, yi] = 0.

Proof. The composition on the left corresponds to the isomorphism SN−1
� = S2N−1

�

given by zi = xi + iyi. Observe that we have indeed Ṡ2N−1
� = S2N−1

� , by commutativity.
We construct now the maps on the right. With z = x + iy we have:

zz∗ = (x + iy)(x − iy) = x2 + y2 − i[x, y]

z∗z = (x − iy)(x + iy) = x2 + y2 + i[x, y].

Thus, with zi = xi + iyi, we have the following formulae:∑
i

ziz∗
i =

∑
i

(x2
i + y2

i ) − i
∑

i

[xi, yi]∑
i

z∗
i zi =

∑
i

(x2
i + y2

i ) + i
∑

i

[xi, yi].

We conclude that we have the following equivalence:∑
i

ziz∗
i =

∑
i

z∗
i zi = 1 ⇐⇒

∑
i

x2
i + y2

i = 1,
∑

i

[xi, yi] = 0.

But this gives a quotient map C(S2N−1
�,+ ) → C(SN−1

�,+ ), given by xi = Re(zi), yi =
Im(zi), and this map factorizes as C(S2N−1

�,+ ) → C(Ṡ2N−1
�,+ ) = C(SN−1

�,+ ), as desired.
Regarding now the middle maps, we must show that, with zi = xi + iyi, we have:{

xi, yi half − commute
}

⇐⇒
{

zi, z∗
i half − commute

}
.

The “ =⇒ ” assertion being clear, let us discuss now the “⇐=” assertion. Here the
half-commutation relations abc = cba with a, b, c ∈ {zi, z∗

i } can be written as follows,
in terms of a = x + iy, b = z + it, c = u + iv, with x, y, z, t, u, v self-adjoint:

(x + αy)(z + βt)(u + γ v) = (u + γ v)(z + βt)(x + αy) ∀α, β, γ ∈ {i,−i}.
Now by looking at the real and imaginary parts, we obtain the following system

of equations, once again valid for any choice of α, β, γ ∈ {i,−i}:{
(xzu − uzx) + αβ(ytu − uty) + βγ (xtv − vtx) + αγ (yzv − vzy) = 0

α(yzu − uzy) + β(xtu − utx) + γ (xzv − vzx) + αβγ (ytv − vty) = 0.
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From the eight possible choices of α, β, γ ∈ {i,−i}, we select now the four ones
having at most one −i among α, β, γ . The corresponding 4 × 4 determinants being
both nonzero, we conclude that the global system, formed by the above 2 × 8 = 16
equations, is equivalent to the vanishing of all eight quantities of type xzu − uzx, and
we are done. �

Let us go back now to the question of finding a complex analogue of Proposition
2.2. Given a closed subspace X ⊂ S2N−1

�,+ , with coordinates denoted xi, yi, we can
consider the subalgebra C([X ]) ⊂ M2(C(X)) generated by the following elements:

zi =
(

0 xi

x∗
i 0

)
+ i

(
0 yi

y∗
i 0

)
.

We call this space [X ] complex doubling of X . Observe that we do not have in
general [X ] ⊂ SN−1

�,+ , because the formulae
∑

i ziz∗
i = ∑

i z∗
i zi = 1 are not satisfied.

In relation now with SN−1
�,∗∗, SN−1

�,◦ , let us introduce the following manifolds:

Ṡ2N−1
� =

{
(x, y) ∈ S2N−1

�

∣∣∣∑
i

xiȳi ∈ �

}
S̈2N−1

� =
{

(x, y) ∈ Ṡ2N−1
�

∣∣∣xix̄j + yiȳj ∈ �, xiȳj − yix̄j ∈ i�
}

.

Consider as well the manifold �2SN−1
� ⊂ S2N−1

� consisting of the points of the form
u(λp, μp), with u ∈ �, (λ,μ) ∈ S1

� � �, and p ∈ SN−1
� . We have then:

THEOREM 3.4. We have inclusions of noncommutative spaces as follows:

[�S2N−1
� ] �� [Ṡ2N−1

� ]

[�2SN−1
� ]

��

�� [S̈2N−1
� ]

��

−→

SN−1
�

�� SN−1
�,∗∗

�SN−1
�

��

�� SN−1
�,◦ ,

��

mapping the standard coordinates to the standard coordinates.

Proof. We have to prove that the 2 × 2 matrix model construction zi = x′
i + iy′

i,
with w′ = (0

w̄
w
0 ), induces morphisms of algebras as follows:

C(SN−1
�,∗∗) ��

��

C(SN−1
� )

��
C(SN−1

�,◦ ) �� C(�SN−1
� )

−→

M2(C(Ṡ2N−1
� )) ��

��

M2(C(�S2N−1
� ))

��
M2(C(S̈2N−1

� )) �� M2(C(�2SN−1
� )).

We will first construct the morphism C(SN−1
�,∗∗) → M2(C(Ṡ2N−1

� )), and then we will
obtain the remaining three morphisms by factorizing this morphism.
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(1) We first construct the morphism at top left. We recall from Proposition 2.3
above and its proof that with zi = xi + iyi, we have the following equivalence:∑

i

ziz∗
i =

∑
i

z∗
i zi = 1 ⇐⇒

∑
i

x2
i + y2

i = 1,
∑

i

[xi, yi] = 0.

In our situation now, with zi = x′
i + iy′

i, and (x, y) ∈ Ṡ2N−1
� , we have:

∑
i

x′2
i + y′2

i =
∑

i

(|xi|2 0
0 |xi|2

)
+

(|yi|2 0
0 |yi|2

)
=

(
1 0
0 1

)
,

∑
i

[x′
i, y′

i] =
∑

i

(
xiȳi 0

0 x̄iyi

)
−

(
yix̄i 0

0 ȳixi

)
=

(
0 0
0 0

)
.

Thus, we have a morphism C(SN−1
�,+ ) → M2(C(Ṡ2N−1

� )). Now since the
matrices x′

i, y′
i half-commute, the variables zi = x′

i + iy′
i and their adjoints

z∗
i = x′

i − iy′
i half-commute as well, and we therefore obtain a factorization

C(SN−1
�,∗∗) → M2(C(Ṡ2N−1

� )).

(2) We prove now that, when restricting attention to S̈2N−1
� ⊂ Ṡ2N−1

� , we obtain
a model for SN−1

�,◦ ⊂ SN−1
�,∗∗ . For this purpose, we recall that SN−1

�,◦ ⊂ SN−1
�,∗∗

appears via the relations ab∗ = ba∗, a∗b = b∗a. With a = x + iy, b = z + it,
these relations are:{

(x + iy)(z − it) = (z + it)(x − iy),

(x − iy)(z + it) = (z − it)(x + iy).

These relations read [x, z] + [y, t] = ±i(xt + tx − yz − zy), so they are
equivalent to: {

[x, z] + [y, t] = 0,

xt + tx = yz + zy.

Now in terms of our variables zi = x′
i + iy′

i, we must have:{
[x′

i, x′
j] + [y′

i, y′
j] = 0,

x′
iy

′
j + y′

jx
′
i = y′

ix
′
j + x′

jy
′
i.

