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Abstract

Hilbert spaces of analytic functions generated by rotationally symmetric measures on disks and annuli
are studied. A domination relation between function norm and weighted sums of integral means on
circles is developed. The function norm and the weighted sum take the same value for a specified class
of polynomials. This class can be varied according to two parameters. Parts of the construction carry
over to other Banach spaces of analytic or harmonic functions. Counterexamples illuminating properties
of the complex method of interpolation appear as a byproduct.
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0. Introduction

Le t^ i be a generalized circular annulus A(/?,, R2) = [z € C; /?, < \z\ < /?2J- We

allow /?i < 0 as well as R2 = +oo in order to represent disks centered at the origin

or at the point at infinity. Let £2 be the union of £2, with any or none of {|z| = /?]},

{\z\ = R2}, except that R2 = +oo may not be used. On £2 we take a fixed but initially

arbitrary rotationally symmetric measure (i. The centre of rotation is the origin.

Consider rM = {k € 1; fa \zk \2d/j,(z) < oo} and let L = inf TM, K = sup i y In case

L < 0 we impose the condition that 0 ^ Q. At times the interval / n = Q (1 [0, oo[

will be used.

This paper is concerned with the generalized Bergman spaces L2
a — L2

a(Q.,ii)

consisting of the closure in L2(Q, fi) of {(j>k : <pk(z) = zk,k e F^,}. Due to rota-

tional symmetry the ^ s are orthogonal and L\ consists entirely of analytic functions.
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[2] Integral means on radially weighted spaces of analytic functions 69

The norm is | | / | | = (JQ \f(z)\2d(i(z))]/ and the natural inner product is used. Ob-
serve that the Fock-Bargmann space L](C, e~]zi~dA(z)), the common Bergman spaces
L^(U, \z\"dA(z)) as well as spaces containing functions with poles in the hole interior
to SI are contained in the setting above.

The rotational symmetry of /x allows a decomposition d\x = dQ® dvx =d6®dv2

in the sense that

= JJ o \f(rew)\2 — dVl(r) = JJ ̂2JT JQ

) \ 2 —

where v, is supported in /n and v2 in Ja = [x > 0; -Jx e / n } . Notice that there is
a bijective correspondence /* «*• v2 through the change of variables z = y/xe'e. We
will make an assumption throughout this paper, that v2 is not supported on finitely
many points only.

This suggests the integral mean mapping Mf : L\ -*• L2(In, v{) given by

dG 11/2

>\z\=r 2 j r J

Each / € L2
a can be expanded f(z) = Yin=La"z"> whence Mf(r)2 = £ |aj2r2". It

follows that

In [A] the author used the above interpretation for the weighted Bergman spaces
with diu.ap(z) = |z|2^(l — \z\2)adA{z), where dA is area measure on the unit disk. A
central result of [A] was the following theorem.

THEOREM A. Let k > 0, / > 1 be integers, a, fi > — 1. Then there exist positive
numbers Aj and rs such that for every f € L2

a{^i, (jLap) the following inequality holds.

In addition, equality holds precisely for all f(z) = akz
k + • • • + ak+2i-]Zk+21~]- The

numbers r2 are the zeros of the Ith Jacobi polynomial Pfa'P)(2x — 1).

It is the purpose of this paper to expand this result to the general setting. The
complete counterpart is stated in section 3. A key technique in [A] was to use
Rodrigue's formula for the Jacobi polynomials. That formula is not available in

https://doi.org/10.1017/S1446788700039409 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039409


70 Mats Erik Andersson [3]

general, so a different approach will be taken. As a notable side effect we will
find that the integral means form a partial order of norms as the number of circles
increases. For example, the mean along one circle does not exceed a particular
weighted combination of integral means along two other circles. Finally, the last two
sections deal with examples showing the shortcomings of the present technique if we
on one hand study harmonic functions and on the other hand we want to look at the
general Lp(/j.)-version of Bergman spaces.

