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Abstract. Eisenstein classes of Siegel varieties are motivic cohomology classes
defined as pull-backs by torsion sections of the polylogarithm prosheaf on the universal
abelian scheme. By reduction to the Hilbert–Blumenthal case, we prove that the Betti
realization of these classes on Siegel varieties of arbitrary genus have non-trivial
residue on zero-dimensional strata of the Baily–Borel–Satake compactification. A
direct corollary is the non-vanishing of a higher regulator map.

2010 Mathematics Subject Classification. Primary 11G55; Secondary 14G35.

1. Introduction. The explicit construction of motivic cohomology classes, and the
computation of their images under regulator maps, is one of the main ingredients of
most of the proofs of the conjectures of Beilinson and Bloch–Kato on special values of
L-functions. Polylogarithms, which have been defined by Beilinson–Levin for relative
curves [2, 3] and by Wildeshaus for abelian schemes [17], are one interesting source
of such cohomology classes. For abelian schemes, the polylogarithm is a prosheaf
on the complement of the zero section. By pulling back the polylogarithm along a
non-zero torsion section, one gets some cohomology classes, the so-called Eisenstein
classes, on the base of the abelian scheme. In the elliptic case, these classes have been
studied intensively. In Deligne cohomology, they have been explicitly described by
some real analytic Eisenstein series by Beilinson–Levin [2]; in étale cohomology, they
are closely related to the Kato–Siegel units giving rise to Kato’s Euler system, as
shown by Kings [12]; in syntomic cohomology, they are described by Katz’s measure
[1]. However, very little is known about the Eisenstein classes for abelian schemes of
dimension > 1. Blottière [5] showed in his thesis that Levin’s currents described the
topological realization of the polylogarithm of abelian schemes. He also deduced from
this result that, in the Hilbert–Blumenthal case, the residue of the Eisenstein classes at
the cusps of the Baily–Borel–Satake compactification are described by special values
of the zeta function of the underlying totally real field [6].

In this paper, we consider Eisenstein classes of Siegel varieties of arbitrary genus g.
The boundary of the Baily–Borel–Satake compactification of these Shimura varieties is
stratified by Siegel varieties of genus 0 ≤ g′ ≤ g − 1. We show that there exists a torsion
section of the universal abelian scheme such that the associated Eisenstein class has
non-zero residue at the zero-dimensional strata of the boundary (see Theorem 4.2).
This is the first non-vanishing result for Eisenstein classes of Siegel varieties of genus
g > 1. However, this result is far from optimal, as one might wonder about the
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non-vanishing of the residue on the higher dimensional strata of the Baily–Borel–
Satake compactification and, more interestingly, on an explicit description of the
residue like in [6]. The proof of our result does not rely on a complicated residue
computation but rather on the compatibility with base change of the polylogarithm
prosheaf, which implies a similar property for the Eisenstein classes. The idea is that
by embedding a Hilbert–Blumenthal variety on the considered Siegel variety, the non-
vanishing of the residue is reduced to a consequence of Blottière’s result.

2. Eisenstein classes. In this section, we introduce the polylogarithm prosheaf
and the Eisenstein classes. The goal is to state and prove the compatibility with base
change of the Eisenstein classes. To the knowledge of the author, this property, which
is an easy consequence of the definition, cannot be found elsewhere in the literature.
The presentation is inspired from parts of [5, 11].

The setting is the following. The schemes that we consider are �-schemes. If X
is such a scheme, we work with the abelian category of sheaves of �-modules Sh(X)
on the usual analytic topology on the analytification Xan and the full subcategory
Db

c(X, �) of its derived category whose objects are complexes whose cohomology is
constructible. There is a full 6 functor formalism on the categories Db

c(X, �), see for
example [10]. Cohomology is Betti cohomology.

Let π : A → S be an abelian scheme with zero section e : S → A. Let us denote
by H the local system H = Hom(R1π∗�, �).

2.1. The logarithm prosheaf. By the Leray spectral sequence for the composite
functor

RHomSh(S)(�(0), ) ◦ π∗

applied to π∗H, we have the exact sequence

0 → Ext1
S(�,H) → Ext1

A(�, π∗H) → HomS(�, R1π∗π∗H) → 0.

