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Abstract

A condition equivalent to sparseness of a set on the plane is formulated and used as a motivation for a new
concept of density point on the plane. This is investigated and compared with known previous versions.
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Sarkel and De in [7] introduced the notion of a set sparse at a point. Sparse subsets of
the real line were also investigated by Filipczak in [1–3]. In [3] a condition equivalent
to sparseness of a set on the real line was formulated and used as a motivation for a
new concept of density point. This is a generalisation of a density point with respect
to a fixed sequence [4].

In our paper similar results for subsets of the plane are stated and proved. A new
concept of density point on the plane is considered and compared with others.

Let L2 stand for the family of all Lebesgue measurable sets on the plane and
let λ2 stand for two-dimensional Lebesgue measure. For A, B ∈ L2, the notation
A ∼ B means that the symmetrical difference of A and B is a null set. For brevity,
let R((x, y), a, b) stand for the rectangle (x − a, x + a) × (y − b, y + b), where x, y ∈ R,
a, b ∈ R+ and S ((x, y), r) := R((x, y), r, r). Sequences {an}n∈N are denoted by 〈a〉 for
short. Let θ denote (0, 0).

D 1 [8]. A measurable set A ⊂ R2 is said to be sparse at a point (x, y) if
for any ε > 0 there exists h > 0 such that each interval (a, b) contained in (0, h) with
a/b < h contains at least one point t such that

λ2(A ∩ S ((x, y), t))
4t2

< ε.

The first theorem below is an analogue of the characterisation of sparseness in the
one-dimensional case [3].
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[2] Sparse sets on the plane and density points 283

T 2. A measurable set A ⊂ R2 is sparse at a point (x, y) if and only if
for any ε > 0 there exists a decreasing sequence 〈a〉 satisfying limn→∞ an = 0 and
lim infn→∞(an+1/an) > 0 and such that

λ2(A ∩ S ((x, y), an))
4a2

n
< ε for each n ∈ N.

P. Without loss of generality we can assume that (x, y) = θ.
Suppose that A is sparse at θ and fix ε > 0. By the assumption there exists h > 0 such

that, for each interval (a, b) contained in (0, h) such that a/b < h, there exists a point
t ∈ (a, b) with the property that λ2(A ∩ S (θ, t))/4t2 < ε. We can assume that h < 1.

Let cn = (h/2)n for n ∈ N. Since cn < h, which implies that (cn+1, cn) ⊂ (0, h),
and cn+1/cn < h for n ∈ N, we can find a sequence 〈t〉 such that tn ∈ (cn+1, cn) and
λ2(A ∩ S (θ, t))/4t2

n < ε for every n ∈ N. Of course, 〈t〉 is a decreasing sequence tending
to zero, tn+1/tn > cn+2/cn = (h/2)2 > 0, so lim infn→∞(tn+1/tn) > 0. This completes the
proof of necessity.

To prove the converse implication, for arbitrarily chosen ε > 0 find a decreasing
sequence 〈a〉 tending to zero, with the property that lim infn→∞(an+1/an) > 0 and

λ2(A ∩ S (θ, an))
4a2

n
< ε for n ∈ N. (∗)

Set δ ∈ (0, 1) such that an+1/an > δ for all n ∈ N. Now let h = min{δ, a1} and
consider any interval (α, β) ⊂ (0, h) with α/β < h. Since β ≤ a1, there exists p ∈ N
such that β ∈ (ap+1, ap]. Thus the inequalities α/β < h ≤ δ < ap+1/ap give ap+1 > α, so
ap+1 ∈ (α, β), and, using (∗) for n = p + 1, we conclude that A is sparse at θ. �

D 3. We say that (x, y) is a proximal density point of a measurable set A ⊂ R2

if its complement R2\A is sparse at (x, y).

We can also treat axes independently.

D 4 [8]. A measurable set A ⊂ R2 is said to be strongly sparse at a point (x, y)
if for any ε > 0 there exist k1 > 0 and k2 > 0 such that for each pair of intervals, (a1, b1)
contained in (0, k1) with a1/b1 < k1 and (a2, b2) contained in (0, k2) with a2/b2 < k2,
there exists a point (u, v) ∈ (a1, b1) × (a2, b2) such that

λ2(A ∩ R((x, y), u, v))
4uv

< ε.