In order to apply these equations to our 2 × 2 matrices, we use the following
formula:

x′y′ =
(

0 x
x̄ 0

)(
0 y
ȳ 0

)
=

(
xȳ 0
0 x̄y

)
.

We are therefore led to the following equations, for the parameter space for
SN−1

�,◦ : {
xix̄j − xjx̄i + yiȳj − yjȳi = 0

xiȳj + yjx̄i = yix̄j + xjȳi.
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These latter equations can be written more conveniently, as follows:{
xix̄j + yiȳj = xjx̄i + yjȳi

xiȳj − yix̄j = xjȳi − yjx̄i.

But these are exactly the equations for S̈2N−1
� ⊂ Ṡ2N−1

� , and we are done.
(3) We prove now that, when restricting attention to �S2N−1

� ⊂ Ṡ2N−1
� , we obtain

a model for SN−1
� ⊂ SN−1

�,∗∗ . In order to obtain such a model, the variables
zi, z∗

i must commute, and so the variables x′
i, y′

i must commute. Thus, we
must have:

xix̄j ∈ �, yiȳj ∈ �, xiȳj ∈ �.

With λ = ||x||, μ = ||y|| the first two conditions read x ∈ λ�SN−1
� , y ∈

μ�SN−1
� , so let us write x = λup, y = μvq with u, v ∈ � and p, q ∈ SN−1

� .
The third condition tells us then that we must have uv̄ ∈ �, and so v = ±u,
and by changing if necessary q → −q, we can assume that we have u = v.
We conclude that we have (x, y) = u(λp, μq), and since the point (λp, μq)
must belong to the real sphere S2N−1

� , we are done.
(4) We prove now that �2SN−1

� is the model space for �SN−1
� . By functoriality,

this latter model space appears as an intersection, �S2N−1
� ∩ S̈2N−1

� . So, let
us pick a point (x, y) ∈ �S2N−1

� , and apply to it the equations for S̈2N−1
� .

These equations are: {
xix̄j + yiȳj ∈ �

xiȳj − yix̄j ∈ i�.

The first equations are automatic, and since the variables in the second
equations are real as well, these equations tell us that we must have xiȳj =
yix̄j, for any i, j. Now with (x, y) = u(p, q) these latter equations read piqj =
qipj, for any i, j. We deduce that we must have (p, q) = (λr, μr) with (λ,μ) ∈
S1

� and r ∈ SN−1
� , and we are done.

�
As an application of the above methods, we have the following result:

PROPOSITION 3.5. The inclusions between the six half-liberated spheres

SN−1
�

�� SN−1
�,∗∗ �� SN−1

�,∗

�SN−1
�

��

��

SN−1
�,◦

��

�� SN−1
�,#

��

are all proper, at any N ≥ 2.

Proof. By using Theorem 1.6, the vertical maps are all proper. For the horizontal
maps, we can use Proposition 2.1, Proposition 2.2 and Theorem 2.4:
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SN−1
� ⊂ SN−1

�,∗∗ . This follows from Proposition 2.2, because the inclusion |SN−1
� | ⊂

SN−1
�,∗ found there shows that SN−1

�,∗ is not classical. Thus, SN−1
�,∗∗ is not classical either.

SN−1
�,◦ ⊂ SN−1

�,# . Here, we can use the inclusion S̃N−1
� ⊂ SN−1

�,# from Proposition 2.1.

Indeed, since the standard coordinates wi = uxi on the free complexification S̃N−1
�

don’t satisfy the relations abc = cba, we have S̃N−1
� �⊂ SN−1

�,∗∗ , and so SN−1
�,# �⊂ SN−1

�,∗∗ , as

subspaces of SN−1
�,+ . It follows that (SN−1

�,∗∗ ∩ SN−1
�,# ) ⊂ SN−1

�,# is indeed proper.

SN−1
�,∗∗ ⊂ SN−1

�,∗ . Assuming that this inclusion is an equality, by intersecting with

SN−1
�,# we would obtain that SN−1

�,◦ ⊂ SN−1
�,# is an equality too, contradiction.

�SN−1
� ⊂ SN−1

�,◦ . Here, we must show that SN−1
�,◦ = SN−1

�,∗∗ ∩ SN−1
�,# is not classical.

Since we have embeddings between spheres S1
�,× ⊂ SN−1

�,× given by x3 = x4 = . . . =
xN = 0, it is enough to solve the problem at N = 2. So, consider the manifold S̈3

� ⊂ S3
�

used in Theorem 2.4. The equations defining it, over (x1, x2, y1, y2) ∈ S3
�, are as follows:⎧⎪⎨⎪⎩

x1ȳ1 + x2ȳ2 ∈ �

x1x̄2 + y1ȳ2 ∈ �

x1ȳ2 − y1x̄2 ∈ i�.

Observe now that these equations are satisfied for the following point:

(x1, x2, y1, y2) = 1√
2

(i, 0, 0, 1).

The corresponding matrices z1, z2 for this special point are then:

z1 = 1√
2

(
0 i
−i 0

)
z2 = 1√

2

(
0 i
i 0

)
.

Now since these two matrices do not commute, this finishes the proof. �

4. Quantum groups. In this section and in the next one, we further advance on
the understanding of the six half-liberated spheres, by studying the associated quantum
isometry groups.

Our starting point is the following definition, due to Wang [20]:

DEFINITION 4.1. The free analogue of C(UN) is the universal C∗-algebra

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u, ut = unitaries
)

,

with Hopf algebra maps �(uij) = ∑
k uik ⊗ ukj, ε(uij) = δij, S(uij) = u∗

ji.

As explained in [20], the above formulae define indeed a comultiplication, counit
and antipode, and we have a Hopf C∗-algebra in the sense of Woronowicz [23, 24].
Observe that the square of the antipode is the identity, S2 = id. The underlying
noncommutative space U+

N is a compact quantum group, called free analogue of UN .
Observe the analogy with Definition 1.1. We can build on this analogy, by

introducing “quantum group analogues” of the spheres in Definition 1.2, simply by
imposing the relations there to the standard coordinates of U+

N . We obtain in this way:
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PROPOSITION 4.2. We have an intersection diagram of compact quantum groups

UN �� U∗∗
N

�� U∗
N

�ON
��

��

U◦
N

��

�� U#
N,

��

with U∗
N, U∗∗

N , U#
N, U◦

N being defined inside U+
N via the relations in Definition 1.2.

Proof. The quantum groups U∗
N, U∗∗

N were introduced and studied in [8, 10].
Regarding U#

N , our first claim is that its defining relations can be reformulated as
follows: (

ab∗ = ba∗, a∗b = b∗a
)

⇐⇒
(

ab∗c depends only on {a, b, c}
)
.

Indeed, the implication “ =⇒ ” can be checked by alternatively using the relations
ab∗ = ba∗, a∗b = b∗a, on left and on the right, as follows:

ab∗c = ba∗c = bc∗a = cb∗a = ca∗b = ac∗b.

As for the converse implication, “⇐=”, the first formula follows from the following
computation, and the proof of the second formula is similar:

ab∗c = ba∗c =⇒
∑

c

ab∗cc∗ =
∑

c

ba∗cc∗ =⇒ ab∗ = ba∗.