Note that this exact sequence is split by e∗ and that the right-hand term is isomorphic
to HomS(H,H) because of the projection formula R1π∗π∗H � R1π∗� ⊗ H. Let us
denote by δ : Ext1

S(�, π∗H) → HomS(H,H) the right-hand morphism of the above
exact sequence.

PROPOSITION 2.1. Up to isomorphism in Sh(A), there exists a unique local system
Log(1)

A that is an extension

0 → π∗H → Log(1)
A → � → 0

and whose equivalence class [Log(1)
A ] ∈ Ext1

A(�(0), π∗H) is such that e∗[Log(1)
A ] = 0 and

δ[Log(1)
A ] = idH.

Proof. Trivial. �
REMARK 2.2. There exists a variation of Hodge structure whose underlying local

system is Log(1)
A and that is characterized up to unique isomorphism by properties

analogous to the ones given in the above result (see [5, 3.1 and 3.2]). We will not need
this fact in this paper.
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DEFINITION 2.3. Let Log(k)
A be the local system Log(k)

A = SymkLog(1)
A .The logarithm

sheaf is the pro-local system

LogA = lim←− Log(k)
A ,

where the transition maps are induced by the map Log(1)
A → �. In particular, one has

exact sequences

0 → π∗SymkH → Log(k)
A → Log(k−1)

A → 0

and a splitting induced by s : e∗� → e∗Log(1)
A given by

e∗LogA �
∏
k≥0

SymkH.

REMARK 2.4. The more conceptual definition of the prosheaf LogA via a
universal property (see [17, I. Theorems 3.3 and 3.5]) coincides with ours according
to [5, Proposition 3.13].

LEMMA 2.5. For every torsion section t : S → A, one gets a canonical isomorphism:

t∗LogA �
∏
k≥0

SymkH.

Proof. Let N be the order of t and let [N] : A → A be the multiplication by N. For
any k, we have [N]∗π∗SymkH = π∗SymkH so, by induction [N]∗LogA � LogA. As a
consequence,

t∗LogA � t∗[N]∗LogA � e∗LogA �
∏
k≥0

SymkH.

�
Let j : U = A − e(S) → A be the complement of the zero section in A. Denote by

πU : U → S the projection πU = π ◦ j and by LogU the restriction j∗LogA. For any
integer m, we denote as usual by �(m) the constant Tate local system �(m) = (2iπ )m�.

THEOREM 2.6.
(i) One has Riπ∗LogA = 0 for i = 2g and the augmentation map LogA → � induces

canonical isomorphisms

R2gπ∗LogA � R2gπ∗� � �(−g).

(ii) One has RiπU ∗LogU = 0 for i = 2g − 1 and

R2g−1πU ∗LogU �
∏
k>0

SymkH(−g).

Proof. The first statement follows from [17, I. Corollary 4.4, p. 70]. The second
follows from [11, Proposition 1.1.3]. �
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COROLLARY 2.7 [11, Corollary 1.1.14]. The edge morphism in the Leray spectral
sequence for RπU ∗ induces a canonical isomorphism

Ext2g−1
U (π∗

UH, LogU (g)) � HomS(H,
∏
k>0

SymkH),

where Ext2g−1
U denotes extensions in the abelian category Sh(U).

2.2. The polylogarithm prosheaf and its torsion sections.

DEFINITION 2.8. The polylogarithm PolA is the extension class

PolA ∈ Ext2g−1
U (π∗

UH, LogU (g)),

which corresponds to the map in
∏

k>0 HomS(H, SymkH), which is the identity for
k = 1 and which is zero for k > 1, under the isomorphism of Corollary 2.7.

To define the Eisenstein classes, we would like to describe, for any integer k ≥ 0
and for any non-zero torsion section t : S → A, a natural map

Ext2g−1
U (π∗

UH, LogU (g)) → H2g−1(S, SymkH(g)).

Let k ≥ 0 be an integer and let t : S → A be a non-zero torsion section. According to
Lemma 2.5, the pull-back by t induces a map

t∗ : Ext2g−1
U (π∗

UH, LogU (g)) → Ext2g−1
S (H,

∏
k≥0

SymkH(g)).

The right-hand term maps naturally to H2g−1(S, SymkH(g)) by the composition of the
canonical isomorphism:

Ext2g−1
S (H,

∏
k≥0

SymkH(g)) � H2g−1(S,
∏
k≥0

SymkH(g) ⊗ H∨),

whereH∨ is the dual local system of the map induced by the (k + 1)th natural projection

H2g−1(S,
∏
k≥0

SymkH(g) ⊗ H∨) → H2g−1(S, Symk+1H(g) ⊗ H∨),

and of the map induced by the contraction Symk+1H(g) ⊗ H∨ → SymkH(g).