The original motivation for this paper was to explain the observation made in [M].
As a result, with new methods we have also improved the results that so far have
been an ingredient in studying the Korenblum conjecture for the standard Bergman
space, see [Ko], [KORZ], [KR], and [S]. The techniques to date have made use of the
totally monotone functions. The direct connection of the present construction to the
conjecture was discussed in [A]. As an added benefit the method happens to produce
a new example related to the complex method of interpolation. This is explained in
the last section.

1. Domination and restriction

DEFINITION 1.1. Say that a measure K on Q is a contractive Carleson measure
n* L:

u if for every / 6 L2
a its norm is controlled by W/WLHQ.K) 5 11/11. that is,

i fiz)\2 dic(z) < f | /(z)|2 dfi(z); K is said to be saturated in the case that equality
can occur.

With Theorem A in view, the case of radially finitely supported measures is useful.

DEFINITION 1.2. We say that k = £^.=I AAy where Aj > 0 are real and Srj is
the point mass at r, > 0, is a contractive restriction measure if ||M/||/.2(Jl) is at most
, f\ .that is, if for all / G L\

X>; / \f(z)\2—<
*—{ J\z\=rt 2.n Ja

PROPOSITION 1.3. A rotationally symmetric measure K is a contractive Carleson
measure if and only if fn \z" |2 di<(z) < fJa x" dv2(x) for all n > 0. It is saturated
precisely in the case that equality occurs for some n.

In particular k = $!,•_, AjSrj is a contractive restriction measure if and only if for
alln el

j=\
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The proof is easily obtained.
It is more convenient to construct the restriction measure using notation inherent

in v2. We will hence be mainly concerned with the relation

(1-1)
j=

OBSERVATION 1.4. Suppose that given the measure v2 and an integer I > 1, it is
possible to determine Aj > 0, j — I,... ,1, and xj in the interior of Ja such that
(1.1) holds for all n e 2. Then rj = ^/x] and Aj produce a contractive restriction
measure for d\x = d9 <g> dv2 as defined in the introduction.

This is a straightforward consequence of the material so far.
The strategy to follow from now on is this. We fix a positive measure v2 on [0, oo[

and strive to make (1.1) valid for every n. However, we will add more demands
on {xj}, {Aj}. They must also be such that (1.1) turns into equality for all n in
{k, k + 1 . . . , k + 21 — 1}, where we specify k in advance. Provided the construction
is successful, Theorem A carries over to the present setting.

In fact, this will be achieved using the polynomials {pi}^ orthogonal with respect
to dak{x) = xk dv2(x). The nodes {XJ}[ will be the zeros of pf(x) and the weights
{Aj}\ will be the slightly modified Christoffel numbers of order / for ak.

DEFINITION 1.5. Let mn denote the nth moment: mn = J x" dv2(x). It is easily
realized that mn = \\zn ||2 = fa \z" \2 dfx(z).

The single radius case is simple enough to be demonstrated at once.

PROPOSITION 1.6. Fix k e rM, with k + 1 e rM, and put I = l, xt = mk+l/mk,
as well as A\ = mk

k
+x /mk

k+v Then (1.1) holds for all n e l . This means that for all
f € L\we have

mk
t f ?d9

7- / Jf(z)\2— <

In addition, equality holds only for f(z) = akz
k + ak+]z

k+i, all ak, ak+l € C.

PROOF. We need to prove that (1.1) holds and that equality occurs only for n = k
and n = k + 1. It suffices to assume n e I \ .

Starting with equality forn = A:,Jt + l , ( l . l ) demands

«i = mk+\jmk
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72 Mats Erik Andersson [5]

With this choice, (1.1) for arbitrary n requires

(1.2) A,xJ<m, O mn-+\<mnm
n-k-\

For each n > k + 1 Holder's inequality with p = n — k, p' = (n — k)/(n — k — 1)
yields

1/p

= nt'

-.*-"< mnm
K

k+" andwhich is (1.2). For n < k the condition (1.2) takes the form mk+l~"
Holder's inequality is applied analogously with p = k + 1 — n and p' = (k + 1 —
n)/(k — n). The claim for equality follows from the well known conditions on equality
in Holder's inequality. This finishes the proof. D

REMARK. This proposition is the one closest to [M]. The entities *i and At will
reappear below for the polynomial of first degree connected to dak = xkdv2.

