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Neural mass models are ubiquitous in large-scale brain modelling. At the node level, they are

written in terms of a set of ordinary differential equations with a non-linearity that is typically

a sigmoidal shape. Using structural data from brain atlases, they may be connected into a

network to investigate the emergence of functional dynamic states, such as synchrony. With

the simple restriction of the classic sigmoidal non-linearity to a piecewise linear caricature, we

show that the famous Wilson–Cowan neural mass model can be explicitly analysed at both

the node and network level. The construction of periodic orbits at the node level is achieved

by patching together matrix exponential solutions, and stability is determined using Floquet

theory. For networks with interactions described by circulant matrices, we show that the

stability of the synchronous state can be determined in terms of a low-dimensional Floquet

problem parameterised by the eigenvalues of the interaction matrix. Moreover, this network

Floquet problem is readily solved using linear algebra to predict the onset of spatio-temporal

network patterns arising from a synchronous instability. We further consider the case of a

discontinuous choice for the node non-linearity, namely the replacement of the sigmoid by

a Heaviside non-linearity. This gives rise to a continuous-time switching network. At the node

level, this allows for the existence of unstable sliding periodic orbits, which we explicitly

construct. The stability of a periodic orbit is now treated with a modification of Floquet

theory to treat the evolution of small perturbations through switching manifolds via the use

of saltation matrices. At the network level, the stability analysis of the synchronous state is

considerably more challenging. Here, we report on the use of ideas originally developed for

the study of Glass networks to treat the stability of periodic network states in neural mass

models with discontinuous interactions.

Key words: General applied mathematics, synchronisation, non-smooth equations, complex

networks, neural networks

1 Introduction

The Wilson–Cowan model [47, 48] is one of the most well-known neural mass models

for modelling the activity of cortex, and for a historical perspective see [11]. Neural
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mass models generate brain rhythms using the notion of population firing rates, aiming

to side-step the need for large-scale simulations of more realistic networks of spiking

neurons. Although they are not derived from detailed conductance-based models, they

can be motivated by a number of phenomenological arguments [9], and typically take the

form of systems of non-linear ordinary differential equations (ODEs). The Wilson–Cowan

neural mass model describes the dynamics of two interacting populations of neurons, one

of which is excitatory and the other inhibitory. Interactions are mediated between

the populations with the use of a non-linear sigmoidal firing rate function. In its most

simple incarnation, it consists of two non-linear ODEs, and as such has been widely

studied using techniques from phase-plane analysis and numerical bifurcation theory. At

the network level, the model can either be posed on a graph or a continuous space, and

since the 1970s there has been a large amount of attention devoted to the analysis of

these models and their application in neuroscience [14]. Recent examples of their use

include reconciling information from anatomical and functional data [49], understanding

phase-amplitude coupling (whereby the amplitude of a higher frequency brain rhythm is

modulated by the phase of lower frequency activity) [38], modelling epilepsy [36], and

understanding the emergence of cortical resonant frequencies [32]. Indeed, there are many

variants of the Wilson–Cowan neural mass model now in use for interpreting neuroima-

ging data [46], including those of Zetterberg et al. [50], Jansen and Rit [26], and Liley

et al. [34]. Neural mass models are a key component of the Virtual Brain project that

aims to deliver the first simulation of the human brain based on individual large-scale

connectivity [41]. Such large-scale brain network models are especially relevant to under-

standing resting state networks [5], whereby different regions of the brain’s sensorimotor

system oscillate slowly and synchronously in the absence of any explicit task.

However, at heart it is well to note that from a mathematical modelling perspective,

all neural mass models to date are essentially low-dimensional coupled ODEs with

a sigmoidal firing rate non-linearity, exemplified by the Wilson–Cowan model. Using

extensions of the techniques originally developed by Amari [2], the continuum or neural

field [9] Wilson–Cowan model has been analysed when the choice of this firing rate

non-linearity is a Heaviside function. This has been possible because of a smoothing

of the firing rate with a spatial kernel representing anatomical connectivity. However,

when posed on a graph, representing a network of interacting neural populations, no

such smoothing arises. Surprisingly, there are hardly any mathematical results for such

networks, as opposed to their continuum counterparts for which there are now a plethora

ranging from the properties of localised states through to travelling waves, as reviewed

in [8]. This discrepancy is really a reflection of the fact that there are many more techniques

for studying smooth dynamical systems as opposed to non-smooth. However, the body

of mathematical work in this area is rapidly growing, driven in part by its importance

to engineering [7, 15]. Given their relevance to large-scale brain dynamics, it is highly

desirable to develop mathematical techniques for the analysis of Wilson–Cowan style

neural mass models at the network level. Here, we advocate for the replacement of smooth

sigmoidal non-linearities in neural mass models by more tractable functions, including

piecewise linear (PWL) and piecewise constant functions. A PWL continuous choice has

been used in several previous studies, including those of Hansel and Sompolinsky [24],

and Kilpatrick and Bressloff [29], whilst the discontinuous Heaviside (piecewise constant)
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choice has proven especially popular since the seminal work of Amari [2]. In these

instances, this has facilitated the construction of certain types of localised states in

continuum neural field models. However, in a discrete neural network context, there is a

major mathematical difference in the analysis of network states for the case of continuous

versus discontinuous firing rates. As well as introducing a simple methodology to treat

the construction of periodic orbits in idealised Wilson–Cowan networks, this is one of the

major topics we wish to address in this paper.

First, in Section 2, we introduce the model for an isolated Wilson–Cowan node with a

PWL firing rate. The description of dynamical states with reference to switching manifolds

becomes very useful. We show how matrix exponentials can be used to patch together a

periodic orbit, and that Floquet theory simplifies considerably to yield explicit formulas for

determining solution stability. Next, in Section 3, we consider a network of PWL Wilson–

Cowan nodes, with nodes arranged along a ring with distance-dependent interactions.

This particular choice of coupling guarantees the existence of the synchronous state.