DEFINITION 2.9. For any torsion section t : S → A, the kth Eisenstein class

Eisk(t) ∈ H2g−1(S, SymkH(g))

associated to t is the image of PolA under the map described above.

2.3. Base change. Let us consider the compatibility of the polylogarithm
prosheaf and of the Eisenstein classes with base change. Let f : S′ → S be a morphism
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and let π ′ : A′ → S′ be the pull-back of π : A → S by f . We have a Cartesian square:

A′ f ′
−−−−→ A

π ′
⏐⏐� π

⏐⏐�
S′ f−−−−→ S.

Let H′ = HomS′(R1π ′
∗�, �). By Poincaré duality, we have

H = HomS(R1π∗�, �) = R1π!� = R1π∗�,

and similarly for H′. Hence, the proper base change theorem implies f ∗H � H′.

PROPOSITION 2.10. With the notations above, we have a canonical isomorphism

f ′∗LogA � LogA′ .

Proof. The image of Log(1)
A under the natural map

f ′∗ : Ext1
A(�, π∗H) → Ext1

A′ (�, π ′∗H′).

satisfies the properties characterising Log(1)
A′ (see Proposition 2.1); hence, f ′∗Log(1)

A �
Log(1)

A′ . This implies the statement. �
By the previous proposition, we have a map

f ′∗ : Ext2g−1
U (π∗

UH, LogU (g)) → Ext2g−1
U ′ (π∗

U ′H′, LogU ′(g)).

PROPOSITION 2.11. We have

f ′∗PolA = PolA′ .

Proof. Denote by j′ : U ′ = A′ − e′(S′) → A′ the open embedding complementary
to the zero section e′ : S′ → A′ and let LogU ′ = j′∗LogA′ . The statement follows from
the fact that we have a commutative diagram:

Ext2g−1
U (π∗

UH, LogU (g))
∼−−−−→ ∏

k>0 HomS(H, SymkH)

f ′∗
⏐⏐� f ∗

⏐⏐�
Ext2g−1

U ′ (π∗
U ′H′, LogU ′(g))

∼−−−−→ ∏
k>0 HomS′ (H′, SymkH′).

where the right-hand vertical map sends the map in
∏

k>0 HomS(H, SymkH),
which is the identity for k = 1 and which is zero for k > 1 to the analogous map in the
lower right-hand corner of the diagram. �

COROLLARY 2.12. Let t : S → A be a non-zero torsion section and let t′ : S′ → A′

be the pull-back of t by f ′. Then,

f ∗Eisk(t) = Eisk(t′).
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Proof. The statement follows from the commutativity of the following diagram:

Ext2g−1
U (π∗

UH, LogU (g))
f ′∗

−−−−→ Ext2g−1
U ′ (π∗

U ′H′, LogU ′ (g))

t∗
⏐⏐� t′∗

⏐⏐�
Ext2g−1

S (H,
∏

k≥0 SymkH(g))
f ∗

−−−−→ Ext2g−1
S′ (H′,

∏
k≥0 SymkH′(g))⏐⏐� ⏐⏐�

H2g−1(S, SymkH(g))
f ∗

−−−−→ H2g−1(S′, SymkH′(g)). �

3. Geometry.

3.1. Shimura data and Shimura varieties. We will need some results of Pink’s
[15] thesis on the functoriality of the Baily–Borel–Satake compactification of Shimura
varieties. Pink works in the setting of Shimura data that we shall recall now. Let
� = Res�/��m� be the Deligne torus. Let P be a connected linear algebraic group over
�, let W be its unipotent radical and let U be a subgroup of W . A mixed Shimura
datum with underlying group P is a triple (P,X, h) where X is a left homogeneous
space under the subgroup P(�)U(�) ⊂ P(�) and where h : X → Hom(��, P�) is a
P(�)U(�)-equivariant map such that the properties (i)–(viii) Definition 2.1 of [15] are
satisfied. The Shimura datum is said to be pure if the group P is reductive.