With the above claim in hand, the construction of ε, S is clear. Concerning now
the comultiplication �, observe that with Uij = ∑

k uik ⊗ ukj, we have:

UixU∗
jyUkz =

∑
abc

uiau∗
jbukc ⊗ uaxu∗

byucz.

Now let us permute (ix), (jy), (kz). We can use the same permutation σ ∈ S3 in
order to permute a, b, c, in a similar way, and this gives the existence of �.

Finally, if we set U◦
N = U∗∗

N ∩ U#
N , we obtain as well a compact quantum group.

Thus, we have the six quantum groups in the statement. The inclusions are
clear, and the intersection claim UN ∩ U◦

N = �ON follows as in the proof of
Proposition 1.3. �

We have as well analogues of the other basic results regarding spheres. First, we
have the following analogue of Theorem 1.6 above, basically known since [8]:

PROPOSITION 4.3. The projective versions of the six quantum groups are:

PUN PUN PUN

PON

��

PON

��

PON .

��
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In addition, we have PON = ON/�2 and PUN = UN/�.

Proof. By functoriality, it is enough to prove that we have inclusions PU∗
N ⊂ PUN

and PU#
N ⊂ PON . As explained in [8], the first inclusion can be deduced as follows:

PU∗
N ⊂ (PU∗

N)class ⊂ (PU+
N )class = PUN .

Indeed, the first inclusion follows from the fact that the projective version
coordinates wia,jb = uiju∗

ab commute, the second inclusion follows by functoriality from
U∗

N ⊂ U+
N , and the third inclusion follows from Tannakian duality, as explained in [6].

Regarding now the second inclusion, this follows from PU#
N ⊂ PU∗

N ⊂ PUN , and
from the fact that the variables wia,jb = uiju∗

ab are self-adjoint over PU#
N . �

Regarding now the free complexifications, we have the following result, which is
much more precise than the one for the spheres, from Proposition 2.1 above:

PROPOSITION 4.4. The free complexifications of the six quantum groups are

U∗
N U∗

N U∗
N

U#
N

��

U#
N

��

U#
N,

��

with all the isomorphisms mapping standard coordinates to standard coordinates.

Proof. The arguments in the proof of Proposition 2.1 extend to the quantum group
case, and provide us with the following diagram:

ŨN
�� Ũ∗

N U∗
N

ÕN
��

��

Ũ#
N

��

U#
N .

��

We must prove now that we have ÕN = U#
N , ŨN = U∗

N . For this purpose, we can
use Proposition 3.3, and technology from [1]. Indeed, since the projective version PU∗

N
is classical, we obtain that U∗

N , as well as all its subgroups, are amenable. Thus, we can
indeed use the results in [1], established there at the level of reduced versions.

With notations and terminology from [1], the quantum groups ŨN, U∗
N, U#

N are
all easy (called free there), of infinite level, and appear as free complexifications. Thus
the main result in [1] applies, and shows that these 3 quantum groups must appear as
free complexifications of certain intermediate easy quantum groups ON ⊂ O×

N ⊂ O+
N .

On the other hand, we know from [6] that the only non-trivial intermediate easy
quantum group ON ⊂ G ⊂ O+

N is the half-liberation G = O∗
N . Thus, each of the 3

quantum groups O×
N constructed above must satisfy O×

N ∈ {ON, O∗
N, O+

N}.
In order to finish we use the fact, once again from [6], that the projective versions of

the quantum groups ON ⊂ O∗
N ⊂ O+

N are the quantum groups PON ⊂ PUN ⊂ PO+
N .

In particular, the projective version determines the quantum group. Now, since we have
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PŨN = PUN , PU∗
N = PUN , PU#

N = PON , we conclude that we have:

ŨN = Õ∗
N, U∗

N = Õ∗
N, U#

N = ÕN .

Thus, we have indeed ÕN = U#
N , ŨN = U∗

N , and we are done. �
Let us discuss now the analogues of the matrix model constructions from section

2 above. Following [10], we consider the following compact group:

U2,N =
{(

A B
−B A

)
∈ U2N

∣∣∣A, B ∈ MN(�)
}

.

We have then the following result, basically from [10]:

PROPOSITION 4.5. We have a morphism C(U∗∗
N ) → M2(C(U2,N)), given by

uij →
(

0 aij

āij 0

)
+ i

(
0 bij

b̄ij 0

)
,

where aij, bij denote the standard coordinates on U2,N.

Proof. The group elements U ∈ U2,N , written U = ( A
−B

B
A) as above, satisfy the

relations UU∗ = U∗U = UtŪ = ŪUt = 1, and we deduce that the matrices A, B
satisfy:

AA∗ + BB∗ = A∗A + B∗B = AtĀ + BtB̄ = ĀAt + B̄Bt = 1

AB∗ = BA∗, A∗B = B∗A, AtB̄ = BtĀ, ĀBt = B̄At.

Consider now the target elements wij = a′
ij + ib′

ij appearing in the statement. The
matrix w = (wij) that they form, and its adjoint, are then given by:

w =
(

0 A + iB
Ā + iB̄ 0

)
w∗ =

(
0 At − iBt

A∗ − iB∗ 0

)
.

Also, the transpose of this matrix, and its complex conjugate, are given by:

wt =
(

0 A∗ + iB∗

At + iBt 0

)
w̄ =

(
0 Ā − iB̄

A − iB 0

)
.

By using now the above formulae relating A, B, we obtain:

ww∗ = w∗w = wtw̄ = w̄wt = 1.

Thus, we have obtained a morphism of algebras C(U+
N ) → M2(C(U2,N)).

Now, since the 2 × 2 matrices a′
ij, b′

ij half-commute, so do the elements wij, w
∗
ij , and

so our morphism factorizes through the algebra C(U∗∗
N ), as claimed. �

With the above result in hand, we can suitably modify the “complex doubling”
operation X → [X ] constructed in section 2 above, as follows:

DEFINITION 4.6. Given X ⊂ U2,N , we define [[X ]] ⊂ U∗∗
N by stating that C([[X ]]) is

the image of the representation C(U∗∗
N ) → M2(C(X)), given by uij → a′

ij + ib′
ij.
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In other words, our construction is defined by the following diagram:

C(U∗∗
N )

��

�� M2(C(U2,N))

��
C([[X ]]) �� M2(C(X)).

As an example here, the results in [10] show that we have [[U2,N ]] = U∗∗
N .

We can now formulate an analogue of Theorem 2.4 above, as follows:

THEOREM 4.7. We have inclusions of noncommutative spaces

[[�O2,N ]] �� [[U2,N ]]

[[�2ON ]]

��

�� [[U ′
N ]]

��

−→

UN �� U∗∗
N

�ON

��

�� U◦
N,

��

with �2ON and U ′
N being certain closed subgroups of U2,N.

Proof. We follow the method in the proof of Theorem 2.4. The computations there
apply to the present situation, with a 2N rescaling factor for the spheres, and we obtain
that the “parameter spaces” for the quantum groups G = UN, U◦

N, �ON , i.e. the biggest
closed subspaces X ⊂ U2,N producing embeddings [[X ]] ⊂ G, are as follows:

UN → U2,N ∩ 2N · �S4N2−1
�

U◦
N → U2,N ∩ 2N · S̈4N2−1

�

�ON → U2,N ∩ 2N · �2S2N2−1
� .

