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Abstract. Alignment of the magnetic and velocity fields has previously been shown to play a role
within nonlinear dynamo theory (Cameron and Galloway 2006), MHD turbulence (Matthaeus
et al. 1980) and mean field theory (Yokoi 2013). What has not been previously examined is
whether it is beneficial to examine alignment within kinematic dynamo theory. I show how
measurements of alignment within kinematic dynamo theory for the Roberts flow can indicate
a change in the structure of the magnetic field.
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1. Introduction
The evolution of an incompressible, electrically conducting, fluid and the magnetic field
that it couples with is governed by the equation of motion for the fluid (1.1) and the
induction equation (1.2). At the start of the dynamo the magnetic field is weak. The
Lorentz force term ((B · ∇)B) within equation (1.1) can thus be neglected and the fluid
evolves independently from the magnetic field. The initial growth of a seed magnetic field
can therefore be examined by solving (1.2) using a prescribed flow u. As the induction
equation is linear solutions will be of the form B(x, y, z) exp(σt). Amplification of the
seed magnetic field therefore requires �{σ} > 0.

One example of a flow that produces dynamo action and has been studied extensively is
the Roberts flow (Roberts 1972) which is shown in equation (1.3). The flow amplifies the
magnetic field by exponentially stretching along the null lines of the flow. The flow results
in a magnetic field whose structure depends upon the wavenumber in the z direction, kz ,
and it is for this reason that I use it to examine alignment.

∂u
∂t

= −∇P + (B · ∇)B − (u · ∇)u + ν∇2u + F (1.1)

∂B
∂t

= (B · ∇)u − (u · ∇)B + η∇2B (1.2)

u =

√
3
2
[
cos(y), sin(x), sin(y) + cos(x)

]
(1.3)

The quantity that I use to measure alignment is shown within equation (1.4) and is the
volume average of | cos(θ)| where θ is the angle between u and B at each point. AHc

therefore measures alignment over the entire domain.

AHc =
kz

8π3

∫ 2 π
k z

0

∫ π

−π

∫ π

−π

|u · B|
|u||B| dV (1.4)
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Figure 1. AHc highlights the difference between kz = 0.3 and the other kz which is not
obvious from the plot of the growth rate

Figure 2. kz = 0.4 run showing how AHc changes in response to a change in the structure of
B. Light indicates strong positive field dark is strongly negative. Position indicates time where
the plots are taken except those in the top right which are at times t = 10, 60, 100 respectively.

2. Overview
Due to the z independence of u and the linear nature of (1.2) it can be shown that the
magnetic field may be rewritten in the form shown within equation (2.1). The wavenum-
ber in the z direction, kz is therefore a free parameter.

B(x, y, z, t) = 2�{B̃(x, y) exp(ikz z + σt)} (2.1)

I solve (1.2) within a doubly periodic geometry for prescribed flow (1.3) and η = 1/1000.
I use a spectral code which makes use of an Adams-Bashforth: Adams-Moulton predictor-
corrector scheme for timestepping. I begin at kz = 0.1 with B as a random seed field
and then increase kz in steps of 0.1. Each subsequent kz is then initialised using the
rescaled magnetic field of the previous kz for computational efficiency. Figure 1(a) shows
a plot of the growth rate vs kz and is in good agreement with published results (Roberts
1972). Figure 1(b) shows a plot of the time asymptotic AHc against kz . Figure 2 shows
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Figure 3. Figure shows that the structure of Bz for kz = 0.3 is different to that of all other kz

one individual, kz = 0.4, with the subplot windows being the z = 0 contours of the Bz

component of the magnetic field at various times.

3. Implications
Figure 3(a) shows the z component of the magnetic field evaluated at z = 0 for kz = 0.4
which is similar in structure to all kz other than kz = 0.3 which is shown within Figure
3(b) and consists of large scale modes rather than elongated structures. The different
modal structure that kz = 0.3 has compared to all other kz examined is clearly seen by
the large change in value of AHc shown within Figure 1(b) whereas examination of the
growth rate alone would not perhaps highlight the special nature of the magnetic field
structure of kz = 0.3. This suggests that the calculation of AHc may be a useful method
to identify differing magnetic field structures as kz is varied.

In Figure 2 we see that as time evolves the magnetic field leaves the center region of
the flow and becomes exponentially stretched along the null lines of the flow forming into
a seperatrix like structure. Correspondingly as the magnetic field structure transitions
from a large scale modal structure to one that is more seperatrix like the value of AHc

drops to a value in line with that obtained for other seperatrix structures. Time series of
AHc thus enable us to see that the magnetic field is restructuring itself without needing
to examine plots of the magnetic field directly.

In Summary I have shown via numerical simulations that the measure of alignment
AHc between the flow and magnetic field within kinematic dynamo simulations can be a
useful method for highlighting differences in magnetic field structure. This suggests that
AHc may be a useful diagnostic tool within kinematic dynamo theory.
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