2. Quadrature formulas with poles

This section begins with the facts on orthogonal polynomials to be used in the
construction.

Again we fix k e FM and consider dak(x) = xk dv2(x) on [0, oo[. Let {pn}^Lo be
a sequence of polynomials obtained by successive orthogonalization of 1, x, x2,...
with respect to ak. The polynomial pn of degree n is unique up to a constant factor,
which we will choose presently.

PROPOSITION 2.1. The polynomials {pn }̂ 1Q g/ven iy

1 X ... .

mk

nik+n-l

are orthogonal with respect to ak.

PROOF. It suffices to prove f x1 pn(x)dak(x)
integral is readily rewritten as

= 0 for / = 0, . . . ,n — 1. The

mk

mk+n-\

which obviously is zero for all / = 0 , . . . , n — 1. D
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From now on we fix the orthogonal system {pn}%L0 according to Proposition 2.1.
We will for each k deal with only this choice.

PROPOSITION 2.2 ([F, Satz 1.2.2]). Every pn has exactly n real and simple zeros.
Ifv2 has support in [0, R[, R = oo allowed, then all zeros lie in ]0, R[.

The proof hinges only on the orthogonality and not on the representation as a
determinant. The standard demonstration is omitted here.

Our way to establish (1.1) is now set.

PROPOSITION 2.3. Let v2 be a measure on [0, oo[ and put F = {n € Z; / xndv2(x)
< oo}. Furthermore, take integers k e F and I > 1 such that k + 21 — 1 € F. Then
there are explicit points [Xj}'j=] in ]0, oo[, and positive numbers {Aj}'j=] such that the
following formula holds. For every n € F

/
xndv2(x) >

/
xn

Equality holds precisely in the case that n belongs to {k,k + 1 , . . . , k + 21 — 1}.

The proof will be conducted in three steps,

(i) Existence of real A j .

Recall the technique of Hermitian polynomial interpolation:
For every set {.y;}7 of nodes with multiplicities {dj}™, where Yl™ dj = n, and for

every smooth function / there exists a polynomial Pn(x; f) of degree at most n — 1
such that

P{J\yj\ f) = /(/)Oo-), i < j < m, o < i < dj.

For polynomials / of degree at most n — 1 the relation Pn(-; / ) = / holds.
This is proved in [Kr, pages 45-49] and [F, Hilfssatz 1.1.3].
We first take the measure dak(x) = xk dv2(x), whose set of finite moments is

—k + P. In particular, the moments of order 0 , . . . , 2/ — 1 are finite. Let ps be the
/th degree polynomial orthogonal with respect to ak and take {xj}'j=] to be its zeros
according to Proposition 2.2.

We now consider the interpolation nodes {*y}'J=, and multiplicities dj = 1. The
corresponding Lagrange interpolation polynomial is of degree / — 1:

(2-2)
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Integrating this we find a quadrature formula exact for polynomials of degree at
most / — 1:

/

The constants are for notational convenience chosen with factors x*. Next, (2.3)
must hold for degrees not greater than 2/ — 1. Every such polynomial r is given by
r(x) = ri(x) + Pi(x)r2(x), where r, and r2 have degrees not exceeding / — 1. From
Proposition 2.1 it follows that / pi(x)r2(x)xk dv2(x) = 0, whence / r(x)xk dv2(x) =
f rx(x)xk dv2(x). On the other hand, the value of the right-hand side in (2.3) is the
same for / = r and / = /-,.

(ii) Positivity of Aj.

Put rj(x) = [p(x)/(x - xj)]2, which is of degree 2/ - 2. Using (2.3)

0 < J rj(x)xk dv2(x) = Ajxkp'(xj)2,

and consequently Aj is strictly positive,

(iii) The inequality for n < k and n > k + 21.