T 5. A measurable set A ⊂ R2 is strongly sparse at a point (x, y) if and only if
for any ε > 0 there exist two decreasing sequences 〈a〉, 〈b〉 tending to zero, satisfying
lim infn→∞(an+1/an) > 0 and lim infn→∞(bn+1/bn) > 0 and such that

λ2(A ∩ R((x, y), an, bn))
4anbn

< ε for each n ∈ N.
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The proof is a slight modification of that of Theorem 2.

D 6. We say that (x, y) is a strong proximal density point of a measurable set
A ⊂ R2 if its complement R2\A is strongly sparse at (x, y).

Theorems 2 and 5 motivate us to define a new kind of density point using a family
of sequences. Following the ideas from [3], we call a family C of decreasing sequences
convergent to 0 acceptable if inf{a1 : 〈a〉 ∈ C} = 0.

D 7. We say that (x, y) is a C-density point of a measurable set A ⊂ R2 if and
only if for every ε > 0 there exists 〈a〉 ∈ C (where C is assumed to be acceptable) such
that

λ2(A ∩ S ((x, y), an))
4a2

n
> 1 − ε for each n ∈ N.

For A ∈ L2 we define

ΦC(A) := {(x, y) ∈ R2 : (x, y) is a C-density point of A}.

Let us denote by C+ the family of all decreasing sequences convergent to 0
and satisfying lim infn→∞(an+1/an) > 0. Then Theorem 2 can be formulated in the
following way.

P 8. A point (x, y) is a proximal density point of a measurable set A ⊂ R2 if
and only if (x, y) ∈ ΦC+

(A).

Let C1, C2 be acceptable families of decreasing sequences convergent to 0.

D 9. We say that (x, y) is a C1, C2-density point of a measurable set A ⊂ R2 if
and only if for every ε > 0 there exist two sequences 〈a〉 ∈ C1, 〈b〉 ∈ C2 such that

λ2(A ∩ R((x, y), an, bn))
4anbn

> 1 − ε for each n ∈ N.

For A ∈ L2 we define

ΦC1,C2 (A) := {(x, y) ∈ R2 : (x, y) is a C1, C2-density point of A}.

Theorem 5 can thus be rephrased as follows.

P 10. A point (x, y) is a strong proximal density point of a measurable set
A ⊂ R2 if and only if (x, y) ∈ ΦC+,C+

(A).

It is obvious that for an acceptable family C and for any A ∈ L2, ΦC(A) ⊆ ΦC,C(A)
(as we can choose the same sequence twice), but we emphasise that for the same set A
the values of ΦC and ΦC,C can be different.

E 11. Let a1 = 1, an+1 = (an/n)2 for n ∈ N. It is clear that 〈a〉 is a decreasing
sequence convergent to 0 and the family C〈a〉 := {(ak, ak+1, . . .) : k ∈ N} is acceptable.

https://doi.org/10.1017/S0004972711003297 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003297


[4] Sparse sets on the plane and density points 285

Let A := {(x, y) ∈ R2 : −x2 ≤ y ≤ x2}. Then

λ2(A ∩ S (θ, an))
4a2

n
=

an

3
for each n ∈ N,

so θ < ΦC〈a〉(A). However,

λ2(A ∩ R(θ, an, an+1))
4anan+1

=
λ2(A ∩ R(θ, an, (an/n)2))

4
n2 a3

n

> 1 −
1
n

for each n ∈ N,

so θ ∈ ΦC〈a〉,C〈a〉(A).

Now let us mention general properties of ΦC and ΦC1,C2 .

P 12. For every A, B ∈ L2 and for any acceptable families C1, C2, C
′
1, C

′
2:

(1) ΦC1 (∅) = ∅, ΦC1,C2 (∅) = ∅, ΦC1 (R2) = R2, ΦC1,C2 (R2) = R2;
(2) if A ∼ B then ΦC1 (A) = ΦC1 (B) and ΦC1,C2 (A) = ΦC1,C2 (B);
(3) if A ⊂ B then ΦC1 (A) ⊂ ΦC1 (B) and ΦC1,C2 (A) ⊂ ΦC1,C2 (B);
(4) if C1 ⊂ C

′
1 then ΦC1 (A) ⊂ ΦC′1 (A), and if also C2 ⊂ C

′
2 then ΦC1,C2 (A) ⊂ ΦC′1,C

′
2
(A).