We then develop a linear stability analysis of this state and show that this leads to a

tractable variational problem of a very similar type to that for the single node, albeit now

parameterised by the eigenvalues of the connectivity matrix. We use this to determine

instabilities that can lead to the formation of spatio-temporal network patterns. Next, in

Section 4, we consider the case that the firing rate is a Heaviside function, for which the

techniques developed for studying PWL systems break down. Once again periodic orbits

can be constructed using matrix exponentials, although standard Floquet theory must

be now augmented to cope with the evolution of linearised perturbations through the

switching manifolds. This is most readily achieved with the use of saltation matrices that

have commonly been used for the study of non-smooth mechanical systems [33]. However,

at the network level, the stability of the synchronous state is much harder to determine

than for the continuous model. Here, we show that ideas from the study of Glass networks

developed by Edwards [17] are particularly useful, and that stability is strongly influenced

by the temporal order in which network components cross-switching manifolds, and that

this in turn is determined by the choice of initial perturbation. Finally, in Section 6, we

conclude with an overview of the new results about synchrony in networks of neural mass

models, and discuss the natural extension of this work to treat non-synchronous states.

2 The Wilson–Cowan model and a piecewise linear reduction

For their activity-based neural mass model, Wilson and Cowan [47, 48] distinguished

between excitatory and inhibitory sub-populations. This seminal (space-clamped) model

can be written succinctly in terms of the pair of coupled differential equations:

du

dt
= −u + F(Iu + wuuu− wvuv), τ

dv

dt
= −v + F(Iv + wuvu− wvvv), (2.1)

Here, u = u(t) is a temporal coarse-grained variable describing the proportion of excitatory

cells firing per unit time at the instant t. Similarly, the variable v represents the activity

of an inhibitory population of cells. The constants wαβ , α, β ∈ {u, v}, describe the weight

of all synapses from the αth population to cells of the βth population, and τ is a relative

time-scale. The non-linear function F describes the expected proportion of neurons in
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Figure 1. Phase plane for the Wilson–Cowan network with a PWL firing rate, showing a stable

periodic orbit (light blue). Parameters: ε = 0.04, τ = 0.6, Iu = −0.05, Iv = −0.3, wuu = 1, wvu = 2,

wuv = 1, and wvv = 0.25. The straight lines in red and green show the switching manifolds, where

Iu + wuuu− wvuv = 0, ε and Iv + wuvu− wvvv = 0, ε, respectively.

population α receiving at least threshold excitation per unit time, and is often taken to

have a sigmoidal form. Here, the terms Iα represent external inputs (that could be time

varying). For a historical perspective on the Wilson–Cowan model see [14], and for a more

recent reflection by Cowan see [12]. To reduce the model to a mathematically tractable

form, we consider the choice of a PWL firing rate function given by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x � 0

ε−1x 0 < x < ε

1 x � ε

. (2.2)

For appropriate choices of parameters the Wilson–Cowan model, with the firing rate

given by (2.2), can support stable oscillations. An example is shown in Figure 1, where

we also plot the four switching manifolds defined by the condition that arguments to the

function F in (2.1) take on the values zero and ε. Away from the switching manifolds, the

dynamics governing the evolution of trajectories is linear, and may be constructed using

matrix exponentials. To simplify further analysis, it is first convenient to introduce new

variables (U,V ) such that u = (wvu(V − Iv) − wvv(U − Iu))/|W |, where |W | = detW , and

v = (wuu(V − Iv) − wuv(U − Iu))/|W |, as well as the matrices

W =

[
wuu −wvu

wuv −wvv

]
, J =

[
1 0

0 1/τ

]
A = −WJW−1. (2.3)

With these choices, (2.1) transforms to

d

dt

[
U

V

]
= A

[
U − Iu
V − Iv

]
+ WJ

[
F(U)

F(V )

]
. (2.4)

In the representation (2.4), we see that the four switching manifolds are simply defined

by U = 0, U = ε, V = 0, and V = ε. The periodic orbit shown in Figure 1 (encircling an

unstable fixed point) crosses each of these manifolds twice, so that the periodic trajectory

is naturally decomposed into eight separate pieces. On each piece, we shall denote the
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time-of-flight for a trajectory to travel from one switching manifold to another by Δi,

i = 1, . . . , 8, so that the period of the orbit is given by Δ =
∑8

i=1 Δi. As an explicit example

of how to construct a trajectory between two switching manifolds, consider the region

where 0 � U � ε and V < 0. In this case, the solution of (2.4) is given by

[
U(t)

V (t)

]
= eA+(ε)t

[
U(0)

V (0)

]
− A−1

+ (ε)
(
eA+(ε)t − I2

)
A

[
Iu
Iv

]
, t � 0, (2.5)

where

A+(ε) =

(
A + ε−1WJ

[
1 0

0 0

])
. (2.6)

It is a simple matter to write down the trajectories in each of the remaining regions

of phase space visited by a periodic orbit. We may then use these matrix exponential

formulas to patch together solutions, setting the origin of time in each region such that

initial data in one region comes from final data from a trajectory in a neighbouring region.

We shall denote the periodic orbit by (U,V ) such that (U(t), V (t)) = (U(t + Δ), V (t + Δ)).

If we consider initial data with (U(0), V (0)) = (U0, 0) then the eight times-of-flight and the

unknown U0 are determined self-consistently by the nine equations V (Δ1) = ε, U(Δ2) = ε,

U(Δ3) = 0, V (Δ4) = ε, V (Δ5) = 0, U(Δ6) = 0, U(Δ7) = ε, V (Δ8) = 0, and U(Δ8) = U0.

The numerical solution of this non-linear algebraic system of equations can be used to

construct periodic orbits such as the one shown in Figure 1. Note that the construction of

periodic orbits that do not cross all of the switching manifolds can similarly be performed

(requiring the simultaneous solution of fewer equations). To determine stability we can

turn directly to Floquet theory for planar systems which tells us that the non-trivial

Floquet exponent is given by

σ =
1

Δ

∫ Δ

0

TrD(s)ds, (2.7)

where D(s) denotes the Jacobian of the system evaluated along the periodic orbit. In

general this is a hard quantity to evaluate for systems where the periodic orbit is not

available in closed form. However, for the PWL Wilson–Cowan model the Jacobian is

piecewise constant and we have that

σ =
1

Δ

8∑
i=1

Δi TrAi, (2.8)

where A2 = A4 = A6 = A8 = A, A3 = A7 = A+(ε), and A1 = A5 = A−(ε), where

A−(ε) =

(
A + ε−1WJ

[
0 0

0 1

])
. (2.9)

Thus a periodic orbit is stable if σ < 0. In Figure 2, we present a plot of σ as a function

of τ to show that the periodic solution in Figure 1 is stable.

Given the above method to construct and determine the stability of a periodic orbit,

we next show how to extend this approach to treat synchronous solutions in networks of

Wilson–Cowan oscillators.
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Figure 2. A plot of the non-trivial Floquet exponent for the PWL Wilson–Cowan model (left

axis), as a function of the relative time-scale τ, with the period of the orbit also shown (right axis).

