In the case we are considering, $\mu=\sqrt{ }-1$, and therefore we infer that if P be any point on the hyperbola. its polar with regard to the conjugate, touches the original hyperbola at P^{\prime}, the other extremity of diameter CP , since $\mathrm{CP}^{\prime}=-\mathrm{CP}=\mathrm{OP} \times(\sqrt{-1})^{2}$.

As a final example, I take one involving focal properties. The projective property of the focus may be readily established geometrically, for we know that

1. A revolving right angle, makes with the circular asymptotes a harmonic pencil, and with no pair of fixed lines but the circular asymptotes.
2. If OL, OM be tangents to a conic, and the tangent at P meet LM in R, then OL, OP, OM, OR is harmonic.
3. If the tangent at \mathbf{P} meet directrix in Z , then PSZ is a right angle. Combining these we see that the tangents to a conic from a focus, must pass through the circular points at infinity.
VII. A number of parabolas pass through a fixed point, and touch two lines. Show that the chord of contact envelopes a hyperbola. (Aberdeen Senior Mathematical Examination 1884).

Project orthogonally any hyperbola asymptotic to OP,OQ, (Fig. 32) into a circle, then $O P, O Q$ become the circular asymptotes, and the parabolas remain parabolas, while O becomes their focus S. Hence the problem becomes-Given a point and a focus of a parabola, find the envelope of polar of the focus, or the directrix. And this is of course a circle, whose centre is the fixed point, and which passes through \mathbf{S}. Returning to the original figure, we find that the envelope is a hyperbola whose centre is A , which passes through O , and whose asymptotes are parallel to OP, OQ.

On a number of concurrent spheres.
By R. E. Allardice, M.A.
This paper included an analytical proof of the following theorem:
If five apheres $1,2,3,4,5$, pass through the same point, and if the four points in which the four spheres $1,2,3,4$, intersect in sets of three be coplanar; and if the same be true for the sets $1,2,3,5$; $1,2,4,5 ; 1,3,4,5$; it will also be true for the remaining set 2, 3, 4, 5.

The same theorem is true for similar and similarly situated quadric surfaces.