One may ask whether this new concept of density is not just another way of
describing proximal density, but leads also to some other density operators.

We now recall two classical kinds of density on the plane.

D 13 [9]. We say that a point (x, y) ∈ R2 is an ordinary density point of the
set A ∈ L2 if

lim
h→0+

λ2(A ∩ S ((x, y), h))
4h2

= 1.

D 14 [9]. We say that a point (x, y) ∈ R2 is a strong density point of the set
A ∈ L2 if

lim
h→0+,k→0+

λ2(A ∩ R((x, y), h, k))
4hk

= 1.

If we require here that only upper limits be equal to 1 we say respectively that a
point (x, y) is an upper ordinary density point of A or an upper strong density point
of A.

As usual, let Φ0(A) denote the set of all ordinary density points of a set A ∈ L2,
Φs(A) the set of all strong density points of A ∈ L2, Φ0(A) the set of all upper ordinary
density points of A, and Φs(A) the set of all upper strong density points of A.

Let C̃ denote the family of all decreasing sequences convergent to 0. Obviously C̃
is acceptable.

P 15. We have

Φ
C̃

= Φ0 and Φ
C̃,C̃ = Φs.

P 16. For any acceptable families C1, C2 and for every A ∈ L2:

(1) Φ0(A) ⊆ ΦC1 (A) ⊆ Φ0(A), Φs(A) ⊆ ΦC1,C2 (A) ⊆ Φs(A);
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(2) ΦC1 (A) ∈ L2, ΦC1,C2 (A) ∈ L2;
(3) ΦC1 (A) ∼ A, ΦC1,C2 (A) ∼ A.

P. Property (1) is obvious. Properties (2) and (3) come from (1) and the Lebesgue
density theorem which says that Φ0(A) ∼ A and Φs(A) ∼ A. �

By Proposition 12 for every A, B ∈ L2 and for any acceptable families C1, C2:

ΦC1 (A ∩ B) ⊆ ΦC1 (A) ∩ ΦC1 (B)

and
ΦC1,C2 (A ∩ B) ⊆ ΦC1,C2 (A) ∩ ΦC1,C2 (B),

but equality need not hold. For example, we can find disjoint sets A and B such
that Φ0(A) ∩ Φ0(B) is nonempty, so Φ

C̃
(A ∩ B) , Φ

C̃
(A) ∩ Φ

C̃
(B), and since Φ0(C) ⊂

Φs(C) for any C ∈ L2, then also Φ
C̃,C̃ (A ∩ B) , Φ

C̃,C̃ (A) ∩ Φ
C̃,C̃ (B).

In view of Propositions 15 and 16(1) we can ask whether it is possible to find a
family of sequences C, C , C+ for which there exists a set A ∈ L2 such that Φ0(A) ⊂
ΦC(A) ⊂ Φ0(A); whether there exists C such that Φ0 = ΦC; and whether there exists
C ⊂ C̃ for which ΦC = Φ0 or ΦC = Φs. We obtain some answers here using a special
kind of operator Φ〈s〉〈t〉 :L2→L2 which was defined in [5] for fixed sequences 〈s〉, 〈t〉
from the family S of all unbounded and nondecreasing sequences of positive reals. For
convenience we reformulate this definition for decreasing sequences convergent to 0.

D 17. Let 〈a〉, 〈b〉 ∈ C̃. For A ∈ L2 we define an operator

Φ〈a〉〈b〉(A) =

{
(x, y) ∈ R2 : lim

n→+∞

λ2(A ∩ R((x, y), an, bn))
4anbn

= 1
}
.

Let 〈a〉 ∈ C̃. As in Example 11, we see that the family

C〈a〉 := {(ak, ak+1, . . .) : k ∈ N}

is acceptable.
The following results are straightforward consequences of the definitions.

P 18. For each 〈a〉 ∈ C̃,

ΦC〈a〉 = Φ〈a〉〈a〉.

P 19. For each 〈a〉, 〈b〉 ∈ C̃,

ΦC〈a〉,C〈b〉 = Φ〈a〉〈b〉.

If, instead of the family C〈a〉, we consider the family of all subsequences of a
fixed sequence 〈a〉, we can obtain a different set of density points, as explained in
the following example.