Parameters as in Figure 1. Periodic orbits emerge via a supercritical Hopf bifurcation as τ increases

through τHopf = (wvv + ε)/(wuu − ε) ∼ 0.3. We see that the branch of periodic orbits shown is stable,

with stability decreasing to zero as the solution is lost with increasing τ. This loss of existence occurs

because of a grazing bifurcation (coincident with a saddle-node bifurcation of periodic orbits) at

τgraze ∼ 0.6 whereby part of the trajectory develops a point of inflection on the switching manifold

v = (Iu +wuuu)/wvu (red solid line in Figure 1), such that beyond bifurcation the trajectory does not

cross the switching manifold and instead is attracted to the stable fixed point at (u, v) = (0, 0).

3 A piecewise linear Wilson–Cowan network

The study of coupled oscillator networks in biology, physics, and engineering is now

commonplace. Two particularly well-known tools for studying patterns of phase-locked

states and their instabilities are the theory of weakly coupled oscillators [30], and the

master stability function (MSF) [39]. The reduction of a coupled limit cycle network to a

phase oscillator network has proven very useful for gaining insight into phenomena ranging

from the synchronisation of flashing fireflies [19] to behaviours in social networks [4],

and for a recent review see [16]. However, there is an obvious limitation to such an

approach, namely the restriction to weak interaction (and near identical oscillators). The

MSF approach (for identical oscillators) does not require any such restriction on coupling

strength, and can be used to determine the stability of the synchronous state in terms of

the eigenstructure of the network connectivity matrix. However, the numerical evolution

of a system of dynamical equations, arising from a Floquet variational problem, must

be performed. Importantly the MSF approach can be combined with group theoretical

techniques used in the study of symmetric dynamical systems to analyse the stability of

cluster states within symmetric networks of dynamical units [40, 43]. Here, we favour the

MSF approach and show how it simplifies considerably for a PWL choice of firing rate

function. This allows us to improve upon previous mathematical studies of Wilson–Cowan

networks, such as those by Campbell and Wang [6] (who treated networks with nearest

neighbour coupling and established the condition for synchrony), Ueta and Chen [45]

(who performed a numerical bifurcation analysis for small networks), and Ahmadizadeh

et al. [1] (who used perturbation techniques and numerics to study synchrony in networks

with diffusive coupling).
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We now consider a network of Wilson–Cowan nodes given by

dui
dt

= −ui + F

⎛
⎝Iu +

N∑
j=1

Wuu
ij uj −

N∑
j=1

Wvu
ij vj

⎞
⎠ , (3.1)

τ
dvi
dt

= −vi + F

⎛
⎝Iv +

N∑
j=1

Wuv
ij uj −

N∑
j=1

Wvv
ij vj

⎞
⎠ , i = 1, . . . , N, (3.2)

subject to the constraints
∑N

j=1 Wuu
ij = wuu,

∑N
j=1 Wvu

ij = wvu,
∑N

j=1 Wuv
ij = wuv , and∑N

j=1 Wvv
ij = wvv for all i. These row-sum constraints are natural for networks arranged

on a ring, and guarantee the existence of a synchronous orbit (ui(t), vi(t)) = (u(t), v(t)) for

all i = 1, . . . , N, where (u(t), v(t)) is given by the solution of (2.1).

It is now convenient to introduce a vector notation with X = (u1, v1, u2, v2, . . . , uN, vN) ∈
�2N and consider a change of variables Y = WX + C , where C = 1N ⊗ (Iu, Iv), and

W = Wuu ⊗
[
1 0

0 0

]
−Wvu ⊗

[
0 1

0 0

]
+ Wuv ⊗

[
0 0

1 0

]
−Wvv ⊗

[
0 0

0 1

]
. (3.3)

Here, the symbol ⊗ denotes the usual tensor product for matrices, and 1N is an

N-dimensional vector with all entries equal to unity. This means that the switching

manifolds can be succinctly described by Yi = 0 and Yi = ε, and the dynamics takes the

form

d

dt
Y = A(Y − C) + WJ F(Y ), (3.4)

where

J = IN ⊗ J, A = −WJW−1, (3.5)

where J is given by (2.3) and IN is the N×N identity matrix. If we denote the synchronous

solution by Y (t) = (U(t), V (t), U(t), V (t), . . . , U(t), V (t)) and consider small perturbations

such that Y = Y + δY , then these evolve according to

d

dt
δY = AδY + WJDF(Y )δY , (3.6)

where DF(Y ) is the Jacobian of F evaluated along the periodic orbit.

Given the constraints on the matrices Wαβ , with α, β ∈ {u, v} it is natural to take these

to be circulant matrices with Wαβ
ij = Wαβ

|i−j|. In this case, the normalised eigenvectors

of Wαβ are given by ep = (1, ωp, ω
2
p , . . . , ω

N−1
p )/

√
N, where p = 0, . . . , N − 1, and ωp =

exp(2πip/N) are the Nth roots of unity. The corresponding complex eigenvalues are given

by ναβ = ναβ(p) where

ναβ(p) =

N−1∑
μ=0

Wαβ
μ ωμ

p . (3.7)
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If we introduce the matrix of eigenvectors P = [e0 e1 . . . eN−1], then we have that

(P ⊗ I2)
−1W(P ⊗ I2) = Λuu ⊗

[
1 0

0 0

]
− Λvu ⊗

[
0 1

0 0

]
+ Λuv ⊗

[
0 0

1 0

]
− Λvv ⊗

[
0 0

0 1

]
,

= diag(Λ(0), Λ(1), . . . , Λ(N − 1)) ≡ Λ, (3.8)

where Λαβ = diag(ναβ(0), ναβ(1), . . . , ναβ(N − 1)), and

Λ(p) =

[
νuu(p) −νvu(p)

νuv(p) −νvv(p)

]
, p = 0, 1, . . . , N − 1. (3.9)

Moreover, it is easy to establish that in the above notation (P ⊗ I2)
−1A(P ⊗ I2) =

−Λ(IN ⊗ J)Λ−1.