We will compute these three spaces, and then show that they are indeed groups.

(1) We first compute the parameter space for UN . We know that a matrix
U ∈ U2,N belongs to this space precisely when there exists z ∈ � such that
V = zU is real. Thus, V must belong to the group O2,N = U2,N ∩ O2N , and
the parameter space is:

�O2,N =
{

z
(

A B
−B A

)
∈ U2N

∣∣∣z ∈ �, A, B ∈ MN(�)
}

,

(2) Regarding now the parameter space for U◦
N , this appears from U2,N via the

defining relations for S̈4N2−1
� , from Section 2 above, which are as follows:{

aijākl + bijb̄kl ∈ �

aijb̄kl − bijākl ∈ i�.

(3) Finally, the parameter space for �ON is best obtained by intersecting the
parameter spaces for UN, U◦

N . Indeed, let us pick a matrix U ∈ �O2,N ,
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written U = z( A
−B

B
A) as above. Then, U belongs to the parameter space

for �ON when its entries ãij = zaij, b̃ij = zbij satisfy the above two equations.
As in the sphere case, the variable z ∈ � cancels, and the first equation
is automatic, and the second equation reads aijbkl = bijakl. We therefore
conclude, as in the sphere case, that the parameter space for �ON is:

�2ON =
{

z
(

cA sA
−sA cA

) ∣∣∣z ∈ �,

(
c s

−s c

)
∈ SO2 � �, A ∈ ON

}
.

(4) We are left with checking that the parameter spaces are indeed groups. Since
this is clear for �O2,N, �2ON , it remains to verify that the following space is
a group:

U ′
N =

{(
A B

−B A

)
∈ U2N

∣∣∣ aijākl + bijb̄kl ∈ �

aijb̄kl − bijākl ∈ i�

}
.

We have 1 ∈ U ′
N , and U ∈ U ′

N =⇒ U∗ ∈ U ′
N is clear as well, because at the

level of coordinates, the passage U → U∗ is given by (aij, bij) → (āji,−b̄ji),
and this transformation preserves the solutions of the defining equations for
U ′

N .
Regarding now the multiplication axiom, we use the following formula:(

A B
−B A

)(
C D

−D C

)
=

(
AC − BD AD + BC

−AD − BC AC − BD

)
.

Assuming now that the two matrices on the left belong to U ′
N , we have:

(AC − BD)ij(AC − BD)kl + (AD + BC)ij(AD + BC)kl

=
∑

pq

(aipcpj − bipdpj)(ākqc̄ql − b̄kqd̄ql) + (aipdpj + bipcpj)(ākqd̄ql − b̄kqc̄ql)

=
∑

pq

(aipākq + bipb̄kq)(cpjc̄ql + dpjd̄ql) + (aipb̄kq − bipākq)(dpjc̄ql − cpjd̄ql).

Now since the above four quantities are respectively in �, �, i�, i�, the
summand is real, and hence the whole sum is real as well. Thus, we have
checked the first equations.
For the second equations, the proof is similar. We have indeed:

(AC − BD)ij(AD + BC)kl − (AD + BC)ij(AC − BD)kl

=
∑

pq

(aipcpj − bipdpj)(ākqd̄ql + b̄kqc̄ql) − (aipdpj + bipcpj)(ākqc̄ql − b̄kqd̄ql)

=
∑

pq

(aipākq + bipb̄kq)(cpjd̄ql − dpjc̄ql) + (aipb̄kq − bipākq)(cpjc̄ql − dpjd̄ql).

Now the quantities which appear are respectively in �, i�, i�, �, so the
summand is imaginary, and hence the whole sum is imaginary as well, and
we are done. �
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5. Affine isometries. In this section, we show that the six quantum groups
introduced above appear as affine quantum isometry groups of the six spheres, and we
deduce some consequences.

We use the following formalism, inspired from [13]:

DEFINITION 5.1. We say that G ⊂ U+
N acts affinely on X ⊂ SN−1

�,+ when

zi →
∑

a

uia ⊗ za,

defines a morphism of algebras 
 : C(X) → C(G) ⊗ C(X).

Observe that such a morphism 
 is automatically coassociative and counital, in
the sense that we have (id ⊗ 
)
 = (� ⊗ id)
 and (ε ⊗ id)
 = id. Thus, we have a
coaction, in the usual sense. The basic example is UN � SN−1

� , via 
(f )(U, x) = f (Ux).
We agree to denote the six half-liberated quantum groups by U×

N , and the
corresponding six half-liberated spheres by SN−1

× . First, we have the following result:

PROPOSITION 5.2. We have an affine action U×
N � SN−1

× .

Proof. We must prove that the formula in Definition 4.1 defines a morphism of
algebras C(SN−1

× ) → C(U×
N ) ⊗ C(SN−1

× ). For this purpose, we just have to show that
the elements Zi = ∑

a uia ⊗ za satisfy the defining relations for SN−1
× .

As a first observation, the quadratic relations
∑

i ZiZ∗
i = ∑

i Z∗
i Zi = 1 follow from

the biunitarity of u. For the remaining relations, we perform a case by case analysis.
SN−1

�,∗∗, SN−1
�,∗ . For SN−1

�,∗ we have indeed the following computation:

ZiZ∗
j Zk =

∑
abc

uiau∗
jbukc ⊗ zaz∗

bzc =
∑
abc

ukcu∗
jbuia ⊗ zcz∗

bza = ZkZ∗
j Zi.

For SN−1
�,∗∗ the proof is similar, by removing all the ∗ exponents.

SN−1
�,◦ , SN−1

�,# . It is enough to do the verification for SN−1
�,# , and here we have:

ZiZ∗
j =

∑
ab

uiau∗
jb ⊗ zaz∗

b =
∑

ab

ujbu∗
ia ⊗ zbz∗

a = ZjZ∗
i .

The proof of Z∗
i Zj = Z∗

j Zi is similar, by moving the ∗ exponents on the left.

�SN−1
� , SN−1

� . It is enough to do the verification for SN−1
� . But the result here is

clear, because UN is known to act on SN−1
� , with coaction map as in the statement. �

We will prove now that the actions in Proposition 4.2 are universal. For this
purpose, we use an old 3-step method from [9], where the result was established for
SN−1

� . The idea is to: (1) establish linear independence results for the products of
coordinates, (2) deduce from this the precise conditions on G ⊂ U+

N which allow an
action and (3) solve the quantum group question left, by using an antipode/relabel
trick.

In our case, the linear independence lemma that we will need is:

LEMMA 5.3. The following variables are linearly independent:

(1) {zaz∗
b|1 ≤ a ≤ b ≤ N}, over SN−1

�,◦ .
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(2) {zazbzc|1 ≤ a ≤ c ≤ N, 1 ≤ b ≤ N}, over SN−1
�,◦ .

(3) {zaz∗
bzc|1 ≤ a ≤ c ≤ N, 1 ≤ b ≤ N}, over SN−1

�,∗∗ .