DEFINITION 3.1. A morphism (P1,X1, h1) → (P2,X2, h2) of mixed Shimura data is
a pair (φ,ψ) where φ : P1 → P2 is a morphism of algebraic groups and ψ : X1 → X2

is a P1(�)U1(�)-equivariant map such that the following diagram commutes:

X1
ψ−−−−→ X2⏐⏐� ⏐⏐�

Hom(��, P1�)
h�→φ◦h−−−−→ Hom(��, P2�).

3.2. Siegel varieties. Let g ≥ 1 and n ≥ 3 be two integers. We consider the functor
that associates to a scheme T over Spec� the set of isomorphism classes of triples
(A, λ, η) where A/T is an abelian scheme of relative dimension g, λ is a principal
polarization of A/T , and η : A[n] � (�/n�)2g

S is a principal level n structure compatible
with λ (see [13] Partie I.3, which can be adapted from g = 2 to arbitrary g, for details).
This functor is represented by a smooth schemeS of finite type over Spec�. The variety
S is the Siegel variety of genus g and level n. Let A/S be the universal abelian scheme.
We will need the description of S as a Shimura variety. So, let Ig be the identity matrix
of size g and let ψ be the symplectic form on �2g whose matrix in the canonical basis is

ψ =
(

Ig

−Ig

)
. (1)
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The symplectic group G = GSp(2g) is the algebraic group defined as

G = {h ∈ GL(2g)/� | thψh = ν(h)ψ, ν(h) ∈ �m/�}.

Its derived group is G1 = Kerν. Let

H±
g = {τ ∈ Mg(�) | tτ = τ,±�(τ ) positive definite}

be the disjoint union of Siegel upper and lower half-planes. It follows for example from
Propositions 8.2.2 and 8.2.3(a) of [4] that the group G(�) acts transitively on H±

g by
the formula: (

A B
C D

)
.τ = (Aτ + B)(Cτ + D)−1.

Now, let h : � → G� be the morphism that induces on real points

z = x + iy �→
(

x
 y


−y
 x


)
(2)

where, for r ∈ �, we denote by r
 ∈ M(g, �) the diagonal matrix whose all entries are
equal to r. Then, the G(�)-conjugacy class of h is in bijection with H±

g by the unique
G(�)-equivariant map sending h to iI2 and the pair (G�,H±

g ) is a pure Shimura datum
(see Lemma 2.1 of [13], which can be adapted from the case g = 2 to the general case).
Let K(n) = Ker(G(�̂) → G(�/n�)) be the principal congruence subgroup of G(�f ).
Define the arithmetic subgroup �(n) of G1(�) by

�(n) = ker
(
G1(�) → G1(�/n�)

)
.

It follows from [13, Proposition 3.2] that, as complex analytic varieties, we have

S(�) = G(�)\(H±
g × G(�f )/K(n)) =

⊔
i∈(�/n�)×

�(n)\H+
g .

Let us form the semi-direct product �(n) = �2g
� �(n), where �(n) acts on �2g by right

multiplication. Then, as explained in [4, 8.7 and 8.8], the group �(n) acts on �g × H+
g

and we have a principally polarized holomorphic family of abelian varieties:

π : �(n)\(�g × H+
g ) → �(n)\H+

g (3)

with level n structure. We will not need that this family is the restriction of the
universal family to �(n)\H+

g but only that this family is algebraic. This follows from
[7, Theorem 3.10].

3.3. Hilbert–Blumenthal varieties. Let F be a totally real number field of degree
g, let O be its ring of integers. Denote by TrF/� : F → � the trace map and let

D−1 = {x ∈ F | ∀y ∈ O, TrF/�(xy) ∈ �}
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be the inverse different. Define a group scheme G′ over Spec� by the Cartesian square

G′ −−−−→ ResO/�GL(2)⏐⏐� ⏐⏐�det

�m −−−−→ ResO/��m

(4)

where the lower map is the morphism that on A-valued points, for any ring A, is the
morphism A× → (A ⊗ O)× defined by a �→ a ⊗ 1. Let

Hg± = {τ ∈ F ⊗� � | ± �(τ ) totally positive}.