If we now consider perturbations of the form δZ = (P ⊗ I2)
−1δY , then from (3.6), we

find that the linearised dynamics is described by the system

d

dt
δZ = Λ(IN ⊗ J)

[
−Λ−1 + (IN ⊗ D)

]
δZ, (3.10)

where D ∈ �2×2 is the Jacobian of (F(U), F(V )), and is a piecewise constant matrix that

is only non-zero if 0 < U(t) < ε or 0 < V (t) < ε. In the former case [DF]11 = ε−1 with

all other entries zero, and in the latter case [DF]22 = ε−1 with all other entries zero. We

see that (3.10) has a block structure where the dynamics in each of N 2 × 2 blocks is

given by

d

dt
ξ = [A(p) + Λ(p)JD]ξ, p = 0, . . . , N − 1, ξ ∈ �2, (3.11)

with A(p) = −Λ(p)JΛ−1(p). Thus, comparing to (2.4), we see that the variational equation

for the network is identical to that for a single Wilson–Cowan unit with W replaced by

Λ(p). We note that for p = 0 the variational problem is identical to that for an isolated

node since Λ(0) = W (using ναβ(0) =
∑N−1

μ=0 Wαβ
μ = wαβ). Thus, to determine the stability

of the synchronous state, we only have to consider a set of N two-dimensional variational

problems. Exploiting the fact that between switching manifolds the variational problem

defined by (3.11) is time-independent, we may construct a solution in a piecewise fashion

from matrix exponentials and write ξ(t) = exp[(A(p) +Λ(p)JD)t]ξ(0). We may then build

up a perturbed trajectory over one period of oscillation in the form ξ(Δ) = Γ (p)ξ(0),

where Γ (p) ∈ �2×2 is given by

Γ (p) = eA(p)Δ8eA+(p;ε)Δ7eA(p)Δ6eA−(p;ε)Δ5eA(p)Δ4eA+(p;ε)Δ3eA(p)Δ2eA−(p;ε)Δ1 , (3.12)

where

A+(p; ε) =

(
A(p) + ε−1Λ(p)J

[
1 0

0 0

])
, A−(p; ε) =

(
A(p) + ε−1Λ(p)J

[
0 0

0 1

])
.

(3.13)

Thus if a periodic orbit of an isolated Wilson–Cowan node is stable, then the synchronous

network solution will be stable provided all the eigenvalues of Γ (p), for p = 0, . . . , N − 1,
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Figure 3. Spectral plots in the complex plane for a Wilson–Cowan ring network, with spatial

scales σαβ = σ for all α, β, and N = 31. Other parameters as in Figure 1. Left: σ = 0.15, and

the synchronous solution is predicted to be linearly stable. Right: σ = 0.191, and the synchronous

solution is predicted to be linearly unstable.

lie in the unit disc (excluding the one that arises from time-translation invariance, with

a value +1). For a fixed value of p, one of three bifurcations is possible, namely a

tangent instability defined by det(Γ (p) − I2) = 0, a period-doubling instability defined by

det(Γ (p) + I2) = 0, and a Neimark–Sacker bifurcation defined by detΓ (p) = 1. If there

is a p = pc such that one of these instabilities occurs, then the excited network state will

correspond to the eigenvector Re epc .

3.1 Example: a ring network

By way of illustration of the above theory, let us consider a network of Wilson–Cowan

nodes arranged on a ring with an odd number of nodes. Introducing a distance between

nodes indexed by i and j as dist(i, j) = min(|i − j|, N − |i − j|), we can define a set of

exponentially decaying connectivity matrices according to

Wαβ
ij = wαβ e− dist(i,j)/σαβ∑N−1

j=0 e− dist(0,j)/σαβ
. (3.14)

Thus, we have a set of four circulant matrices parametrised by the four spatial scales σαβ
that respect the row-sum constraints

∑N
j=1 W

αβ
ij = wαβ . In Figure 3, we show a plot of

the eigenvalues of Γ (p) for p = 0, . . . , N − 1 for two different parameter choices. In one

case, all of the eigenvalues (excluding the one arising from time-translation invariance) lie

within the unit disc, whilst in the other one leaves the unit disc along the negative real

axis. This latter scenario predicts an instability of the synchronous state, and is consistent

with direct numerical simulations. Moreover, by studying the spectrum under parameter

variation, we can find the value of p = pc which goes unstable first. In Figure 4, we show

time courses (obtained by direct numerical simulation) for the components ui(t) of the

emergent network state just beyond the point of instability, as well as a plot of the real

part of the spatial eigenvector epc . We see that the spatial pattern of the network state is

well-predicted by epc , suggesting that the bifurcation is supercritical.

https://doi.org/10.1017/S0956792518000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000050


878 S. Coombes et al.

 0  10  20  30
 0 -0.1

 0

 0.1

 0.2

Δ

3Δ

t

i

Figure 4. Direct numerical simulation of a Wilson–Cowan ring network, with N = 31, just beyond

the point of synchronous instability where σ = 0.191. Other parameters as in Figure 1. Here, we plot

the components ui(t) in a space-time plot. The shape of the unstable mode epc , with pc = 16 (and

also pc = 17 because of a degeneracy) is depicted in blue at the top of the figure. The bifurcation

point of the linear instability is found to be in excellent agreement with simulations, with the spatial

pattern of the emergent network state predicted by epc .

4 The Heaviside world

In a recent paper, Harris and Ermentrout [25] considered a single Wilson–Cowan pop-

ulation with a Heaviside non-linearity, where the firing rate in (2.1) takes the form

F(x) = H(x), where H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The choice of a Heav-

iside firing rate has been very popular in mathematical neuroscience ever since the seminal

work of Amari (for neural field models), as nicely exemplified by his recent article on the

‘Heaviside World’ [3]. A case in point is the work of Laing and Chow [31] for under-

standing binocular rivalry. They considered a neural mass network model with recurrent

excitation, cross-inhibition, adaptation, and synaptic depression and showed that the use

of a Heaviside non-linearity allowed the explicit calculation of the dominance durations

of perceptions. A more recent use of the Heaviside firing rate has been by McCleney

and Kilpatrick [35] for neural activity models with spike rate adaptation to understand

the dynamics of up-down states. Using techniques from Filippov systems and differential

inclusions, Harris and Ermentrout made a study of periodic orbits for a Heaviside firing

rate using a boundary value problem approach. Here, we show that we can recover their

results using the matrix exponential approach of Section 2. Moreover, we also extend

their work on a single node by showing how to determine the stability of periodic orbits

using a non-smooth version of Floquet theory.