Take n € F with n < k. Let Qn(x) be the polynomial specified by Hermitian
interpolation:

(2 4)

Consider Rn (x) = x"~k — Qn(x), which has zeros of multiplicity two at each xh and is
smooth in ]0, oo[. In addition, R^\x) > 0 on the right half-line, whence Rf~n has
at most one zero there. Then R{^~2) can have at most two zeros in ]0, oo[. Repetition
of this argument proves that Rn itself has at most 2/ zeros counting multiplicity. The
construction of Qn now forces 2/ to be the exact number. The zero at every Xj has
exact order two, and since lim _̂»0+ Rn(x) = +oo, we find Rn > 0 in ]0, oo[, that
is, x"'k > Qn(x) on the right half-line. Next, Qn(x) has degree 2/ - 1, whence
application of (2.3) and (2.4) shows that

X"dv2(x) > / XkQn

J
(x)dv2(X) = Y J i )

The strict inequality is due to the assumption that the support is not finite.
For the remaining case n > k + 2/ the argument is the same, except that now

Iim^+oo Rn(x) = +oo is used in order to gain Rn(x) > 0 on the right half-line. This
completes the proof of Proposition 2.3. D
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REMARK. The proof of the above inequalities has been influenced by [F, Hilfs-
satz III. 1.5]. Such results were first found by Shohat.

3. Restriction operators

The careful formulation of the result in the preceding section is as follows.

THEOREM 3.1. Let fx be a rotationally symmetric measure on C with radial com-
ponent measure v2. Fix integers / > 1 and k € FM such that k + 2/ — 1 e FM.
Denote by X\, ...,xt the zeros of the Ith polynomial orthogonal with respect to
xk dv2{x). Determine the (positive) numbers A\,...,At through the equations
2I;_i AjX" = f x" dv2(x), n = k,... ,k + I — 1. Then the norm on L\(JJL) has
the property that, for r, = y/x~ and all f € L\ (fx),

i > f i/u)i2? < n/ii2-

Moreover, equality holds precisely in case that f is of the form f ( z ) = a k z k + --- +

DEFINITION 3.2. The Jacobi restriction measure for fx with parameters k € FM,
/ > 1, is the measure X = A.w(^t) on C specified by: X has support U';=i{l2l = rj)
and is uniform of mass A} on each circle {\z\ = r;-}, where r, and Aj are taken from
Theorem 3.1.

This concept of Jacobi restriction measure conforms to Definition 1.2, as we see
from Theorem 3.1. Using a natural extension of Definition 1.1 we formulate the
following theorem.

THEOREM 3.3. The Jacobi restriction measure X = Xk/ for fi, is a contractive
Carleson measure for L%"(Q, /z), where m is a positive integer, that is, for all f in
L^"(S2, fx) the inequality ||/||zx>.) < H/Hz^n.^) obtains. In addition, norm equality
holds exactly when f(z)m - akz

k + ••• + ak+2,-iZ
k+2'-i.

The proof is simply an application of Theorem 3.1 to the analytic function f(z)m

in L\, which appears for every / € Lf'iSl, /x).
By variation of the parameters k and / we can even get a partial ordering of the

corresponding Jacobi restriction measures.

T H E O R E M 3 . 4 . Suppose that k < p < p + 2 q - l < k + 2 l - l . Then

(3-D ll/llzxi,,) < II/IIL*-CA*> < H/llij-oo

holds for all f analytic on Q. Furthermore, the first equality holds precisely when the
two outer members are equal.
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The technique used so far to compute moments reduces the proof to the demon-
stration of:

PROPOSITION 3.5. Assume the relation k < p < p + 2q-\ <k + 2l-\. Denote
the data for the restriction measure ku = kki(/x) by {Aj}'j=l, {r, = y/x~}'j=i, and those
forXpq = Xpq{ix) by {£,}y=I, {s, = yfy~j}q

j=\- Then for every n e 1, the nth moments
satisfy

Equality holds only for n = p , p + \ , . . . , p + 2q — 1.

