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HAUSDORFF OBSTRUCTIONS TO PACKING 
(N- l ) -BALLS IN N-SPACE 

BY 

J. B . W I L K E R 

ABSTRACT. An arbitrary collection of (N- l)-flats in UN is called 
a frame and an arbitrary assignment of (iV-l)-balls to these 
(N— l)-flats is called a loading. Any loading in which the designated 
(N— l)-balls are mutually disjoint is called a packing. For the frame 
consisting of the (N— l)-flats perpendicular to a given line, every 
loading is automatically a packing. Although this is obviously not 
the most general frame to admit a packing, we show two senses in 
which all frames which admit packings are "at most one-
dimensional." Our principal tool is the Hausdorff measure-theoretic 
dimension. 

1. Introduction. Let SP={TT} be the set of all (N-l)-f lats in Euclidean N-
space (2V>2) and let 2% ={(3} be the set of all (N-l ) -bal ls . An arbitrary 
collection of (N-l)-f lats ^cigP is called a frame and an arbitrary assignment 
of (N-l ) -bal ls to these (N-l)-f lats is called a loading of the frame. More 
precisely, a loading L of the frame $F is a mapping L : 3F —» £$ such that for 
every T T G ^ the (N- l ) -ba l l L(TT) lies in the (N-l)- f la t IT. The loading L is 
called a packing of 3F if L(TT) C\ L(ir') = <fi wherever TT and u' are distinct 
(N-l)-f lats in ^ . 

A problem of Erdôs [2], [9] indicates that every loading of the full frame 3P 
must fail, in a spectacular way, to be a packing. On the other hand it is possible 
to construct quite large frames which do admit packings. One such construction 
[9] uses the first coordinate from a Peano curve to produce a frame with c 
different (N— l)-flats in each of c different directions. 

We would like to characterize those frames which do admit packings. As yet 
we do not have general sufficient conditions for a frame to admit a packing but 
we do have an infinite collection of necessary conditions. We formulate our 
result as follows. 

For each direction d, let /(d) be the line through the origin with direction d 
and let S(d) c: /(d) be the set of points where the (N— l)-flats of 3F with normal 
direction d meet /(d): 

S(d) = {7rnZ(d):7re^,7r_Ld}. 

For each real number p with 0 < p < 1 let Dp be the set of unit vectors d for 
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which the Hausdorff dimension of the set S(d) is greater than or equal to p: 

Dp={d:||d|| = l ,d imS(d)>p} . 

Since Dp is a subset of the (N-l ) -sphere either Dp = <f) in which case 
dim Dp =-oo or Dp^(f> in which case 0 < d i m D p < N — 1 . Let q(p) = dimDp be 
the Hausdorff dimension of the set Dp. It is clear that the function q : [0, 1] —» 
[0, N- l ]U{-oo} depends only on the frame SF and not on the choice of 
coordinates. 

THEOREM 1. Let 3F be a frame in Euclidean N-space (N>2) . Suppose that 3F 
admits a packing by (N— l)-balls. Then for every real number p with 0 < p < 1 
we have p + q ( p ) < l . 

If we have a frame with the property that p + q ( p ) > l for some p with 
0 < p < l then we say that there is a Hausdorff obstruction to packing in 
dimension p. 

The full frame £P fails to admit a packing because q(l) = N—l. The frame 
consisting of all the (N-l)-flats tangent to an (N-l) -sphere admits a packing 
in dimension N = 2 but not in higher dimensions because q(0) = iV—1. Two 
frames which admit a packing in all dimensions but are borderline cases in the 
sense of Theorem 1 are the parallel pencil consisting of all the (N-l)-flats 
perpendicular to a fixed line (q(l) = 0) and the intersecting pencil consisting of 
all the (N-l)-flats perpendicular to a fixed circle (q(0) = l). There is an 
application of Theorem 1 in [10]. 

It would be interesting to relate the excess, p + q ( p ) - l , to the extent of 
forced overlap in loadings of frames which do not admit packings. It would also 
be interesting to consider analogous questions of loading and packing in 
codimension greater than one. These questions remain open but in the last 
section we prove a second result, Theorem 2, which suggests a possible line of 
attack. This result was obtained first by the referee of an earlier version of this 
paper who based his argument on the methods of [1], [5] and [7]. See also [3]. 
We obtain this result differently, by using Lemma 4 which is required for 
Theorem 1, and thereby illustrate a second method for treating this type of 
question. 

2. Hausdorff preliminaries. In this section we introduce some notation and 
provide a summary of results from Hurewicz and Wallman [6] chapter VII, 
Rogers [8] and Fédérer [4] §2.10. 