In the representation (2.4), with F = H , we see that the there are two switching manifolds

defined by U = 0 and V = 0. If we introduce the indicator functions h1(U,V ) = U and

h2(U,V ) = V , then we can define these manifolds (lines in this case) as

Σi =
{
(U,V ) ∈ �2 | hi(U,V ) = 0

}
. (4.1)

These switching manifolds naturally divide the plane into four sets. We denote these by

D++ = {(U,V ) |U � 0, V � 0}, D+− = {(U,V ) |U � 0, V � 0}, D−− = {(U,V ) |U �
0, V � 0}, and D−+ = {(U,V ) |U � 0, V � 0}. If we denote the elements of A by Aij ,
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Figure 5. Phase plane for a Wilson–Cowan node with a Heaviside firing rate (transformed co-

ordinates), showing the U-nullclines (red) and V -nullclines (green), as well as a stable periodic orbit

(blue), and an unstable periodic sliding orbit (dashed magenta). Parameters (excluding ε) as in

Figure 1.

i = 1, 2 and j = 1, 2, where

A = − 1

|W |

[
wvuwuv/τ− wuuwvv wuuwvu(1 − 1/τ)

wvvwuv(1/τ− 1) wuvwvu − wuuwvv/τ

]
, |W | = wvuwuv − wuuwvv, (4.2)

then the U-nullclines are given by

V = Iv −
A11(U − Iu)

A12
+

1

A12

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−wuu + wvu/τ (U,V ) ∈ D++

−wuu (U,V ) ∈ D+−

0 (U,V ) ∈ D−−

wvu/τ (U,V ) ∈ D−+

, (4.3)

and the V -nullclines are given by

V = Iv −
A21(U − Iu)

A22
+

1

A22

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−wuv + wvv/τ (U,V ) ∈ D++

−wuv (U,V ) ∈ D+−

0 (U,V ) ∈ D−−

wvv/τ (U,V ) ∈ D−+

. (4.4)

An example set of nullclines is shown in Figure 5.

To discuss fixed points and their stability it is first necessary to complete the description

of the dynamics on the switching manifolds. We do this using the Filippov convex method

[20] and extend our discontinuous system into a convex differential inclusion. The Filippov
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extension of (2.4) is then

d

dt

[
U

V

]
∈ F(U,V ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F++(U,V ) (U,V ) ∈ D++

co
(
{F++, F+−}, κ1

)
(U,V ) ∈ D++ ∩ D+−

F+−(U,V ) (U,V ) ∈ D+−

co
(
{F+−, F−−}, κ2

)
(U,V ) ∈ D+− ∩ D−−

F−−(U,V ) (U,V ) ∈ D−−

co
(
{F−−, F−+}, κ3

)
(U,V ) ∈ D−− ∩ D−+

F−+(U,V ) (U,V ) ∈ D−+

co
(
{F−+, F++}, κ4

)
(U,V ) ∈ D−+ ∩ D++

, (4.5)

where Fαβ(U,V ) = A[U − Iu, V − Iv]
T + bαβ for α, β ∈ {+,−} and

b++ =

[
wuu − wvu/τ

wuv − wvv/τ

]
, b+− =

[
wuu

wuv

]
, b−− =

[
0

0

]
, b−+ =

[
−wvu/τ

−wvv/τ

]
. (4.6)

Here, co({f, g}, κ) = κf + (1 − κ)g with κ ∈ [0, 1] is the closed convex hull of all values

between f and g. A sliding solution may exist along a switching manifold such that

ḣi = ∇hi · F = 0. The functions κj , j = 1, . . . , 4, are chosen to ensure that ḣi = 0

along any switching manifold. For example, if a sliding solution exists along the line

U = 0 for V < 0, then we would construct κ2 using ∇h1 = (1, 0) and F(0, V ) =

κ2F+−(0, V ) + (1 − κ2)F−−(0, V ) yielding

κ2 =
(1, 0) · F−−(0, V )

(1, 0) · (F−−(0, V ) − F+−(0, V ))
. (4.7)

As illustrated in Figure 5, it is possible for two nullclines to intersect and create

a fixed point (Uss, Vss). In the example shown, this occurs for U < 0 and V < 0,

so that (Uss, Vss) = (Iu, Iv). Linear stability analysis shows that this is a stable node

(with eigenvalues of A, namely −1 and −1/τ). Moreover, this system also supports

pseudo equilibria, where either a nullcline touches a switching manifold, or two switching

manifolds intersect. A thorough exploration of the pseudo equilibria of (2.1) can be found

in [25]. Here, we shall simply focus on the pseudo equilibrium at (Uss, Vss) = (0, 0), and

characterise its stability by considering trajectories around this point. In fact given the

PWL nature of the dynamics, it is sensible to consider the construction of periodic orbits,

and determine the stability of the pseudo equilibrium in terms of the stability of encircling

small amplitude orbits.

4.1 Periodic orbits and their stability

A non-sliding periodic orbit around (0, 0) can be constructed in terms of the times-of-flight

in each region Dαβ . If we denote these four times by the symbols Δαβ, then the period of

the orbit is given by Δ = Δ++ +Δ−+ +Δ−− +Δ+−. We may then use a matrix exponential
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solution

[
U(t)

V (t)

]
= eAt

[
U(0)

V (0)

]
+ (I2 − eAt)

[[
Iu
Iv

]
− A−1WJ

[
H(U)

H(V )

]]
, t � 0. (4.8)

to patch together solutions, setting the origin of time in each region such that initial data

in one region comes from final data from a trajectory in a neighbouring region. We shall

denote the periodic orbit by (U,V ) such that (U(t), V (t)) = (U(t+Δ), V (t+Δ)). To indicate

which region we are considering, we shall simply add αβ subscripts to the formula in (4.8).

In this way, a periodic orbit that visits all four regions in turn can be parameterised by the

five unknowns U++(0), V++(Δ++), U−+(Δ−+), V−−(Δ−−), U+−(Δ+−), and Δαβ . These

are determined self-consistently by the five equations U++(Δ++) = 0, V−+(Δ−+) = 0,

U−−(Δ−−) = 0, V+−(Δ+−) = 0, and U+−(Δ+−) = U++(0). To determine the stability of

such an orbit, we may use the non-smooth Floquet theory described in [10]. In essence,

this treats the propagation of perturbations through a switching manifold using a saltation

matrix, such that Y (T+) = limε↘0 Y (T + ε) = KY (T ), where Y = (U,V ) denotes the

vector state of the system and K ∈ �2×2 is the saltation matrix that acts at time T .