Proof. This follows by using various 2 × 2 matrix models for the spheres:

(1) Here, we can use the isomorphism PN−1
�,◦ � PN

� given by pab = zaz∗
b. Indeed,

since the variables {pab|a ≤ b} are linearly independent over PN
� , this gives

the result.
(2) We use here the model z = x′ + iy′, with (x, y) ∈ S̈2N−1

� , found in Theorem
2.4 above. Our first claim is that we have an inclusion, as follows:

(SN−1
� )2 ⊂ S̈2N−1

� , (p, q) →
(

p + q
2

,
p − q

2i

)
.

Indeed, since for p, q ∈ SN−1
� we have

∑
i

( pi+qi
2

)2 + ( pi−qi
2

)2 = 1, we obtain
an embedding (SN−1

� )2 ⊂ S2N−1
� . Moreover, since

∑
i

pi+qi
2 · pi−qi

2 = 0, we
have in fact (SN−1

� )2 ⊂ Ṡ2N−1
� , and finally the defining relations for S̈2N−1

�

are both trivially satisfied.
When restricting the parameter space to (SN−1

� )2, the model becomes:

zi = 1
2

(
0 pi + qi

pi + qi 0

)
+ 1

2

(
0 pi − qi

qi − pi 0

)
=

(
0 pi

qi 0

)
.

Observe now that we have the following formula:

zizjzk =
(

0 pi

qi 0

) (
0 pj

qj 0

) (
0 pk

qk 0

)
=

(
0 piqjpk

qipjqk 0

)
.

Now since the variables {piqjpk|i ≤ k} on the right are linearly independent
over (SN−1

� )2, so are the 2 × 2 matrices {zizjzk|i ≤ k}, and this gives the result.
(3) Here, we can use the model z = x′ + iy′, with (x, y) ∈ Ṡ2N−1

� , from Theorem
2.4, with the parameter space restricted to SN−1

� � S2N−1
R ⊂ Ṡ2N−1

� . Indeed,
if we denote by wi = xi + iyi the coordinates on SN−1

� , the matrix model
formula becomes:

zi =
(

0 xi + iyi

xi + iyi 0

)
=

(
0 wi

wi 0

)
.

Now observe that we have the following formula:

ziz∗
j zk =

(
0 wi

wi 0

)(
0 w̄j

w̄j 0

) (
0 wk

wk 0

)
=

(
0 wiw̄jwk

wiw̄jwk 0

)
.

Now, since the variables {wiw̄jwk|i ≤ k} on the right are linearly independent over
SN−1

� , so are the 2 × 2 matrices {ziz∗
j zk|i ≤ k}, and this gives the result. �

We will need as well, several times, the following lemma:

LEMMA 5.4. If the standard coordinates uij on a compact quantum group G ⊂ U∗
N

satisfy the relations abc = cba, then we have G ⊂ U∗∗
N .
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Proof. We must prove that abc = cba for any a, b, c ∈ {uij, u∗
ij}, and by using the

involution, it is enough to check that the following relations hold, for any a, b, c ∈ {uij}:
abc = cba, ab∗c = cb∗a, abc∗ = c∗ba.

The first two relations hold by assumption, and we must therefore deduce the
third relations from them. For this purpose, we can use the diagrammatic formalism in
[5], or rather its unitary extension, which applies to the easy quantum group G ⊂ U+

N
coming from the first two relations. Indeed, in the Tannakian category of G, we have:

• ◦

��
��

��
��

��
� ◦ ◦

��
��

��
��

��
� •

• ◦ ◦ ◦ •
=

◦

����������� ◦ •

�����������

• ◦ ◦

Thus, the relations abc = cba imply the relations abc∗ = c∗ba, and we are done. �
Now back to the quantum isometries, and to the 3-step method from [9], Lemma

4.3 and Lemma 4.4 provide us with the first step. We will perform the second and third
step altogether, first for SN−1

�,∗∗ ⊂ SN−1
�,∗ , and then for SN−1

�,◦ ⊂ SN−1
�,# . First, we have:

PROPOSITION 5.5. The affine actions of U∗∗
N , U∗

N on SN−1
�,∗∗, SN−1

�,∗ are universal.

Proof. This is a routine computation, based on the antipode/relabel trick in [9].
Consider indeed a compact quantum group G ⊂ U+

N , and let Zi = ∑
a uia ⊗ za. With

Lemma 4.4 in mind, let us fix as well a symbol × ∈ {∅, ∗}. We have then:

ZiZ×
j Zk =

∑
abc

uiau×
jbukc ⊗ zaz×

b zc.

Assuming now that the variables z1, . . . , zN are subject to the relations zaz×
b zc =

zcz×
b za, some of the terms on the right coincide. By taking into account the various

cases, and by merging these terms, we can write the above formula as follows:

ZiZ×
j Zk =

∑
a<c,b�=a,c

(uiau×
jbukc + uicu×

jbuka) ⊗ zaz×
b zc

+
∑
a<c

(uiau×
jaukc + uicu×

jauka) ⊗ zaz×
a zc

+
∑
a�=b

uiau×
jbuka ⊗ zaz×

b za

+
∑

a

uiau×
jauka ⊗ zaz×

a za.

By interchanging i ↔ k, we have as well a similar formula for ZkZ×
j Zi.

Now by using the linear independence of the variables on the right, coming from
Lemma 4.3 (2) and (3) above, we conclude that the relations ZiZ×

j Zk = ZkZ×
j Zi are

equivalent to the following system of equations, where [x, y, z] = xy×z − zy×x:

(1) [uia, ujb, ukc] = [uka, ujb, uic], for a, b, c distinct.
(2) [uia, uja, ukc] = [uka, uja, uic].
(3) [uia, ujb, uka] = 0.
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Here, we have merged the relation coming by comparing the fourth sums, namely
[uia, uja, uka] = 0 for any a, with the relations coming from the second and third sums,
in order to drop the assumptions a �= c, a �= b appearing there.

Our claim, which will prove the result, is that the above equations (1,2,3) are in
fact equivalent to [uia, ujb, ukc] = 0, regardless of the indices i, j, k and a, b, c.

Let us first process the relations (1). By applying the antipode and then the
involution we obtain [uck, ubj, uai] = [uci, ubj, uak], for any a, b, c distinct, and then
by relabelling we obtain [ukc, ujb, uia] = [uka, ujb, uic], for any i, j, k distinct. Now by
comparing with the original relations (1), we have several cases, and we are led to the
following relations:

(1a) [uia, ujb, ukc] = 0, for a, b, c distinct, and i, j, k distinct.
(1b) [uia, ujb, ukc] = [uka, ujb, uic], for a, b, c distinct, and i, j, k not distinct.