The group G′(�) acts on Hg± via the embedding G′(�) → GL(2, �)g given by the g
embeddings F → � and the pair (G′

�,Hg±) is a pure Shimura datum. Let n ≥ 3 be
an integer. For any prime ideal p of F , let us denote by Op the ring of integers of
the p-adic completion of F and by Dp, resp. by D−1

p , the p-adic completion of D,
resp. D−1. Let K ′(n) be the compact open subgroup of G′(�f ) defined as the product
K ′(n) = ∏

p K ′(n, p) indexed by all prime ideals p of F , where

K ′(n, p) =
{(

a b
c d

)
∈ GL(2, Fp) | a, d ∈ 1 + nOp, c ∈ nDp, b ∈ nD−1

p

}
.

We denote by S ′ the complex analytic Hilbert–Blumenthal variety

S ′ = G′(�)\(Hg± × G′(�f )/K ′(n))

of level K ′(n). To describe a connected component of S ′, let us also consider the
subgroup �′(n) of SL(2, F) defined by

�′(n) =
{(

a b
c d

)
∈ SL(2, F) | a, d ∈ 1 + nO, c ∈ nD, b ∈ nD−1

}
.

Then, the natural inclusion �′(n)\Hg+ → S ′ identifies �′(n)\Hg+ with a connected
component ofS ′. Let us form the semi-direct product �′(n) = (D−1 ⊕ O) � �′(n) where
�′(n) acts on D−1 ⊕ O by right matrix multiplication. Then, �′(n) acts on �g × Hg and
we obtain an abelian scheme

π ′ : �′(n)\(�g × Hg+) → �′(n)\Hg+. (5)

Here, we refer the reader to [6, 2.2] for more details.

3.4. A modular embedding. Let us recall how to map these Hilbert–Blumenthal
varieties to the Siegel varieties defined above. Here, we are inspired from the
presentation of [16, IX 1], which we translate in the language of Shimura data. Let
σ1, . . . , σg be the g embeddings F → � and let (e1, . . . , eg) be a basis of O over �.
As the map F × F → �, (x, y) �→ TrF/�(xy) is a non-degenerate bilinear form, we can
define the dual basis (e∗

1, . . . , e∗
g) of D−1. Let R and R′ be the matrices

R = (σi(ej))1≤i,j≤g, R′ = (σi(e∗
j ))1≤i,j≤g.
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They verify the identity R′ = tR−1. In the next proposition, we use the following
notation: if A is a �-algebra and r ∈ A ⊗� F , we denote by r
 the diagonal (A ⊗� �)-
valued matrix diag((1 ⊗ σ1)(r), . . . , (1 ⊗ σg)(r)).

PROPOSITION 3.2. The pair (ι, ι) where ι : G′
� → G� is defined on A-valued points by

ι

((
a b
c d

))
=

(
R′ 0
0 R

)−1 (
a
 b


c
 d


) (
R′ 0
0 R

)

and where ι : Hg ± → H±
g is defined by

ι(τ ) = R′−1τ 
R

is a morphism of Shimura data

(G′
�,Hg ±) → (G�,H±

g ).

Proof. The only fact that is not obvious is that, for any �-algebra A, the morphism
ι maps G′

�(A) to G�(A). To prove this point, let us regard D−1 ⊕ O as embedded in
�g ⊕ �g via the g embeddings F → �. Then, we have

D−1 ⊕ O =
(

R′ 0
0 R

)
�g ⊕ �g,

where �g ⊕ �g is the standard lattice in �g ⊕ �g. If we denote by ψ ′ : (D−1 ⊕ O)⊕2 → �

the symplectic form defined by ψ ′((x1, y1), (x2, y2)) = TrF/�(x1y2 − y1x2), it follows
from an easy computation that(

tR′ 0
0 tR

)
ψ ′

(
R′ 0
0 R

)
= ψ,

where ψ is the symplectic form (1). As a consequence, the morphism ι is well
defined. �

Let

SL(D−1 ⊕ O) =
{(

a b
c d

)
∈ SL(2, F) | a, d ∈ O, c ∈ D, b ∈ D−1

}
.

Then, SL(D−1 ⊕ O) sends D−1 ⊕ O to itself by right matrix multiplication. As a
consequence ι sends SL(D−1 ⊕ O) to G1(�) and �′(n) to �(n). In particular, the pair
(ι, ι) induces a holomorphic map:

ι : �′(n)\Hg+ → �(n)\H+
g . (6)

Taking the sum of the different maps ι over all connected components, we obtain a
complex analytic morphism

ι : S ′ → S, (7)
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which is in fact algebraic because it is induced by a morphism of Shimura data (see
[15, Proposition 11.10]). The proof of the following result is easy and left to the reader.