Saltation matrices can be derived in a number of ways, with a general prescription in

terms of an indicator function h as [33]

K = I2 +

[
Ẏ (T+) − Ẏ (T )

] [
∇Y h(Y (T ))

]T

∇Y h(Y (T )) · Ẏ (T )
. (4.9)

Alternatively, in the context of the PWL model discussed in Section 2, we can obtain the

relevant saltation matrices by considering the approximation H(x) = limε→0 F(x). To see

this, we introduce the vector Y (t) = (U(t), V (t)) and linearise the equations of motion

(2.4) by considering Y (t) = Y (t) + δY (t), for small perturbations δY (t) = (δU, δV ). The

linearised equations of motion are given by

d

dt
δY =

[
A + WJDF(Y (t))

]
δY . (4.10)

Here, DF(Y (t)) is the piecewise constant matrix described after (3.10). Consider, for

example, the time-of-flight, t1(ε), between U = ε and U = 0. For small ε, we may estimate

t1(ε) using the result that U(t) � U(t0) + U̇
∣∣
t=t0

(t − t0), giving t1(ε) = −ε/ U̇
∣∣
t=Δ++

.

The corresponding change in state across this small time interval can be obtained by

integrating (4.10) to give

δY (T+) − δY (T ) = lim
ε→0

∫ T+t1(ε)

T

WJ

[
ε−1 0

0 0

]
δY (t)dt. (4.11)

Thus, we obtain δY (T+) = K1δY
−, with the saltation matrix K1 given by

K1 = I2 −
1

U̇(Δ++)
WJ

[
1 0

0 0

]
. (4.12)
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The other saltation matrices (describing the passage through ε-neighbourhoods of U = 0

and V = 0) are constructed in a similar fashion, and found to be

K2 = I2 −
1

V̇ (Δ−+)
WJ

[
0 0

0 1

]
,

K3 = I2 +
1

U̇(Δ−−)
WJ

[
1 0

0 0

]
,

K4 = I2 +
1

V̇ (Δ+−)
WJ

[
0 0

0 1

]
. (4.13)

It is straightforward to check that the saltation matrices (4.12)–(4.13) are equivalent to

those defined by (4.9). Between switching events the perturbations evolve according to

exp(A(t−T ))δY (T+), for t > T , where δY (T+) is the perturbation at the switching time.

Thus, after one period of oscillation, we may put this all together to obtain

δY (Δ) = ΓδY (0), Γ = K4e
AΔ+−K3e

AΔ−−K2e
AΔ−+K1e

AΔ++ . (4.14)

The periodic orbit will be stable if the eigenvalues of Γ lie within the unit disc. Note,

that one of the Floquet multipliers is equal to one, corresponding to perturbations along

the periodic orbit. Let us denote the other eigenvalue by eσΔ and use the result that

detΓ = eσΔ × 1. Hence,

eσΔ =

(
4∏

i=1

detKi

)
det eAΔ+− det eAΔ−− det eAΔ−+ det eAΔ++

=
V̇ (Δ+

+−)

V̇ (Δ+−)

U̇(Δ+
−−)

U̇(Δ−−)

V̇ (Δ+
−+)

V̇ (Δ−+)

U̇(Δ+
++)

U̇(Δ++)
det eAΔ+− det eAΔ−− det eAΔ−+ det eAΔ++ . (4.15)

Using the fact that det eAt = eTrA t, we find

σ = −
(

1 +
1

τ

)
+

1

Δ
log

V̇ (Δ+
+−)

V̇ (Δ+−)

U̇(Δ+
−−)

U̇(Δ−−)

V̇ (Δ+
−+)

V̇ (Δ−+)

U̇(Δ+
++)

U̇(Δ++)
. (4.16)

A periodic orbit will be stable provided σ < 0. We shall say that the pseudo-equilibrium at

(0, 0) is unstable (stable) if it is enclosed by a stable (unstable) periodic orbit of arbitrarily

small amplitude. We shall say that there is a pseudo-Hopf bifurcation at (0, 0) when the

pseudo-equilibrium changes stability, namely when σ = 0. A plot of σ = σ(τ) (not shown)

for the parameters of Figure 2, shows very similar behaviour as for the steep PWL firing

rate function. In essence, we may regard the second term on the right-hand side of (4.16)

as a correction term to standard Floquet theory to cope with the non-smooth nature of

the Heaviside firing rate.

4.2 An unstable periodic sliding orbit

The Wilson–Cowan node can also support an unstable periodic orbit that has a component

which slides along the switching manifold U = 0 for V ∈ [V1, V2], as depicted in
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Figure 5. The points V1,2 are easily calculated by determining the points at which

the U-nullclines touch the switching manifold, where U = 0, and are found to be

V1 = (A11Iu + A12IV − wuu)/A12 and V2 = V1 + wuu/A12. In reverse time initial data close

to a sliding trajectory would be attracted to it. Thus we can think of constructing an

unstable periodic sliding orbit, of the type shown in Figure 5, by breaking it into five

pieces. All pieces of this orbit are constructed similarly to before (see above), except

the component that slides. Using the Filippov method and equation (4.7), we find κ2 =

(A11Iu − A12V + A12Iv)/w
uu, with the sliding dynamics prescribed by

d

dt

[
U

V

]
=

[
0 0

0 A22 − A11w
uv/wuu

] [
U

V

]
+

[
0

bs

]
, (4.17)

where bs = −A12Iu−A22Iv +(A11Iu+A12Iv)w
uv/wuu. In backward time, the periodic sliding

orbit shown in Figure 5 would slide up along U = 0 until the point V = V2, where it

would leave the switching manifold.

We now turn our attention to networks built from Wilson–Cowan nodes with a

Heaviside firing rate.

5 A network of Heaviside Wilson–Cowan nodes

As we have shown in Section 4, the replacement of a sigmoidal firing rate by a Heaviside

function can lead to highly tractable models for which substantial analytical results can

be obtained (with the use of matrix exponentials and saltation matrices). However, at the

network level the mathematical differences between the treatment of smooth and non-

smooth firing rates are considerably amplified relative to those at the single node level. At

the node level, it is well-known that regarding the Heaviside function as the steep limit

of a sigmoidal function can lead to arbitrarily many different non-equivalent dynamical

systems. This is simply due to the non-uniqueness of the singular limits by which smooth

functions may tend towards discontinuities. For a recent perspective on this issue, see the

work of Jeffrey [27]. Thus, there is no reason to assume that taking the limit ε → 0 for

the PWL network considered in Section 3 will be relevant to a Wilson–Cowan network

with a Heaviside non-linearity. Namely the approximation of a Heaviside function by a

continuous function such that H(x) = limε→0 F(x), where F(x) is given by (2.2), may have

little utility given that pointwise convergence need not imply distributional convergence.