PROOF. It suffices to prove the case q — I — I and the subcases p = k and
p = k + 1. The general case is proved by several applications of these reduced
cases; in fact, as long as k < p or q < I — 1. Both of the subcases will be handled
simultaneously. Hence we assume q = I — 1 as well asp = k or p = k — 1. Write

The original construction yields K{ (n) = f x" dv2(x), for n = k,..., k + 21 — 1 as
well as K2(n) = f x" dv2(x), for n = /> , . . . , p + 21 - 3. In particular, AT, (t) - K2(t)
has zeros at t = p,..., p + 21 — 3, that is, at least 2/ — 2 zeros. We need the following
lemma which is a special case of [PS, section V, problem 75].

LEMMA 3.6. Any real equation b\e"*x -\ \- bme"mX = 0 has at most m — 1 real
zeros.

From the lemma we conclude that Kt (t) — K2(t) has exactly 2/ - 2 zeros, namely the
points t = p,..., p+2l — 3. From Section 2 we have K2(p — 1) < / xp~l dv2(x) and
K2(p+2l-2) < fxp+2l-2dv2(x). In case p = k+1 this means that AT, (k)-K2(k) >
0 and in case p = £ we have AT, (k + 21 — 2) — K2 (k + 2/ — 2) > 0. Since the zeros are
distinct and even in number, AT, (t) — K2(t) > Ooutside[/>, p+2l—3] in both subcases.
Hence Kt(n) > AT2(n)forall« € Z and equality holds only for n = p,..., p + 2l — 3.
The proof is complete. •

REMARK. The partial ordering above is, in fact, cofinal: given two restriction
measures we just choose parameters of a third measure so as to make it exact for at
least all the moments for which either of the two given measures are exact. Obviously
this net of measures converges to the original measure fi throughout £2.
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4. Harmonic functions

Not all of the preceding results are true if one relaxes the assumption on analyticity
to only harmonicity. This will be demonstrated by counterexamples as well as by
new proofs where something can be rescued. We will write Lj;(£2, ix) for the space of
complex valued harmonic functions in L2(Q, [i).

PROPOSITION 4.1. Suppose Q is a disk and that g is harmonic in £2. Then for
all parameters k and I the inequality \\g\\r-o.tl) < WgWilw holds. Hence the Jacobi
restriction measure is a contractive Carleson measure for L2

h(Q., fj.).

PROOF. Any function harmonic in a zero-centered disk can be represented g{re'6)
= TZ-oc^r^e'"6. Then we find f ^ \g(z)\2 d6/2n = £ " _ „ . |«n|

2;c"" due to
orthogonality. This means we may apply the reasoning from the analytic case to
deduce

>J2Aj f \g(z)\2^- = \\g\\2
LHktl).

•
PROPOSITION 4.2. Let g be harmonic in Q.. Assume that f..g(z)d&/27T is

independent of r and that 0 € FM, that is, (x(Q) < oo. For all parameters k and I
such thatk <0<2l + k-l,the norm inequality \\g\\L2(Xkl) < \\g\\Liifl) holds.

PROOF. The assumption on g € L2(n) implies a representation

g(rew)= ]T (anr"+bnr-")eine.
n=—oo

It follows that

C d8 °°
(4.1) / \g(z)\2— = T (|aB|V + \bn\

2x-" + 2Rcanbn ).

Since k <0 <2l+k— 1, we know that the general relation / x" dv2(x) > ^ ; = ) AjX"
is an equality for n = 0. On the grounds that every coefficient in (4.1) with n ^ 0 is
non-negative, a termwise integration yields

> j \g{z)\2d\kl{z),

which is the claimed property. •
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EXAMPLE 4.3. We construct two instances where relaxation of the conditions in
Proposition 4.2 produces the reversed inequality.