PROPOSITION 3.3. The square in the category of �-schemes

�′(n)\(�g × Hg+)
fR′R×ι−−−−→ �(n)\(�g × H+

g )

π ′
⏐⏐� π

⏐⏐�
�′(n)\Hg+ ι−−−−→ �(n)\H+

g ,

where the map fR′R : �g = �g ⊕ �g → �g = �g ⊕ �g is the map given by left

multiplication by
(

R′ 0
0 R

)−1
, is Cartesian.

3.5. The Baily–Borel–Satake compactifications. In this section, let us denote by
G/� an arbitrary linear algebraic reductive group, which underlies a pure Shimura
datum (G,H) (see [15, Definition 2.1]). We will only be interested in the case where G
is the group GSp(2g) or the group denoted by G′ in the diagram (4). In this section,
we wish to briefly recall the construction of the Baily–Borel–Satake compactification
of the Shimura variety attached to (G,H) and the stratification of its boundary. We
follow the presentation of [8, 1].

The Shimura varieties attached to (G,H) are indexed by compact open subgroups K
of G(�f ). Let K ⊂ G(�f ) be such a subgroup, which we assume to be neat (see [15, 0.6]
for a definition of neatness). Then, the set of complex points of the corresponding
variety MK (G,H) over � is given by

MK (G,H)(�) = G(�)\(H × G(�f )/K).

In order to describe the Baily–Borel–Satake compactification MK (G,H)∗ of MK (G,H)
recall that for any admissible parabolic subgroup Q of G (see [15, Definition 4.5]) there
is associated a canonical normal subgroup P1 of Q (see [15, 4.7]). There is a finite
collection of rational boundary components (P1,X1) (see [15, 4.11]) that are mixed
Shimura data. Denote by W1 the unipotent radical of P1 and by (G1,H1) the quotient
of (P1,X1) by W1 (see [15, Proposition 2.9]). One defines

H∗ =
⊔

(P1,X1)

H1,

where the disjoint union is indexed by all rational boundary components (P1,X1) of
(G,H). This set comes equipped with the Satake topology (see [15, 6.2]) as well as a
natural action of the group G(�) (see [15, 4.16]). Let

MK (G,H)∗(�) = G(�)\(H∗ × G(�f )/K)

equipped with the quotient topology. By [15, 8.2], this space can be canonically
identified with the space of �-valued points of a normal projective variety MK (G,H)∗

over � containing MK (G,H) as a Zariski dense open subset. The stratification of H∗

induces a stratification of MK (G,H)∗ as follows. Fix an admissible parabolic subgroup
Q of G and let (P1,X1), W1 and

p : (P1,X1) → (G1,H1) = (P1,X1)/W1
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be as above. Let g ∈ G(�f ), let K ′ = gKg−1 and let K1 = P1(�f ) ∩ K ′. We have the
following natural morphisms:

Mp(K1)(G1,H1)(�) = G1(�)\(H1 × G1(�f )/p(K1))�⏐⏐
P1(�)\(H1 × P1(�f )/K1)⏐⏐�

MK (G,H)∗(�) = G(�)\(H∗ × G(�f )/K),

where the first map is induced by the map (x, h) �→ (x, p(h)) and the second map is
induced by (x, h) �→ (x, hg). The first map is an isomorphism of complex analytic
varieties. Hence, we obtain a morphism

Mp(K1)(G1,H1) → MK (G,H)∗, (8)

which depends on the rational boundary component (P1,X1) and on g. When (P1,X1)
and g vary, the images of the morphisms (8) form a stratification of MK (G,H)∗.

Let us make explicit some of the notions introduced above in the case where
(G,H) is the Shimura datum (G′,Hg±) and in the case where (G,H) is the Shimura
datum (GSp(2g),H±

g ). Up to conjugacy, the unique admissible parabolic subgroup of
the group G′ defined by diagram (4) is the standard Borel subgroup B′ of G′, i.e., the
intersection with G′ of the subgroup of upper triangular matrices in ResF/�GL(2). The
canonical normal subgroup P′ of B′ is the intersection with G′ of matrices of the shape(

∗ ∗
0 1

)
in ResF/�GL(2). Let W ′ be the unipotent radical of P′ and let p′ : P′ → P′/W ′ =

�m be the canonical projection. The quotient of the rational boundary component
(P′,X′) by W ′ is the Shimura datum (�m,H±

0 ) defined in [15] Example 2.8 as follows:
let k : � → �m� be the morphism inducing z �→ zz on real points and let H

±
0 be a set

with two elements endowed with the unique non-trivial action of �m(�) which factors
through π0(�m(�)). We map H

±
0 to Hom(��, �m�) by the constant map equal to k.