We further process now the relations (1b). Since the relations at i = k are
trivial, and those at i = j, j = k are equivalent, we can assume that we have
i = j, and we get:

(1b′) [uia, uib, ukc] = [uka, uib, uic], for a, b, c distinct.
Let us process now the above relations (2). By applying the antipode and
the involution we obtain [uck, uaj, uai] = [uci, uaj, uak], and by relabelling, we
obtain:

(2′) [ukc, uib, uia] = [uka, uib, uic].
The point now is that the relations (1b′), (2′) can be merged. Indeed, in view
of (2′), the relations (1b′) simplify to:

(1b′′) [uia, uib, ukc] = 0, for a, b, c distinct.
Now, with these relations (1b′′) in hand, the relations (2′) are automatic for
a, b, c distinct. Thus, what is left from the relations (2′) is:

(2′′) [ukc, uib, uia] = [uka, uib, uic], for a, b, c not distinct.
As a partial conclusion, the relevant relations are (1a), (1b′′), (2′′), (3). Now,
let us further process the relations (2′′). Since these relations are automatic
at a = c, and are equivalent at a = b, b = c, we can assume a = b, and we
obtain:

(2∗) [uka, uia, uic] = [ukc, uia, uia].
Now, by applying the antipode and then the involution we obtain
[uci, uai, uak] = [uai, uai, uck], and by relabelling we obtain [uka, uia, uic] =
[uia, uia, ukc]. By comparing now with the original relations (2∗) we are led
to the following two relations:

(2∗a) [uka, uia, uic] = 0.
(2∗b) [ukc, uia, uia] = 0.

Summarizing, the relevant relations are (1a), (1b′′), (2∗a), (2∗b), (3). Now observe that
all these relations are of the form [uia, ujb, ukc] = 0, the precise assumptions being:

(1a) i, j, k distinct, and a, b, c distinct.
(1b′′) i = j, and a, b, c distinct.
(2∗a) i = j, and b = c.
(2∗b) i = j, and a = b.

(3) a = c.

Our claim is that, from these relations, we can deduce that we have [uia, ujb, ukc] = 0,
regardless of the indices. Indeed, let us look first at (1b′′), (2∗a), (2∗b). These relations
are of the same nature, involving the assumption i = j, and since by (3) the relation
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[uia, ujb, ukc] = 0 holds as well for i = j, a = c, we can merge them. We conclude that
the relations [uia, ujb, ukc] = 0 hold, under the following assumptions:

(1a) i, j, k distinct, and a, b, c distinct.
(2+) i = j.

(3) a = c.
Now by using the antipode, the relations (2+), (3) tell us precisely that we have
[uia, ujb, ukc] = 0, whenever i, j, k are not distinct, or when a, b, c are not distinct. But
this is exactly the complementary of the case covered by (1a), and we are done. �

Let us discuss now the remaining spheres, SN−1
�,◦ ⊂ SN−1

�,# . We have here:

PROPOSITION 5.6. The affine actions of U◦
N, U#

N on SN−1
�,◦ , SN−1

�,# are universal.

Proof. We use the same method as in the proof of Proposition 4.5. We first discuss
the case of the sphere SN−1

�,# . With Zi = ∑
u uia ⊗ za, we have:

ZiZ∗
j =

∑
ab

uiau∗
jb ⊗ zaz∗

b.

By using now the relations zaz∗
b = z∗

bza, this formula can be written as:

ZiZ∗
j =

∑
a<b

(uiau∗
jb + uibu∗

ja) ⊗ zaz∗
b +

∑
a

uiau∗
ja ⊗ zaz∗

a.

By interchanging i ↔ j, we have as well the following formula:

ZjZ∗
i =

∑
a<b

(ujau∗
ib + ujbu∗

ia) ⊗ zaz∗
b +

∑
a

ujau∗
ia ⊗ zaz∗

a.

Now since by Lemma 4.3 (1) the variables on the right are independent, we
conclude that the relations ZiZ∗

j = ZjZ∗
i are equivalent to the following conditions:

(1) ujau∗
ib − uibu∗

ja = ujbu∗
ia − uiau∗

jb.
(2) ujau∗

ia = uiau∗
ja.

Here, we have dropped the assumption a < b for the first relations, because by symmetry
we have them for a > b too, and these relations are automatic at a = b. By applying
now the antipode to these relations, and then by relabelling, we successively obtain:

ubiu∗
aj − uaju∗

bi = uaiu∗
bj − ubju∗

ai

ujau∗
ib − uibu∗

ja = uiau∗
jb − ujbu∗

ia.

Now by comparing with the original relations (1), we conclude that:

ujau∗
ib − uibu∗

ja = ujbu∗
ia − uiau∗

jb = 0.

In other words, the standard coordinates on a quantum group G � SN−1
�,# must

satisfy ab∗ = ba∗. Similarly, these coordinates must satisfy as well a∗b = b∗a. We
conclude that we must have G ⊂ U#

N , and we are therefore done with the SN−1
�,# problem.

Regarding now the sphere SN−1
�,◦ = SN−1

�,# ∩ SN−1
�,∗∗ , our claim is that no new

computation is needed. Consider indeed a quantum group G � SN−1
�,◦ . Since Lemma

4.3 (1) was valid over SN−1
�,◦ , the above computations apply, and we obtain G ⊂ U#

N .
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On the other hand, since Lemma 4.3 (2) was valid as well over SN−1
�,◦ , the

computations in the proof of Proposition 4.5 apply as well, with the choice × = ∅,
and show that the standard coordinates on G must satisfy the relations abc = cba.

In order to conclude, we use Lemma 4.4. We already know that the standard
coordinates on G satisfy the relations abc = cba, and from G ⊂ U#

N ⊂ U∗
N we obtain

that the relations ab∗c = cb∗a are satisfied as well. Thus, Lemma 4.4 applies, and
gives G ⊂ U∗∗

N . We therefore, conclude that we have G ⊂ U#
N ∩ U∗∗

N = U◦
N , and we are

done. �
We can now formulate our main result in this section, as follows:

THEOREM 5.7. We have the following correspondence

SN−1
�

�� SN−1
�,∗∗ �� SN−1

�,∗

�SN−1
�

��

��

SN−1
�,◦

��

�� SN−1
�,#

��

−→

UN �� U∗∗
N

�� U∗
N

�ON
��

��

U◦
N

��

�� U#
N,

��

between the six spheres, and their affine quantum isometry groups.

Proof. The result for SN−1
� is known since [9], the result for �SN−1

� is similar, with
the argument in [9] showing that we have indeed G+(�SN−1

� ) = G(�SN−1
� ) = �ON , and

the remaining results follow from Proposition 4.5 and Proposition 4.6 above. �
Summarizing, we have now some basic understanding of the six half-liberated

spheres. There are, however, many questions left. A first series of questions concerns
the ergodicity, uniqueness, and possible faithfulness of the U×

N -invariant integration
on SN−1

× . A second series of questions concerns the construction of the Laplacian, and
notably of its eigenvalues, and the possible Riemannian structure of SN−1

× . Finally, a
third series of questions concerns the possible twisting of the above results. See [2, 4].

6. Half-liberated manifolds. We discuss now the extension of some of the results
in sections 1–4, with the complex sphere SN−1

� replaced by more general algebraic
manifolds X ⊂ SN−1

� . There is in fact a lot of work to be done here, and we have so far
only very partial results.