E 20. Let an = 1/n! for n ∈ N and define A :=
⋃

n∈N(a2n+1, a2n) and
B := (A ∪ (−A)) × R.
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Then in the family of all subsequences of 〈a〉 we can find a sequence
{bn}n∈N, bn = a2n, such that limn−→∞(λ2(B ∩ S (θ, bn))/4b2

n) = 1, so for this family θ
is a C-density point of B. However, since in each sequence from C〈a〉 there is a
subsequence {a2k+1}k≥k0 for a certain k0 and limk−→∞(λ2(B ∩ S (θ, a2k+1))/4a2

2k+1) = 0,
we have that θ < ΦC〈a〉(B).

The family of density operators that can be described via the notion of C-density is
strictly bigger than that defined by Φ〈a〉〈a〉, 〈a〉 ∈ C̃. Indeed, for example, Φ

C̃
cannot be

generated by any sequence since it is not distributive under intersection.
The next theorem states that proximal density cannot be defined by means of Φ〈a〉〈b〉

either.

T 21. For every 〈a〉, 〈b〉 ∈ C̃ there exists a set A ∈ L2 such that the set of all its
proximal density points differs from Φ〈a〉〈b〉(A).

P. Let 〈a〉, 〈b〉 ∈ C̃ and let {ank }k∈N be a subsequence of 〈a〉 belonging to C0. For
simplicity denote 〈s〉 := {ank }k∈N and 〈u〉 := {bnk }k∈N.

Define B :=
⋃

n∈N(sn/2, sn) and D := (B ∪ (−B)) × R.
Since

λ2(D ∩ R(θ, sn, un))
4snun

≥
2(sn −

sn
2 )2un

4snun
=

1
2
,

we have θ < Φ〈a〉〈b〉(A) where A := R2\D.
Our next claim is to show that θ is a proximal density point of A, that is, D is sparse

at θ.
Let ε > 0. We may assume that ε < 1. From the fact that 〈s〉 ∈ C0 it follows that

there exists n0 ∈ N such that, for each n ≥ n0, sn+1/sn < ε/2. Let h := min{sn0/2, ε/4}
and let (α, β) ⊂ (0, h) be an interval such that α/β < h. We want to find a point t ∈ (α, β)
satisfying λ2(D ∩ S (θ, t))/4t2 < ε.

If there exists k ∈ N such that sk/2 ∈ (α, β), then sk ≤ 2β ≤ 2h ≤ sn0 and k > n0. Put
t := sk/2. Therefore,

λ2(D ∩ S (θ, t))
4t2

=
λ2(D ∩ S (θ, sk

2 ))

4( sk
2 )2

≤
4sk+1

sk
2

4( sk
2 )2

= 2
sk+1

sk
< ε.

If sn/2 < (α, β) for each n ∈ N, then there exists k ∈ N such that sk/2 ≤ α < β ≤
sk−1/2. Thus, for t := (α + β)/2, we have t ∈ (α, β) and

λ2(D ∩ S (θ, t))
4t2

≤
4skt

4 β
2 t

= 4
α

β
< 4h ≤ ε.

This completes the proof. �

R. We can also prove without difficulty that the set D appearing in the proof
above is strongly sparse at θ, so strong proximal density cannot be defined by Φ〈a〉〈b〉
either.
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P 22. There exists an acceptable family C such that

ΦC = Φ0.

P. Since, for any 〈a〉 ∈ C̃ with the property that lim infn→∞(an+1/an) > 0, Φ〈a〉〈a〉 =

Φ0, as was shown in [5], we can choose as C a family C〈a〉 and then C〈a〉-density
coincides with ordinary density on the plane. �

According to [6, Corollary 1.5 and Theorem 1.11] there is continuum of different
operators of the type Φ〈a〉〈b〉, so we have at least continuum many operators of the
type ΦC.

We can also consider more general families of sequences, not only the families
consisting of subsequences of a fixed sequence.

P 23. Let δ ∈ (0, 1] and Cδ := {〈a〉 ∈ C̃ : lim infn→∞(an+1/an) ≥ δ}. Then

ΦCδ = Φ0.

P. By Proposition 16(1) it is enough to show, for any A ∈ L2, that ΦCδ(A) ⊂ Φ0(A).
To derive a contradiction, suppose that ΦCδ(A) \ Φ0(A) , ∅ for some measurable A. We
can assume that θ ∈ ΦCδ(A)\Φ0(A). Thus there exists a positive ε0 and 〈h〉 ∈ C̃ such
that, for all n ∈ N,

λ2(A′ ∩ S (θ, hn))
4h2

n
> ε0.