We have the diagram

S ′ j′−−−−→ S ′∗ i′←−−−− ∂S ′, (9)

where j′ denotes the open immersion from S ′ to its Baily–Borel–Satake
compactification and i′ denotes the complementary closed embedding. As the Shimura
varieties attached to (�m,H±

0 ) are of dimension zero (see [15, Example 3.16]), the
boundary ∂S ′ is of dimension zero.

The standard admissible parabolic subgroups Q of G and their canonical normal
subgroups P1 are described in [14, 1.2]. In particular, for any rational boundary
component (P1,X1) of (G,H±

g ), if W1 denotes the unipotent radical of P1, we know
that the quotient Shimura datum (P1,X1)/W1 is either (�m,H±

0 ) or (GSp(2r),H±
r ) for

an integer 1 ≤ r ≤ g. Similarly as above, we have the diagram

S j−−−−→ S∗ i←−−−− ∂S, (10)

where j denotes the open immersion from S to its Baily–Borel–Satake compactification
and i denotes the complementary closed embedding. Let us denote by ∂S0 the stratum
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of the boundary whose underlying rational boundary component (P1,X1) is such that
the identity (P1,X1)/W1 = (�m,H±

0 ) holds. Then, ∂S0 has dimension zero.

LEMMA 3.4. For any integer r ≥ 1, there exists no morphism of Shimura data

(�m,H±
0 ) → (GSp(2r),H±

r ).

Proof. Let us assume the contrary. According to Definition 3.1, this implies
that there exists a morphism � : �m → GSp(2r) such that the morphism hr : � →
GSp(2r)� defined by (2) factors as hr = �� ◦ k. Let us denote by {w1, w2, . . . , wk} the
weights, counted with multiplicities, of � on the vector space �2r on which GSp(2r)
acts naturally. Let w : �m� → � be the weight cocharacter, which is the cocharacter
inducing the inclusion �× ⊂ �× on real points. Then, the composition hr ◦ w has
even weights {2w1, 2w2, . . . , 2wk}, which contradicts the fact that the morphism hr ◦ w

induces x �→ diag(x, . . . , x) on real points. �

PROPOSITION 3.5. There exists a continuous map ι̃ : S ′∗ → S∗ which is part of the
following diagram with Cartesian squares in the category of topological spaces

S ′ j′−−−−→ S ′∗ i′←−−−− ∂S ′

ι

⏐⏐� ι̃

⏐⏐� ∂ι

⏐⏐�
S j−−−−→ S∗ i←−−−− ∂S0.

(11)

Proof. According to Proposition 3.2, we have a morphism of Shimura data

(G′
�,Hg ±) → (G�,H±

g ).

Hence, the existence of a continuous map ι̃an : (S ′∗)an → (S∗)an such that the above
left hand square is Cartesian follows from the functoriality of rational boundary
components (see [15, 4.16]) and from the construction of the Baily–Borel–Satake
compactification as described above. We want to show that the right hand square is
Cartesian. Let (P1,X1) be the rational boundary component of (G,H±

g ) associated to
(P′,X′) by the construction of [15, 4.16] and let W1 be the unipotent radical of P1. By the
construction of ι̃ that we just sketched, we need to show that (P1,X1)/W1 = (�m,H±

0 ).
By [15, 4.16, p. 87], we have a morphism of Shimura data

(P′,X′)/W ′ = (�m,H±
0 ) → (P1,X1)/W1.

Hence, the statement follows from Lemma 3.4 and from the construction of the Baily–
Borel–Satake compactification. �

4. The residue of Eisenstein classes of Siegel varieties. Let g ≥ 1 and n ≥ 3 be two
integers and let S be the Siegel variety of genus g and level n (see Section 3.2). We have
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the universal abelian scheme A/S. Let F be a totally real number field of degree g and
let S ′ be the associated Hilbert–Blumenthal variety of level n (see Section 3.3).