We now return to the network introduced in Section 3, but replace the dynamics of each

node with the Heaviside limit studied in the previous section. For the following analysis,

it is convenient to rewrite (3.4) as

d

dt
Y = A(Y −F(Y )) , F(Y ) = C −A−1WJH(Y ). (5.1)

The network model (3.4), with a Heaviside non-linearity, is reminiscent of a so-called Glass

network originally introduced for the study of biochemical networks that are dominated

by switch-like behaviour [21, 22], though here the model has two-time scales. For a nice

survey of periodic and aperiodic behaviour in Glass networks, we recommend the article

by Edwards [17], and for the application to gene networks see Edwards and Glass [18].
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The synchronous network state is given by (4.8) (remembering the row-sum constraint on

the network connections). To study its linear stability, we consider values of the perturbed

network state Y that are close to the synchronous network state at the unperturbed

crossing times. Let T i denote the time that the synchronous state moves between one of

the four quadrants (as illustrated in Figure 5). We then make the ansatz that the perturbed

network state Y can be expressed with respect to the synchronous orbit at one of the

switching times T i and write Y (t) = Y (T i) + δY (t) with t in the neighbourhood of T i.

We first construct the saltation matrix through a switch, indexed by i = 1, . . . , 4. Suppose

that the kth crossing occurs at a perturbed crossing time Ti,k . The network states at two

consecutive crossings are related via

Y (Ti,k+1) = eA(Ti,k+1−Ti,k)Y (Ti,k) +
(
I2N − eA(Ti,k+1−Ti,k)

)
F(Y (T+

i,k)) . (5.2)

This equation is obtained by integrating (5.1) using the observation that F is constant

between crossings. By linearising (5.2), we can relate the perturbations between crossing

events as

δY (Ti,k+1) = δY (Ti,k) + Y i,kδTi,k , (5.3)

where Y i,k = A(Y (T i) − F(Y (T+
i,k))) and δTi,k = Ti,k+1 − Ti,k . For the node that crosses

at Ti,k+1, the corresponding component of δY (Ti,k+1), say at position m, vanishes, since

Ym(Ti,k+1) = Y m(T i) (namely the mth component of the perturbed trajectory equals the mth

component of the synchronous orbit). Here, m ∈ {1, 3, . . . , 2N − 1} or m ∈ {2, 4, . . . , 2N},
depending on whether the crossing occurs along the V or U axis. We then see from (5.3)

that

δTi,k = −δYm(Ti,k)

Y
i,k
m

. (5.4)

At this point, m is still unknown. However, since m corresponds to the node that crosses

before any of the other remaining nodes do so, we find it by minimising (5.4) over the

possible values of m, and we denote it by mk . When we combine (5.3) and (5.4), we find

that δY (Ti,k+1) = Γi,kδY (Ti,k) with

Γi,k = I2N −
Y i,keT

mk

Y
i,k
mk

, (5.5)

where em is the mth canonical basis vector in �2N . The saltation matrix for each of the

four switches is then given by

Li = Γi,N−1Γi,N−2 · · ·Γi,1 , i = 1, . . . , 4. (5.6)

The ordering of matrix multiplications in (5.6) is determined by the iterative minimisation

of the perturbations given by (5.4).

In the next step, we analyse how a perturbed network state is propagated between

saltation events. Let T+
i denote the time when the last node crosses between quadrants.

Here, the superscript makes explicit that all nodes have crossed into the next quadrant. The

next network event occurs when one of the nodes crosses into the subsequent quadrant.

This happens at a time T−
i+1, where the superscript indicates that only one node has
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crossed. We will make the ansatz that T+
i = T i + δT+

i and T−
i+1 = T i+1 + δT−

i+1. We see

from (5.1) that

Y (T−
i+1) = eA(T−

i+1−T+
i )Y (T+

i ) +
(
I2N − eA(T−

i+1−T+
i )

)
F(Y (T+

i )) , (5.7)

from which we obtain after linearisation

δY (T−
i+1) = eAΔi

(
δY (T+

i ) − Y
′
(T

+

i )δT+
i

)
+ Y

′
(T

−
i+1)δT

−
i+1 , (5.8)

where we have used the fact that F(Y (T+
i )) = F(Y (T−

i+1)), since F is constant between

crossing events. Here, Y
′
(t) denotes the differential of Y (t) with respect to t. As above, the

component of δY (T−
i+1) that corresponds to the node that switches first, say at position m,

vanishes. Taking the mth component of (5.8) then yields an expression for the perturbation

of the crossing time

δT−
i+1 = − fim

Y
′
m(T

−
i+1)

, (5.9)

where the vector fi ∈ �2N is given by eAΔi

(
δY (T+

i ) − Y
′
(T

+

i )δT+
i

)
. We again find the

value of m by minimising (5.9) over all admissible values of m and refer to it as mi. This

leads to δY (T−
i+1) = ΓiδY (T+

i ) with

Γi =

(
Gi −

Y
′
(T

−
i+1)

Y
′
mi

(T
−
i+1)

eTmi
Gi

)
, (5.10)

and

Gi = eAΔi

(
I2N − Y

′
(T

+

i )eT1 δT
+
i

δY1(T
+
i )

)
. (5.11)

Taken together, we obtain after one period

δY (T+
4 ) = ΨδY (0) , Ψ = L4Γ4L3Γ3L2Γ2L1Γ1 . (5.12)

The matrices Γi act to propagate perturbations across a quadrant, and the Li propagate

perturbations through a switch. At first sight, the definition of Gi suggests that we

have introduced a dependence of Γi on δY (0) through the inclusion of δY (T+
i ). This

dependence can be avoided by noting that δT+
i = δT−

i +
∑

k δTi,k and the repeated use

of (5.4), (5.5), and (5.9). The drawback of this approach is that the resultant operator

does not lend itself to an interpretation of successive propagations and saltations, nor

is it numerically advantageous. Moreover, this operator would only remove the explicit

dependence of Ψ on δY (0). The minimisation steps that are necessary to determine

the order in which nodes switch already leads to an implicit dependence of Ψ on δY (0).