Let (X, d) be a metric space and h : [0, oo) -^ [0, oo) an arbitrary function. 
These ingredients allow us to construct the Hausdorff measure jmh r^X)—» 
[0, oo] satisfying 

(i) |Lth(^) = 0; 

(ii) if A c B , |uih(A)<jLth(B); 
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(iii) if At (i = 1, 2, 3 , . ..) is a sequence of sets juh(Un=i Ai)<Xr=i M-h(A); 
(iv) if A1c: A2

C= A 3 . . . is a nest of sets |ULh(Ur=i Ai) = supi jLth(Ai). 
Properties (i)-(iii) are the defining properties of a measure (outer measure) and 
are immediate from the definition given below. Property (iv) depends on the 
fact that fxh is a regular measure. 

The details of the construction of ju,h are as follows. For each non-void 
subset S c X , diameter S = d(S) = sup x y e S d(x, y); d(<j)) = 0. The function h 
gives a pre-measure on the bounded subsets of X by h(S) = h(d(S)) if S^</> 
and h(<£) = 0. If 8>0 and A c X , a ô-cover of A is a sequence of sets St 

(i = 1, 2, 3 , . . . ) such that d(St)<8 and U T - i ^ => A. The size-6 approximating 
measure jutg is defined on ^ (X) by juts(A) = inf XH-i MSi) where the infimum is 
taken over all 8-covers of A. (This entails jULg(A) —oo if A does not admit a 
ô-cover.) Finally ixh is defined on SP(X) by |ULh(A) = lima_>0

+ f4(A). 
If h(t) = tp (0<p<°°) , fxh=:jLtp is called the Hausdorff p-dimensional meas­

ure or p-measure for short. If p ^ O , the p-measure is just the counting 
measure. For a fixed set A there is a single number p0 such that jitp(A) = oo if 
p<Po and |Ltp(A) = 0 if p > p0. This number p0 = dim A is called the Hausdorff 
dimension of A. It is easy to check that for p < d i m A , fxp(A) is not even 
cr-finite. We adopt the convention that dim <f> = — oo. 

If (X l5 dx) and (X2, d2) are two metric spaces then a function f:X1-^ X2 is 
called Lipschitz if there is a constant k > 0 such that for all x , y e X b 

d2(f(x),f(y))^kd1(x, y). A first step towards Theorem 1 is 

LEMMA 1. Let f:[a, b]—>UN be a Lipschitz function. Let Y = 
{y eMN :dimf~1(y)>p} and suppose dim Y = q. Then p + q < l . 

Proof. We have dim[a, b ] ^ l and dim/([a, b])<l so p < l and q < l . If 
p + q > l , then p > 0 , q>0 and we can choose p' and qf with 0 < p ' < p , 
0<q'<q and p' + q ' > l . This implies that ixq'(Y) = oc and for any y e Y, 

*ip ' (T1(y)) = ~. 
Let Yn - {y G Y : ^ ( T H y ) ) > 1}. Since Yx c= Y2 c Y 3 . . . and U ^ n = Y, 

there is an integer nx such that ja q ' (Y n i )>(kVN+l) N and hence an integer n2 

such that jm?;n2(Yni)>(kVN+l)N where k is a Lipschitz constant for /. 
Let n>max(n l 5 n2) and partition a big cube containing Y into cubes of 

diameter 1/n lying in [fcViV+ 1]N families such that any two cubes of the same 
family are separated by a distance of at least kin. If v of these cubes meet Yn 

then i>(l/rc)q '>(kVN+l)N and there is one family containing v cubes such 
that v'{lln)a > 1. Let y1? y 2 , . . . , yv/ be points where these v cubes meet Yn. 
Since d(yh yy)> k/n no two of these points lie in the image of any sub-interval 
of [a, b] of length 1/n. 

Partition [a, b] into — rc(b-a) subintervals of length 1/n. By summing over 
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the intervals of this partition we obtain 

np'+q' 7 np'+CI' 

I I — — „ p + q 
i = \ i n / - 1 ( y i ) ^ 0 n 

= i\ i \ 
i = i n in/-1(y i)#0 n 

The first inequality holds because we may be dropping certain terms from the 
sum; the second, because tii/n(f~

1(yi))>l and the third, because of the 
argument in the preceding paragraph. On the other hand, since p' + q ' > l , 
n(b-a) l/np+q'—»0 as rc->o°. This contradiction shows that p + q < l as 
required. 