LEMMA 4.1. Let F ∈ Db
c(S, �). Then, the morphisms of diagram (11) induce a

commutative diagram

H2g−1(S, F) −−−−→ H0(∂S0, i∗R2g−1j∗F)⏐⏐� ⏐⏐�
H2g−1(S ′, ι∗F) −−−−→ H0(∂S ′, i′∗R2g−1j′∗ι

∗F).

(12)

Proof. Let us consider the diagram (11). Applying j∗ to the adjunction map
F → ι∗ι∗F and using the commutativity of (11), we obtain the map j∗F → ι̃∗j′∗ι

∗F .
Composing with the adjunction 1 → i∗i∗, and using the proper base change theorem
i∗ ι̃∗ = (∂ι)∗i

′∗, we obtain the commutative diagram

j∗F −−−−→ i∗i∗j∗F⏐⏐� ⏐⏐�
ι̃∗j′∗ι

∗F −−−−→ i∗(∂ι)∗i
′∗j′∗ι

∗F.

The proof of the statement of the lemma now follows by applying the functor R2g−1p∗,
where p : S∗ → Spec� is the structural morphism, and using the fact that ∂S0 and ∂S ′

are of dimension zero. �

THEOREM 4.2. Let k ≥ 2 be an even integer. There exists a n-torsion section t : S →
A such that the image of the Eisenstein class

Eisgk(t) ∈ H2g−1(S, SymgkH(g))

under the map H2g−1(S, SymgkH(g)) → H0(∂S0, i∗R2g−1j∗SymgkH(g)) is non-zero.

Proof. Let us consider a connected component �(n)\H+
g of S. As explained at the

end of Section 3.2, we have the principally polarized abelian scheme

π : �(n)\(�g × H+
g ) → �(n)\H+

g .

Hence, by the modular interpretation of S, we have a Cartesian square

�(n)\(�g × H+
g ) −−−−→ A

π

⏐⏐� ⏐⏐�
�(n)\H+

g −−−−→ S.

By Corollary 2.12, it is enough to show that there exists s a n-torsion section of π such
that Eisgk(s) has non-zero image under the map

H2g−1(S, SymgkH(g)) → H0(∂S0, i∗R2g−1j∗SymgkH(g)).
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Let us consider a connected component �′(n)\Hg+ of S ′, which is the base of the
abelian scheme

π ′ : �′(n)\(�g × Hg+) → �′(n)\Hg+.

According to Proposition 3.3, we have a Cartesian square

�′(n)\(�g × Hg+)
fR′R×ι−−−−→ �(n)\(�g × H+

g )

π ′
⏐⏐� π

⏐⏐�
�′(n)\Hg+ ι−−−−→ �(n)\H+

g .

Hence, by Corollary 2.12 and thanks to the commutative diagram (12), it is enough to
show that there exists a torsion section t′ of π ′ such that the associated Eisenstein class
Eisgk(t′) has non-zero image under the map

H2g−1(S ′, SymgkH′(g)) → H0(∂S ′, i∗R2g−1j∗SymgkH′(g)).

This is a direct consequence of [6, Theorem 5.2 and Corollary 5.4]. �
COROLLARY 4.3. Let k ≥ 2 be an even integer. Let A be the universal abelian scheme

over S and let Agk be the gkth fold fibre product over S. Then, the higher regulator map

Hgk+2g−1
M (Agk, �(gk + g)) → Hgk+2g−1(Agk, �(gk + g))

from motivic cohomology to Betti cohomology is non-zero.

Proof. Let πgk : Agk → S be the structure morphism, which has relative dimension
g′ = g2k. It follows from Remark 3 in [9, p. 217], or rather its analogous statement in
Db

c(S, �), that there is a canonical splitting:

Rπgk
∗ � =

2g′⊕
i=0

Riπgk
∗ �[−i].

Furthermore, the polarization on A induces a canonical isomorphism H � R1π∗�(1).
These facts together with the Künneth isomorphism imply that H⊗gk is a direct factor
of Rπ

gk
∗ �(gk)[gk]. As a consequence, the space Hgk+2g−1(Agk, �(gk + g)) contains

the space H2g−1(S, SymgkH(g)) as a direct factor. Hence, the statement follows from
Theorem 4.2 and the fact that Eisenstein classes belong to the image of the higher
regulator map, according to the main result of [11]. �
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