Generally speaking, the problem is that of constructing, under suitable
assumptions on X ⊂ SN−1

� , a half-liberation diagram for it, as follows:

X �� X∗∗ �� X∗

X− ��

��

X◦

��

�� X#

��

The starting point is Theorem 4.7 above. Forgetting that on the right we have
quantum isometry groups, we can see that, besides the sphere X = SN−1

� itself, we have
as well the rescaled unitary group X = 1√

N
UN as example. Indeed, we have:
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PROPOSITION 6.1. We have embeddings as follows, given by zij = 1√
N

uij:

UN �� U∗∗
N

�� U∗
N

�ON
��

��

U◦
N

��

�� U#
N

��

−→

SN2−1
�

�� SN2−1
�,∗∗

�� SN2−1
�,∗

�SN2−1
�

��

��

SN2−1
�,◦

��

�� SN2−1
�,# ,

��

whose images are given by 1√
N

U×
N = 1√

N
U∗

N ∩ SN2−1
× .

Proof. Since the fundamental corepresentation u = (uij) of the quantum group U+
N

is biunitary, we have
∑

ij uiju∗
ij = ∑

ij u∗
ijuij = N. Thus, we have an embedding U+

N ⊂
SN2−1

�,+ given by zij = 1√
N

uij. Now, since the quantum groups U×
N in the statement

appear by imposing to the standard coordinates uij the same relations as those for
the coordinates zij on the corresponding spheres SN2−1

× , we obtain 1√
N

U×
N = 1√

N
U∗

N ∩
SN2−1

× . �
The examples that we have so far, X = SN−1

� and X = 1√
N

UN , suggest an approach

via “lifting projective versions”. More precisely, given X ⊂ SN−1
� , consider its projective

version PX ⊂ PN
� . Also, let X− = X ∩ �SN−1

� , so that PX− = PX ∩ PN
� . The general

idea is then to define X∗∗, X∗/X◦, X# as being the “biggest” submanifolds of the
corresponding spheres, having PX/PX− as projective versions.

In order for this idea to work, X, X− themselves must be the lifts to SN−1
� , �SN−1

�

of their projective versions PX, PX−. So, let us first recall that we have:

PROPOSITION 6.2. For a subspace X ⊂ SN−1
� , the following are equivalent:

(1) X is the lift to SN−1
� of its projective version PX ⊂ PN

� .
(2) X is invariant under the action of �, given by u · z = (uzi)i.
In addition, in this case, X− = X ∩ �SN−1

� is the lift to �SN−1
� of PX− = PX ∩ PN

� .

Proof. Since the quotient map π : SN−1
� → PN

� satisfies π (z) = π (z′) ⇐⇒ z′ ∈
�z, the lifting condition X = {x ∈ SN−1

� |π (x) ∈ PX} is equivalent to the �-invariance
of X .

Also, the quotient map σ : �SN−1
� → PN

� satisfies as well σ (z) = σ (z′) ⇐⇒ z′ ∈
�z, so the lifting condition X− = {x ∈ �SN−1

� |σ (x) ∈ PX−} is equivalent to the �-
invariance of X−. But if X is �-invariant, then so is X−, and this gives the last
assertion. �

The other problem is that the general noncommutative manifolds Z ⊂ SN−1
�,+ have

in fact two projective versions, one given by pij = ziz∗
j , and the other one given by

qij = z∗
j zi. In order to deal with this issue, best is to assume that all our manifolds Z

are “conjugation-stable”, in the sense that C(Z) has an anti-automorphism given by
zi → z∗

i .
Observe that for the manifold X ⊂ SN−1

� itself, the stability under conjugation,
which comes from an action of �2, can be combined with the stability under the action
of �, coming from Proposition 5.2 above. In this case, we say that X is O2-invariant.
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We can now formulate our half-liberation construction, as follows:

DEFINITION 6.3. If X ⊂ SN−1
� is O2-invariant, we set X− = X ∩ �SN−1

� , and we
define

X �� X∗∗ �� X∗

X− ��

��

X◦

��

�� X#,

��

by the fact that X∗∗, X∗/X◦, X# are the conjugation-stable lifts of PX/PX−.

As a basic example, for the sphere X = SN−1
� we have PX = PN

� , PX− = PN
� , the

lifting problem is trivial, and we obtain the six half-liberated spheres themselves.
Observe also that, due to our �-invariance assumption on X , all the six spaces

appearing in the above diagram are the lifts of their projective versions PX, PX−.
In general, the fact that the above lifts exist indeed follows by dividing the

corresponding algebras by suitable ideals. Let us record a more precise result here:

PROPOSITION 6.4. The spaces X× appear via C(X×) = C(SN−1
× )/ < I, J >, where

I/J =
{

ker[C(PN
� ) → C(PX)] at × = ∗∗, ∗

ker[C(PN
� ) → C(PX−)] at × = ◦, #,

regarded as linear subspaces of C(SN−1
× ), via the embeddings pij = ziz∗

j /qij = z∗
j zi.

Proof. At the algebra level, the lifts at × = ∗∗, ∗ and at × = ◦, # in Definition 5.3
above are by definition the universal solutions to the following problems:

C(PN
� ) ��

��

C(SN−1
× )

��
C(PX) �� C(X×)

C(PN
� ) ��

��

C(SN−1
× )

��
C(PX−) �� C(X×).

But the solutions to these problems are given by formula in the statement. �
As an illustration, consider the space X = 1√

N
�N formed by the points z ∈ SN−1

�

satisfying |zi| = 1√
N

for any i. Here, we have X− = 1√
N

��N
2 , and the result is:

PROPOSITION 6.5. We have the following (rescaled) half-liberation diagram,

�N ��
�̂��N ��

�̂�N

��N
2

��

��

�̂◦N

��

�� �̂#N,

��

where �,��, #, ◦ are the group-theoretic analogues of the operations ∗, ∗∗, #, ◦.
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Proof. Observe first that given a discrete group � = 〈g1, . . . , gN〉, we have an
embedding �̂ ⊂ SN−1

�,+ , given by zi = 1√
N

gi, and that over P�̂ we have pii = qii = 1
N .

In our case, we deduce from pii = qii = 1
N that we have ziz∗

i = z∗
i zi = 1

N , over the

various lifts. Thus, the rescaled lifts are group duals, given by �̂×N = F̂N ∩ √
NSN2−1

× .
But this gives the result, with the �, # constructions obtained respectively by imposing
the conditions ab−1c = cb−1a, ab−1 = ba−1 to the standard generators of FN , and with
the ��, ◦ constructions being obtained by further imposing the relations abc = cba. �

Let us check the fact that the example X = 1√
N

UN is covered as well:

PROPOSITION 6.6. For the rescaled unitary group X = 1√
N

UN, the abstract half-
liberation construction produces the (rescaled) six half-liberated quantum groups U×

N .

Proof. We first discuss the lifting problem for PUN ⊂ PN2

� . If we denote by U××
N

the rescaling of the lift inside SN−1
�,× , we have the following series of implications:

uu∗ = u∗u = utū = ūut = 1, over UN

=⇒
∑

k

uikūjk =
∑

k

ūkiukj =
∑

k

ukiūkj =
∑

k

ūikujk = δij, over UN

=⇒
∑

k

pik,jk =
∑

k

qki,kj =
∑

k

pki,kj =
∑

k

qik,jk = δij, over N · PUN

=⇒
∑

k

uiku∗
jk =

∑
k

u∗
kiukj =

∑
k

ukiu∗
kj =

∑
k

u∗
ikujk = δij, over U××

N

=⇒ uu∗ = u∗u = utū = ūut = 1, over U××
N .