Consider any ring domain and any accompanying v2 with f x" v2(x) < oo for
n = - 2 , - 1 , 0, 1, 2. Choose a > 0 such that Ja C ]3/2a, oo[. It is claimed that for
the parameters / = 1 and k = 1 there is a harmonic function g € L\ (£2, /J.) such that
llglkj(M) < \\g\\mk,,)- In fact, g(z) = az - \fz is a good choice.

Put F(x) = JC"1 yj.|=V7 \g(z)\2d6/2n = x-\a2x - 2a + l/x). The choice of a
yields F'(x) > 0 and F"(x) < 0 throughout ]3/2a, oo[. We now use the technique
from Section 2. Consider the one point quadrature formula for x dv2(x) specified by
A{ and xt. Let Q(x) = F'(x\)(x — xt) + F(X]) be the Hermite interpolant at x = xx

of order two. Then F(x) — Q(x) has only one double zero in ]3/2a, oo[ and no other
zeros. In fact, F(x) < Q(x) throughout ]3/2a, oo[ with strict inequality for x ^ x\.
Integrating, we find (with the usual non-finiteness assumption on the support)

I F(x)xdv2(x) < J Q(x)xdv2(x) = A]XlQ(Xi) =

The definition of F(x) finally yields

I
Jn

Using a more intricate calculation we can get also ||g||f.2(M) < II#IIZMP)> which is
an example with two circles. Let Ai, A2, x,, x2, be the data for A)2, and take Q2(x) to
be the Hermite interpolant for the previous F(x) with nodes xx, x2, and orders dj = 2.
One finds that Q2(x) = 2(x2 — X\)~2{x^ - x2

])2(a - x^1 - x2~
i)x3+ lower terms.

Choosing a so large that JQ c ]5/2a, oo[, one finds that Fi4)(x) < 0 and F'"(x) > 0
on ]5/2a, oo[. As before, the inequality F(x) < Q2(x) holds on Ja with equality
only for x = X\, x2. Integrating this, / |g|2 d/j. < f \g\2 dXl2 follows.

EXAMPLE 4.4. In the statement of Proposition 4.2 one contribution was excluded,
namely the harmonic function log \z\. Its inclusion will produce a further counterex-
ample.

Consider g(z) = loga|z|. Then F(x) — _/|.|=vj \g\2d0/2n can, by a proper choice
of a, give F"(x) < 0, F'(x) > 0 on any fixed [e, oo[. Calculations similar to
Example 4.3 will prove that \\g\\Liw <

5. The intermediary L£-spaces

It is natural to ask about the validity of the previous results for the spaces L£(Q, /*).
Some negative examples and positive results have been collected in this section.
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Consider the subspace L,P(S2, (x) being the closure of the analytic polynomials in
L£(£2, ix). Each such function has a Laurent expansion in Q, containing only powers
with non-negative exponents. In particular, they can be analytically continued into
the hole around the origin, which Q encloses. Using the method of [A] we have a
differentiability result:

PROPOSITION 5.1. For each L?(£l,fx), p > 2n — 2, the pth integral mean
Mpf(r) — f rr\f\

r dv '2.T has n positive and continuous derivatives for r less
than the outer radius of £2

LEMMA 5.2. Let I 2 1 and k > 0. For any polynomial Q with non-negative
coefficients of each order not contained in {k, k + 1 , . . . , 2/ + k — I}, a quadrature
estimate holds: I Q d\ - _- V̂  At (?(*,), where Xj are the points constructed for Xkl.

PROOF. Write ( . '" > = </<*)+ xkq2(x) + xv+kqi(x), with d e g ^ <k — \ and
deg^2 < 2 I - I We kn<»\» that ^ Ajq2(Xj)xk is equal to f q2(x)xk dv2 by construc-
tion. Furthermore. ^ •* «' 1 / x" dv2 for all integers n, so using the non-negativity
of the coefficients in«/ anJ ^ l r i c addition of all contributions including q2 establishes
the claim. D

A result for pencrjl hi-r;.-mjn spaces is given by the following proposition.