Since θ ∈ ΦCδ(A), there exists a sequence 〈a〉 ∈ C̃δ such that

λ2(A′ ∩ S (θ, an))
4a2

n
<
ε0δ

2

4
.

Choose two positive integers n0 and p such that, for n ≥ n0, we have an+1/an > δ/2 and
hp ≤ an0 . Thus for each n ≥ p there exists kn ≥ n0 such that akn+1 ≤ hn ≤ akn , and

λ2(A′ ∩ S (θ, hn))
4h2

n
≤
λ2(A′ ∩ S (θ, an))

4a2
kn+1

=
λ2(A′ ∩ S (θ, akn))

4a2
kn

·
a2

kn

a2
kn+1

<
ε0δ

2

4
·

4
δ2

= ε0.

This contradiction completes the proof. �

P 24. Let C0 := {〈a〉 ∈ C̃ : limn→∞(an+1/an) = 0}. Then

ΦC0 = Φ0.

P. By Propositions 15 and 16(1) it is enough to show, for any A ∈ L2, that
Φ
C̃

(A) ⊂ ΦC0 (A). That is the case since from every sequence belonging to C̃ we can
choose a subsequence belonging to C0. �
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P 25. Let

C1
0 :=

{
〈a〉 ∈ C̃ : lim inf

n→∞
(an+1/an) = 0 and lim sup

n→∞
(an+1/an) = 1

}
.

Then
ΦC1

0
= Φ0.

P. Let
C0 :=

{
〈a〉 ∈ C̃ : lim inf

n→∞
(an+1/an) = 0

}
.

Then C0 ⊂ C0 and, by Proposition 12(4) and Proposition 24,

ΦC0 = Φ0.

Since C1
0 ⊂ C0 it is sufficient to show that ΦC0 (A) ⊂ ΦC1

0
(A) for every A ∈ L2.

Moreover, we need only show that if θ ∈ ΦC0 (A) then θ ∈ ΦC1
0
(A). Let A ∈ L2 and

θ ∈ ΦC0 (A). Fix ε > 0. We may assume that ε < 1. There exists 〈a〉 ∈ C0 such that

λ2(A ∩ S (θ, an))
4a2

n
> 1 −

ε

2
for every n ∈ N.

Without loss of generality we can assume that limn→∞(an+1/an) = 0. For every n ∈ N
we fix αn > 0 such that

αn ≤
ε

8
an+1 and αn <

an

n
.

We now define inductively a decreasing sequence 〈b〉 which consists of all terms of
the sequence 〈a〉, and if a2k+1 − a2k+2 > α2k+1 we put between them a new term equal
to a2k+1 − α2k+1. Of course 〈b〉 ∈ C̃. Since {a2k}k∈N is a subsequence of 〈b〉 and in the
sequence 〈b〉 the next term after a2k is a2k+1, we get lim infn→∞(bn+1/bn) = 0.

We now consider the subsequence {a2k+1}k∈N of the sequence 〈b〉. In the sequence
〈b〉 the next term after a2k+1 is a2k+2 when a2k+1 − a2k+2 ≤ α2k+1, and a2k+1 − α2k+1

otherwise. In both cases the relevant ratio is not smaller then 1 − (α2k+1/a2k+1) >
1 − (1/n), so lim supn→∞(bn+1/bn) = 1.

It remains to prove that

λ2(A ∩ S (θ, bn))
4b2

n
≥ 1 − ε for every n ∈ N.

If there exists k ∈ N such that bn = ak then the required inequality holds. Otherwise
there exists k ∈ N such that bn = ak − αk. Then

λ2(A ∩ S (θ, bn))
4b2

n
=
λ2(A ∩ S (θ, ak − αk))

4(ak − αk)2

=
λ2(A ∩ S (θ, ak)) − (λ2(A ∩ S (θ, ak)) − λ2(A ∩ S (θ, ak − αk)))

4(ak − αk)2
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≥
λ2(A ∩ S (θ, ak))

4a2
k

−
8αk(ak − αk) + 4α2

k

4(ak − αk)2

≥ 1 −
ε

2
−

2αk

ak+1
−

(
αk

ak+1

)2

≥ 1 −
ε

2
− 2

ε

8
−

(
ε

8

)2

≥ 1 − ε.

This concludes the proof. �
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