Thus, we have an inclusion U××
N ⊂ U+

N . But since U×
N is by definition given by

U×
N = U+

N ∩ √
NSN2−1

�,× , we conclude that we have U××
N = U×

N , as desired.

For the lifting problem for PON ⊂ PN2

� we can use the same proof, because the
above middle relations, over N · PUN , hold over N · PON as well. �

Let us work out as well a “discrete” analogue of Proposition 5.6. Consider the
group KN ⊂ UN of matrices which are monomial, in the sense that each row and each
column has exactly one nonzero entry. Its free version K+

N ⊂ U+
N is then defined via

the relations ab∗ = a∗b = 0, for any a �= b on the same row or column of u. See [1].
With the notations, we have the following result:

PROPOSITION 6.7. With X = 1√
N

KN we obtain the following diagram,

KN �� K∗∗
N

�� K∗
N

�HN
��

��

K◦
N

��

�� K#
N,

��

rescaled by 1√
N

, where on the right we have the quantum groups K#
N = K+

N ∩ U#
N.
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Proof. The space K−
N = √

NX− is given by K−
N = KN ∩ √

N�SN2−1
� , and we

therefore obtain K−
N = KN ∩ �ON = �HN , where HN ⊂ ON is the hyperoctahedral

group.
Let us first compute the various lifts of PKN . We already know from Proposition

5.6 that these lifts satisfy K××
N ⊂ U×

N . Also, for j �= k we have:

uijūik = ūijuik = ujiūki = ūkiuki = 0, over KN

=⇒ pij,ik = qij,ik = pji,ki = qji,ki = 0, over PKN

=⇒ uiju∗
ik = u∗

ijuik = ujiu∗
ki = u∗

jiuki = 0, over K××
N .

We conclude that the lifts appear inside U×
N via the relations ab∗ = a∗b = 0, for

any a �= b on the same row or column of u. Thus, we have K××
N ⊂ K+

N , and we are done.
The lifting problem for P�HN = PHN is similar, by using the same

computation. �
Summarizing, the half-liberation operation that we constructed leads to quite

natural objects, in all the cases investigated so far. In particular, we can now formulate:

THEOREM 6.8. For the half-liberations of the sphere X = SN−1
� we have

G+(X×) = G(X)×,

with the quantum isometry groups being taken in an affine sense.

Proof. This is just a reformulation of the results that we proved before, in Theorem
4.7, by using the abstract half-liberation formalism developed above. �

Observe that the formula established above could be thought of as being related
to the various rigidity results of type G+(X) = G(X), from [9, 14].

In general, it is quite unclear what exact assumptions on X ⊂ SN−1
� could lead to

such results. This is an interesting question, that we would like to raise here.

7. Real versions. In this section, we discuss a number of more specialized
results, concerning the real versions of our half-liberations, obtained by imposing the
conditions zi = z∗

i to the standard coordinates. First, we have the following elementary
result:

PROPOSITION 7.1. The real versions of the half-liberations X× are

X�
�� X∗

�
�� X∗

�

X�
��

��

X�

��

�� X�,

��

where X� = X ∩ SN−1
� , and X∗

� = X∗∗ ∩ SN−1
�,+ .

Proof. This follows indeed from the last assertion in Proposition 1.4 above, which
tells us that taking the real versions amounts in intersecting with SN−1

�,∗ /SN−1
� . �

We can axiomatize the construction X → X∗
�, as follows:
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PROPOSITION 7.2. Given an O2-invariant closed subset X ⊂ SN−1
� , the closed subset

X∗
� ⊂ SN−1

�,∗ appears by lifting the projective version PX ⊂ PN
� .

Proof. This follows from Proposition 5.4 above, because the variables pij = ziz∗
j

and qji = z∗
i zj being now equal, the conjugation-stable lift becomes a plain lift. �

At the level of examples now, we have the following result:

PROPOSITION 7.3. We have the following plain/rescaled real half-liberations,

(SN−1
� )∗ = SN−1

�,∗ / (�N
2 )∗ = �̂�N

2 , (ON)∗ = O∗
N, (HN)∗ = H∗

N,

coming respectively from the complex manifolds SN−1
� /�N, UN, KN.

Proof. The first assertion is clear from the comments made after Definition 5.3.
Regarding the second assertion, we can use here Proposition 5.5, which tells us

that the rescaled real-half liberation in question is:

�̂��N ∩ SN−1
�,+ = �̂��N

2 = �̂�N
2 .

Finally, the last two assertions are clear from Proposition 5.6 and
Proposition 5.7. �

We have as well the following matrix model result, obtained by using the doubling
operation X → |X |, constructed in section 2 above:

PROPOSITION 7.4. If X ⊂ SN−1
� is O2-invariant, then |X | ⊂ X∗

�.

Proof. We recall from Proposition 2.2 that we have |SN−1
� | ⊂ SN−1

�,∗ , and so the
result holds for X = SN−1

� itself. In general now, observe that we have:

z′
i(z

′
j)

∗ =
(

0 zi

z̄i 0

) (
0 zj

z̄j 0

)
=

(
ziz̄j 0
0 z̄izj

)
.

Now since X ⊂ SN−1
� is O2-invariant, z → z̄ induces an automorphism of C(X),

and so an automorphism of C(PX). We can therefore “cut” the lower part of the above
matrix, and we obtain P|X | = PX . Thus, |X | lifts PX , and so |X | ⊂ X∗

�, as desired. �

Regarding now the quantum isometry groups, the fact that we have G+(SN−1
�,∗ ) =

O∗
N was already known from [2]. We can improve now this result. We use:

DEFINITION 7.5. A closed subspace X ⊂ Y is called k-saturated when the
dimension of span(ze1

i1 . . . zek
ik ) does not decrease via C(Y ) → C(X), for any e1, . . . , ek ∈

{1, ∗}.
Observe that the 1-saturation of X ⊂ SN−1

� , which is equivalent to the fact that the
coordinates z1, . . . , zN ∈ C(X) are linearly independent, is needed in order to define
the affine quantum isometry group G+(X), as a closed subgroup of U+

N . See [13].
The 2-saturation condition is a familiar one as well, because for a subset X ⊂ SN−1

� ,
this condition implies that we have G+(X) = G(X), as shown in [9].

We have the following result, regarding the 3-saturated sets:
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THEOREM 7.6. We have the “half-classical rigidity” formula

G+(X∗
�) ⊂ O∗

N,

provided that X ⊂ SN−1
� is O2-invariant and 3-saturated.

Proof. Assuming that X ⊂ SN−1
� is 3-saturated, the doubling |X | ⊂ SN−1

�,∗ is 3-
saturated as well, and we conclude that the half-liberation X∗

� ⊂ SN−1
�,∗ is 3-saturated

too.
Thus, the variables {zaz×

b zc|a ≤ c} with × = 1, ∗ are linearly independent, and so
the method in the proof of Proposition 4.5 applies, and gives the result. �

Observe the similarity between the above result and Theorem 5.8.
As a conclusion, our various results suggest that a certain analogue of the rigidity

result in [14] should hold in real and complex half-liberated affine geometry. Finding
such a general result, however, looks like a quite difficult question.
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