PROPOSITION 5 ? Sur:*"" the ring domain Q. is bounded and I > 1, k € TM. Put
K — max(0. k) and IM^KH. rtiat p > 4/ + 2K — 2. Then every f e Lf (Q, fx) satisfies
for k = At/

REMARK. Our mcth*>d c»l prtxif is not suitable for functions with a proper Laurent
expansion so they u ill be ijrntwed for this result.

PROOF. LetM(r) = Mr / (r ) be the pth integral mean of / . From Proposition 5.1
we know that M e C{'"y'([0. /?]) and all derivatives are non-negative. Consider the
Hermite interpolant P(r) for M(r) with nodes X\, ...,xt of degree 2 and x0 = 0 of
degree K. Following [A] or [Kr, pages 45^49] we have

where f is in [0, R] and o>(r) is the polynomial with zeros xu ... ,xn and suitably
normalized. Since no derivative of M is negative, we know that the terms of orders
0, 1 , . . . , K — 1 in P (r) are non-negative. In the case k > 1 we may invoke Lemma 5.2.
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The non-negative contribution from the remainder term is unproblematic and we
conclude that

\\f\\hw = j M(\-\)dk<

For the possibility K = 0, that is, k < 0, a result similar to Lemma 5.2 but with
exactness for the terms of order {0, ...,21+k — l} (or for none at all when k < -21+1)
is incorporated to yield the same conclusion. •

Presently we will produce examples showing that the range of the exponent p is
optimal to some extent, but first we will reinterpret the method in the way it depends
on convexity. This will produce an ample supply of counterexamples.

After a change of measure the partial ordering at the end of Section 3 says that
if 0 < n < 21 — 1, then the inequality f\f\2dknl < / | / | 2 dky holds. To see the
meaning of this relation we let g(x) be an arbitrary function for which the inequality
/ 8 dkn\ < / gdkoi holds. Denote the data for kOi by xjy Aj and those for kni by y\,
B\. Our inequality claims that

(5.1) B,g{yx) < £ ' = | Ajg(xj).

However, we also know that

Observe first the representation

which expresses y\ as a convex combination of all Xj. Next, (5.1) becomes

AJx"j g(xj)

r"
xj

where the right-hand side has the same convex combination as y\ has.

OBSERVATION 5.4. (1) For functions g such that x ~" g (x) is convex, the inequal-
ity f g dkn\ < f g dkoi always holds.
(2) In the case that x~"g(x) is non-convex, the inequality in (1) is false as soon as

the interval [xt, X/] is an interval of concavity for this function.
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Interpreting this for our integral means, we have established a geometrically im-
proved result, related to Theorem 3.4:

PROPOSITION 5.5. Suppose that k<n<k + 2l-l, p>2. Then

\\f\\mK<) < UWLUM, l l / IUi . , ) <

hold for all measures \x and all f analytic on Q such that x~" Mpf(x) is convex.
For each f giving non-convexity ofx~" Mpf{x) there are measures fj. simultaneously
negating both inequalities for this particular function f.

The proof is entirely contained in Observation 5.4 except the result for Xni and \x.
This involves one radius and a quadrature formula exact for linear polynomials. The
relation of the tangent to (respectively) a convex and non-convex curve is all that is
needed for the integration to produce the claimed result. Observe also that for p an
even integer convexity always results and this explains the previous success.

Now we can produce illuminating counterexamples.

EXAMPLE 5.6 (Sharpness of Proposition 5.3 with offset restriction). Take a non-
negative integer n and consider Lp

a(£l, fx) with the only condition 2n < p < 2n + 2.
The Jacobi restriction measure X = Xnl(/j,) will produce the required example.

The polynomial f(z) = z has normalized integral mean x~"Mpf(x) = xp/2~",
which is strictly concave on the positive axis. By Proposition 5.5 and Observa-
tion 5.4 (2) the inequality ||z|| £/•(».) > ||z||z,?(Q./o holds for any measure fx on £2. At the
same time we find that for any other restriction measure we have ||z||/./.(xBl> > llzll^u,,)
as soon ask<n<k + 2l — 1.

