An XMM-Newton study of the mixed-morphology supernova remnant W28

Ping Zhou¹,², Samar Safi-Harb²,³, Yang Chen¹,⁴ and Xiao Zhang¹†

¹Department of Astronomy, Nanjing University, Nanjing 210093, China
email: pingzhou@nju.edu.cn
²Department of Physics and Astronomy, University of Manitoba, Winnpeg R3T 2N2, Canada
³Canada Research Chair
⁴Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, China

Abstract. We perform an XMM-Newton study of the mixed-morphology supernova remnant (MMSNR) W28. The X-ray spectrum arising from the northeastern shell consists of a thermal component plus a non-thermal power-law component with a hard photon index (∼1.5). Non-thermal bremsstrahlung is the most favourable origin of the hard X-ray emission. The gas in the SNR interior is centrally peaked and best described by a two-temperature thermal model. We found a non-uniform absorption column density and temperature profile for the central gas, indicating that the remnant is evolving in a non-uniform environment with denser material in the east. We argue that the cloudlet evaporation is an indispensable process to explain both the spectral properties and the clumpiness in the X-ray emission.

Keywords. Supernova remnants, ISM: individual (G6.4−0.1 = W28)

1. Introduction

Mixed-Morphology (or thermal composite) supernova remnants (MMSNRs) represent a class of SNRs that are shell-like in the radio but have a centrally-filled morphology in X-rays with a thermal spectrum (Jones et al. 1998; Rho & Petre 1998). W28 (G6.4−0.1) is an MMSNR with a double radio shell in its north. Two competitive scenarios were proposed to explain the X-ray emission in the SNR interior: thermal conduction (Cui & Cox 1992; Shelton et al. 1999) and cloudlet evaporation (White & Long 1991). However, the origin of the central X-ray emission is still not clear (Rho & Borkowski 2002).

W28 is interacting with molecular clouds (MCs) in the northeast, where GeV and TeV γ-rays have been detected (Aharonian et al. 2008; Abdo et al. 2010). Hadronic interaction of cosmic rays with the MCs are considered to produce the γ-rays (Li & Chen 2010) and several models are proposed to predict the broad-band spectrum generated in such sites (Bykov et al. 2000, Gabici et al. 2009). It is thus of great interest to explore in the X-ray band for the origin of the non-thermal emission from this particular shell.

2. Observation and results

Four archival XMM-Newton observations towards W28 were used for the analysis presented here. We here summarize briefly our results. A more detailed analysis and discussion will be presented in another paper (to be submitted to ApJ).

† Supported by NSFC grant 11233001, the 973 Program grant 2009CB824800, the grant from the Chinese Scholarship Council, the NSERC grant, and the grant 20120091110048 from the Educational Ministry of China.
An XMM-Newton study of mixed-morphology SNR W28

As shown in the left panel of Fig. 1, the XMM-Newton image reveals blobby X-ray structures in the SNR interior and a deformed shell in the northeast. The remnant is evolving in a complicated environment with dense MCs in the east, explaining the difference in morphology between the northeast and south.

We have not found any evidence of ejecta inside the SNR. The X-ray spectra arising from the NE shell, where the shock-MC interaction is evident and γ-ray emission partly overlaps, consist of a thermal component with a temperature of ∼ 0.3 keV and a non-thermal component with a hard photon index of ∼ 1.5 (as shown in the right panel of Fig. 1). The non-thermal X-rays can not be explained by the secondary electrons from the hadronic interaction of cosmic-rays and the MCs Non-thermal bremsstrahlung from the cloud shock is the most favorable origin, at least in the view of the spectral slope.

The X-ray spectra in the central gas are well represented by a two-temperature thermal model $vnei + vmekal$. We performed a spatially resolved spectroscopy of the central gas and found variations of temperature, interstellar absorption and gas density across W28. The colder and denser gas are distributed to the north and east of the X-ray-brightness peak, where the X-rays suffer heavier absorption. We find that thermal conduction is not efficient in the SNR interior, while cloudlet evaporation is an indispensable process to explain both the clumpiness and some of the spectral properties of the X-ray emission.

References

Figure 1. Left panel: Tri-color image of SNR W28. Red: The integrated JCMT intensity image of 12CO J = 3-2 (-40–+40 km s$^{-1}$; Arikawa et al. 1999); Green: the Hα image from the archival SuperCOSMOS Hα Survey (Parker et al. 2005); Blue: XMM-Newton 0.3–7.0 keV X-ray map; and contours: 1.4 GHz radio continuum. Right panel: pn (upper) and MOS (lower) spectra and the fitted model ($vnei + power-law$, solid lines) of the northeastern shell. The short dashed lines show the components of the model.