Changing δY (0) can lead to a different order of switching, and since matrix multiplication

does not commute, Ψ can be different for different δY (0). This has profound implications

for asserting linear stability. The usual argument that the eigenvalues of Ψ determine

linear stability does not hold anymore. To see this, consider the propagation of δY (0)
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Figure 6. Spectral plots for a Heaviside Wilson–Cowan ring network with spatial scales σαβ = 0.215

for all α, β, and N = 5. We sampled 2, 000 random initial conditions, and eigenvalues are shown

as open red circles. The filled blue circles are the eigenvalues of the PWL network with the same

parameter values and ε = 0.001. (Left) Spectra for initial conditions that lead to eigenvalues that

all fall into the unit disc. (Middle) Spectra for initial conditions that lead to eigenvalues outside

the unit disc. (Right) Blow-up of the the middle panel around the unit disc. Other parameters as in

Figure 1.

over multiple periods, i.e.,

δY (1) = Ψ (0)δY (0) , δY (2) = Ψ (1)δY (1) , δY (3) = Ψ (2)δY (2) , . . . (5.13)

so that

δY (m) = Ψ (m−1)Ψ (m−2) · · ·Ψ (0)δY (0) . (5.14)

The eigenvalues of Ψ (i) and Ψ (j) can be different for i 
= j. For some value of i, Ψ (i) may

have all eigenvalues in the unit disc, whilst for another value of i there may be some

eigenvalues outside the unit disc. Over one period, perturbations can therefore grow or

shrink. This entails that for a product of operators as in (5.14), δY (m) may be smaller

than δY (0), although some Ψ (i) might have some eigenvalues that lie outside the unit

disc. Instead of looking at the eigenvalues of individual Ψ (i), we could have studied the

eigenvalues of the product of operators in (5.14). We would have come to the same

conclusion since eigenvalues of the product operator move into and out of the unit disc

as we increase m.

Figures 6 and 7 illustrate the dependence of the spectra on random initial conditions

δY (0). In both figures, the left panel shows the spectra for initial conditions when all

eigenvalues of Ψ (0) lie within the unit disc. The middle panel displays spectra with some

eigenvalues outside the unit disc, and the right panel is a blow-up of the middle panel

around the unit disc. For Figure 6, we chose a value of σ such that the synchronous

orbit of the PWL network, with a small values of ε = 0.001, is linearly stable. We observe

that the eigenvalues of the Heaviside network cluster around those of the PWL network.

While it appears that the majority of synchronous solutions are stable (for this parameter

choice), some initial conditions lead to eigenvalues outside the unit disc. When zooming

into the unit disc, we see some degree of clustering, although this is not as pronounced as

for the stable solutions.
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Figure 7. Spectral plots for a Heaviside Wilson–Cowan ring network with spatial scales σαβ = 0.23

for all α, β, and N = 5. We sampled 2, 000 random initial conditions, and eigenvalues are shown

as open red circles. The filled blue circles are the eigenvalues of the PWL network with the same

parameter values with ε = 0.001. (Left) Spectra for initial conditions that lead to eigenvalues that

all fall into the unit disc. (Middle) Spectra for initial conditions that lead to eigenvalues outside

the unit disc. (Right) Blow-up of the the middle panel around the unit disc. Other parameters as in

Figure 1.

For larger values of σ, the synchronous state of the PWL network becomes unstable (for

small ε). The left panel of Figure 7 shows that the eigenvalues of the Heaviside network

that all fall into the unit disc exhibit only a weak association with the eigenvalues of

the PWL network. In addition, it seems that more initial conditions lead to unstable

synchronous solutions than stable ones. This mirrors the behaviour in Figure 6, where the

majority of initial conditions gives rise to stable solutions. The blow-up in the right panel

of Figure 7 illustrates that the eigenvalues of the Heaviside network form clusters around

those of the PWL network. While the notion of linear stability in terms of eigenvalues of

the propagator is lost for the Heaviside network, it appears that the clustering of these

eigenvalues reflects the stability of the PWL system, at least for small values of ε (where

the PWL firing rate becomes more switch like).

6 Conclusion

In this paper, we have shown that the combination of two popular approaches in

dynamical systems, namely PWL modelling of low-dimensional oscillators and the MSF,

can be combined to give insight into the behaviour of network states in neural mass

network models. This is natural for this type of system since the sigmoidal non-linearity,

ubiquitous throughout neuroscience modelling of large-scale brain dynamics, is well-

caricatured by a PWL reduction. We have focussed here on the bifurcation of the

synchronous network state, and shown how this can be determined in terms of a set of low-

dimensional Floquet problems, each of which can be solved using simple linear algebra.

In essence, the PWL aspect of the model allows the variational problem for stability to

be solved without recourse to the numerical solution of an ordinary differential equation.

Closed form solutions are patched together, and although this may appear inelegant at first

sight, it does lead to explicit formulas for Floquet exponents at the single node level, and

is easily cast into algorithmic form for accurate numerical computations at the network

level. This nicely highlights the benefits of PWL modelling. Importantly, the approach

https://doi.org/10.1017/S0956792518000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000050


888 S. Coombes et al.

advocated here is not just limited to the construction and stability of the synchronous state.

Pecora et al. [40] and Sorrentino et al. [43] have recently extended the MSF approach to

treat more exotic states making extensive use of tools from computational group theory.

Thus, the work presented here is readily extended to treat non-synchronous states, such as

clusters, and for a further discussion see [37]. From a neuroscience perspective, it would

also be important to treat delays, arising from the finite propagation speed of action

potentials relaying signals between distinct brain regions [13]. In this case, we would

hope to exploit the growing body of knowledge on PWL dynamics with time delay, as

exemplified by [42].

From a mathematical perspective, we have also seen that there is an important difference

between the analysis of a high gain continuous PWL sigmoid and that of a discontinuous

switch-like Heaviside firing rate. Although this can be facilitated with the use of saltation

matrices (to propagate perturbations through switching manifolds) there is no MSF style

approach that reduces the study of synchrony to a set of sub-network Floquet problems.

Moreover, in contrast to the linear stability analysis of continuous systems, there is now

a new challenge of addressing the temporal order in which perturbations to network

states pass through a switching manifold. To treat this, we have made use of ideas

originally developed for Glass networks [17], though note that similar issues of ordering

also arise in the analysis of pulse-coupled systems [23, 28, 44]. In essence, the analysis of

a Wilson–Cowan network with a Heaviside firing rate must be performed carefully, and

with non-standard tools, as its behaviour can differ from that of a similar network with

a high gain PWL sigmoid.
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