REMARK. Probably it is not worth the effort to try to construct counterexamples
negating only one of the inequalities in Proposition 5.5.

EXAMPLE 5.7 (Sharpness of Proposition 5.3 for / radii). Let / > 1 and suppose
that 4(Z — 1) < p < 4/ - 2. Our claim is that ||z||/.,.(M) < ||z||/.''u> for the Jacobi
restriction measure X = A.O/ independently of fi. In fact, for f(z) = z we have
d^Mpfi^/dr21 negative on ]0, oo[, since Mpf{r) = rp/2 and 2/ - 2 < p/2 <
21 — 1. Let Q(r) be the Hermite interpolant with / nodes of multiplicity two at
each Xj corresponding to a radius in the construction of k0/. Since Q has degree
2/ — 1, which is greater than the power p/2 occurring in Mpf(r), the observation
d^iMpfir) — Qir^/dr21 < 0 everywhere suffices to prove Mpf < Q with equality
only at / points. The radially infinite support of fx then forces the claimed norm
inequality.
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Finally, let us cast one aspect of the material in a slightly different form. Theo-
rem 3.3 says that the restriction operator &tkl has operator norm 1 from L^"(fi, ft)
to L2m(A.Jt/, U',{|z| = rj}), for each integer m. Were each L£(/x) the correct inter-
polating space with respect to the Riesz-Thorin interpolation, then the operator norm
3?u : L%((i) i->- Lp(kkt) necessarily would have to be at most one for all p > 2. How-
ever, Examples 5.6 and 5.7 demonstrate that \\&kl\\p_>p > 1 and \\&oi\\p^P > 1 for
suitable p in the relevant range. Thus the interpolation between a couple of Bergman
spaces yields spaces not isometric to the correct space in the same scale of Bergman
spaces. Likewise by the same examples, not even the complex method of interpo-
lation with respect to the full family {£j"(/*)}~=1, in the sense of St. Louis spaces,
isometrically preserves the Bergman spaces. This is so since the operator norm for St.
Louis spaces obeys the same log-convexity property as expressed in the Riesz-Thorin
theorem. Therefore we have found a new example consisting of analytic spaces il-
lustrating the shortcomings of a complex method interpolation. For this particular
operator 3fckl the convexity of the integral means is governed by the expression *fx as
seen above, whereas the log-convexity in general is incompatible with this notion of
convexity. The logarithmic convexity is, however, the correct one in the three circles
theorem of Hadamard and hence appears in the interpolation method.

Addendum: higher dimensions

The basic construction of the restriction measures kkl may be used also for harmonic
tunctions in higher dimensional euclidean spaces. Only one result is stated here in
iwder to present the mechanisms.

We consider measures \x on W invariant with respect to the action of SO(R</).
These measures can be decomposed into a radial component and a normalized surface
measure on the unit sphere, in a manner imitating the decomposition in the com-
p\c\ plane. The definition of the Jacobi restriction measure kki((i) is reinterpreted
as producing a measure supported on the union U'-_|{JC e Rd : \x\ = rj}. On
each component {x e W : \x\ = r,} the restriction of kkt is a multiple Aj of the
normalized surface measure. This measure kkl exists precisely when / |x|M dfi(x)
and / \x\2ik+2<-l) d(i(x) are finite.

PROPOSITION. Let Q c Rd be a ball centered at the origin. Suppose further that
k < p < p + 2q — 1 < A: -f- 2/ — 1 holds and that kk/ exists. Then every function f
harmonic in £2 satisfies

\\f\\mxn) < \\f\\c-«kl) <

PROOF. Since kk, exists, so does kpq according to the condition on its parameters.
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Using the Laplace's series for / , we have / ~ 2^=0 r T m , where Ym e J4?m is
homogeneous of degree m. It follows that for normalized surface measure a

L
Using Proposition 2.3 as well as Proposition 3.5 we get the claimed ordering of the
three norms. •
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