3. More lemmas for Theorem 1 

LEMMA 2. (The first condensation). Let d be a unit vector in Euclidean 
N-space; I, a line through the origin with direction d and S a subset of I with 
Hausdorff dimension p, 0 < p < 1. Suppose that for every point seS the (N— 1)-
flat TTS through s perpendicular to I carries an (N— l)-ball |3S with centre x(s) and 
radius r ( s )>0. Then for any number p' with 0<p'<p there is a cylinder C(d) 
with centre x(d), central axis parallel to d and height - radius = r(d)>0 such 
that dim S' > p' where S' = {s e S : TTS PI C(d) = ft n C(d)}. 

Proof. Let 7r* be the (N— l)-dimensional subspace with unit normal d and 
let 7T denote the orthogonal projection of the N-space onto 7r*. Let x7 

(j = 1 , 2, 3 , . . . ) be a sequence which is dense in 7r*. For each triple (i, /, fc) 
where i and j are positive integers and k is an integer define 

Stfk={seS:(i) r ( s ) > r \ 

(ii) | | 7 T ( X ( S ) ) - X / | | < ( 2 0 - 1 and 

(iii) k ( 2 i r 1 ^ x ( s ) • d < ( k + l)(20"1}. 

Then S is the union of the countable collection of sets Sijk. 
Since p' <p =dim S, /utp (S) is not a-finite and there is a triple (i0,7o, k0) such 

that ^p(5ioJok0) = 0°. Let the cylinder C(d) have centre x(d) = 
xJO + (k0 + è)(2°io)"1d and height-radius = r(d) = (2î0)-1. Then S'=>Sio/oko and 
d i m S ' ^ p ' . 

LEMMA 3. (The second condensation). Let D be a subset of the unit sphere in 
Euclidean N-space and suppose that D has Hausdorff dimension q, 0 < q < 
N-1. Suppose that for every point deD there is a cylinder C(d) in the N-space 
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with centre x(d), central axis parallel to d and height < radius = r(d), 0 < r(d) < J. 
Then /or any number q' with 0<q'<q there is a cylinder C0 such tfiar 
dim D ' > q ' where D' = {deD: C0 pierces both flat faces of C(d)}. 

Proof. The unit sphere in Euclidean N-spaces can be covered by a finite 
number of caps with angular radius 0O = tan - 1 \ and therefore we may choose a 
unit vector d0 such that dim D0 = q where D 0 = {d e D : d • d0 > cos 0O}. Let 7r* 
be the (N— 1)-dimensional subspace with unit normal d0 and let TT denote the 
orthogonal projection of the N-space onto 7r*. Then if xe7r*, d e D 0 and 
||7r(x(d))-x||<|r(d) it follows that the line through x parallel to d0 pierces both 
flat faces of C(d). 

Let Xj (j = 1, 2, 3 , . . . ) be a sequence which is dense in 7r*. For each triple of 
positive integers (i, /, k) define 

Diik={àeD0: (i) r(d)>r1 

(ii) | k (x (d) ) -x i | | < (40- 1 and 

(hi) ||7r(x(d))-x(d)||<k}. 

Then D 0 is the union of the countable collection of sets Dijk. 
Since q'<q = d i m D 0 , jutq (D0) is not cr-finite and there is a triple (i0 , /0 , k0) 

such that jULq(Dioioko) = oo. Let the cylinder C0 have centre xio, axis of length 
2(fc0+l) parallel to d0 and radius (4i0)_1. Then D'=>D io ioko and dimD'^q'. 

LEMMA 4. Let C0 be a cylinder in Euclidean N-space with radius p > 0 and 
central axis l0 parallel to d0 where | |d0 | |=l . Let fixand 02 be non-intersecting 
(N—l)-balls with normal directions dx and d2 which cut across C0 and meet l0 

at x1 and x2. Then if dx and d2 are normalized so that dx • d0 = d2 • d0 = 1 we 
have ||d! - d2|| < p" 1 ||Xl -x2 | | . 

Proof. Without loss of generality we assume that dx j= d2 and we work in a 
3-space containing d0, dx and d2. If these vectors are linearly dependent and in 
particular if N = 2, this involves the choice of an arbitrary third dimension. 

The planes of j8x and |82 are (x—xx) - d ^ O and (x-x 2 ) *d2 = 0 respectively 
and these meet in a line m parallel to d x xd 2 . Since px and |82 are non-
intersecting m does not enter C0 and the distance from m to l0 must be greater 
than p. Using the standard formula for the distance between skew lines we 
obtain 

l ( » - » i ) - [ ( d 1 x d 2 ) x d 0 ] | 

r iKd.xd^xdoii r p 

where (x —x^ • dx = (x-x 2) • d2 = 0. Because of the normalization of dx and d2 

we obtain 

(d1 x d2) x d0 = (dx • d0)d2 - (d2 • d0)d i - d2 - dx 
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and 

(x-x i ) • [(d1xd2)xd0] = (x-x1)'- (Aj-di) = x • d 2 - X l • d2 

= x2 • d2-xx • d2 = (x2-Xi) • d2 = zb||x2 —xJI d0 • d2 

= ±||x2-x1||. 

With these simplifications, our inequality for the distance from m to Z0 becomes 

±llx9-Xi 

11*2-dill 

and this yields the desired result. 

4. Proof of Theorem 1. Let f be a frame in Euclidean N-space (N>2) 
which admits a packing L:^—»â8 by (JV-l)-balls. Furure reference to 
( N - 1)-balls will be to those in the set L(3F). Suppose, contrary to Theorem 1, 
that there is a real number p with 0 < p < l such that p + q ( p ) > l . 

Step 1. If p = 0, set p' = p. For every line /(d) with d e D p set C(d) equal to 
one of the (N-l)-bal ls perpendicular to /(d). Let S'(d) be the point of 
intersection of the (N-l)-f lat of this (N-l ) -bal l with /(d). 

If p > 0 , choose p' with 0 < p ' < p and p' + q ( p ) > l . For every line /(d) with 
d e Dp carry out the condensation of Lemma 2 with S = S(d) to obtain C(d) and 
S'(d). 

Step 2. Since p + q ( p ) > l and p < l w e have 0 < q ( p ) < N - l . Choose q' with 
0<q'<q such that p' + q'>l. Carry out the condensation of Lemma 3 using 
D = DP and the cylinders C(d), d e D , which were constructed at Step 1. The 
result of this construction is a cylinder C0 with radius p > 0 and finite central 
axis /0 parallel to the unit vector d0. 

Step 3. The axis Z0 is isometric to a finite interval [a, b] of the real line. The 
(N-l)-f la t tangent to the unit sphere of Euclidean N-space at d0 is isometric 
to nN~x. We construct a Lipschitz function / : [a , 6 ] ->R N ~\ 

If 5 G [a, b] corresponds to a point where Z0 is cut by an ( N - l)-ball with unit 
normal d satisfying d • d 0 ^cos 0O, we define f(s) = (d • d0)_1d. By Lemma 4 this 
function is Lipschitz with constant p _ 1 . We extend it by continuity to the 
closure of its domain and then by linear interpolation to the rest of [a, b]. 

Step 4. The sets S'(d) are projected by the (N- l)-flats perpendicular to d to 
sets of the same dimension on Z0. Also the gnomic projection used in defining / 
carries subsets of the spherical cap around d0 to sets of the same dimension in 

Let p' and q' be as defined in Step 1 and Step 2 respectively. Let Y = 
{y G [RN~1 : dim f~\y) > p'}. Then dim Y > q'. The fact that pr + q' > 1 contradicts 
Lemma 1 and thereby proves Theorem 1. 

5. A further property of frames which admit packings. If 0 is an origin for our 
N-space and IT is an (N—l)-flat which does not pass through 0, then TT is 
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determined by the point F(ir) e IT which lies at the foot of the perpendicular 
from 0 to 7T. If & is a frame with the property that no (N- l)-flat of ^ passes 
through 0 then & is determined by F(&) = {F(TT) : IT G ^ } . By using N + l 
centres 0o, 0 l5 0 2 , . . . , 0N which do not lie in a single (N- l)-flat we can write 
an arbitrary frame & as the union of N + l frames ^ = {IT e ^ : 0f $£ 7r} of the 
type described above. 

THEOREM 2. Let 9* be a frame determined by the point set F(3F). If 3F admits a 
packing then F (3?) lies in the union of countably many Lipschitz curves, each of 
finite length. 

Proof. Let Cn(n = 1, 2, 3 , . . . ) be an enumeration of the right-cylinders of 
length 1 with rational radius p n < l , rational centre and rational direction. For 
each (N-l)-f la t IT of the frame 3*, the (N- l ) -ba l l L(ir) of the given packing 
L(3?) is pierced at least once by a cylinder of the form Cn. We will use this fact 
to include F (IT) in a Lipschitz curve fn :[0,1]->[RN. 

Let the axis of Cn be written a(s) = c + sd0 ( 0 < s < l ) . If the axis cuts IT at 
a(s) and IT has normal d(s) satisfying d(s) • d0 = 1 then Lemma 4 guarantees 
that the mapping s —> d(s) is Lipschitz with constant p" 1 at the points where it 
is defined. The mapping d can be extended to all of [0,1] by continuity and 
linear interpolation. Then 

a(s) - d(s) J / 

d(s) • d(s) 

is a Lipschitz curve passing through F(v). 
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