SOME RESULTS ON FINITE GROUPS WHOSE ORDER
CONTAINS A PRIME TO THE FIRST POWER

RICHARD BRAUER*
In memory of Tapast NAKAYAMA

The author discussed questions of the type treated here at various times
with his friend Tadasi Nakayama. There had been plans of a collaboration bet-
ween Nakayama and him in an effort to broaden our knowledge of the part of
the character theory on which this present work is based. Nakayama’s untimely
death destroyed the hope of such a collaboration. I wish to dedicate this paper

to his memory.

§ 1. Introduction

In a previous investigation [1], the author has studied finite groups & of
an order g=pg, where p is a prime and g, an integer not divisible by p. This
work has been continued by H. F. Tuan [5]. Let # denote the number of
conjugate classes of & which consist of element of order p. Tuan dealt
with the groups & for which #<2 and which have a faithful representation of

** We shall also suppose

degree less than p — 1. We shall assume here that ¢=3.
that & does not have a normal subgroup of order . We state here two
results. We shall show (Corollary, Theorem 1) that if 7 is a faithful irreducible
character of @ of degree # which has T>1 conjugates over the field of the

go-th roots of unity, then
1 —3/4 5 5/4
n> §—T /.

In Theorem 2, we assume that & has an irreducible faithful representation of

degree #<p—1. It is then shown that

p<t—t+1.
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Thus for a fixed ¢, only finitely many primes p are possible. In a later paper,
S. Hayden and the author will study small values of ¢ and give further exten-

sions of the results.

§ 2. Preliminaries

Let @ be a finite group of order g=pg, where p is a fixed prime and
where g is an integer not divisible by . Let P be a p-Sylow subgroup of
®. The centralizer 6(3) and the normalizer N(PB) of P then have the form

2.1 E=C(P)=PxB, N=N(P) =< (P), M.

Here, B is a group of order » prime to » and M is an element whose order

m over G(P) divides p—1. If we set
(2.2) Pp—1=mt,

t is the number of conjugate classes of & which contain elements of order ».
Distribute the irreducible characters of B into classes Fy, Fi, ..., Fi-; of
characters associated in M. It is shown in [1] that @ has / p-blocks B, Bi,
..., B of full defect, and we have a one-to-one correspondence F)— Bi.
Let 6, be a character belonging to F\ and suppose that F. consists of ¢, cha-

racters, i.e. that the inertial group of 6, has index 7, in M. Then =\|m; we

set

(2.3) m=mar, h=r1t

so that

(2.2%) p—1=mth, A=0,...,I-1).

The degree of 6, will be denoted by fr=6.(1).

As shown in [1], Bx consists of m,. “non-exceptional” characters ¢, ¢V, .. .,
¢, and #. exceptional characters 7", 73V, ... %). The values of these
characters for p-singular elements of & can be given explictly, only certain
+ signs remain undetermined. Let o denote a primitive p-th root of unity
and let ¢ denote a primitive root (mod p). We form the Gauss periods of

length m,
(2.4) o =3
v
where » ranges over the integers, &, 2+ t\, k+2t, . . . , B+ (m. — Dt Clearly,
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my remains unchanged, if % is changed (mod #,). If P is a fixed generator
of ¥ and if V& B, we have with 0" (V) =6(M™' VM)

':)\—l "

(2.5) 15(PY) = 0 S0 (V) o,
w=0
N

(2.6) N (PY) =M S 00 (V)

=0

with %, ¢V = +1; cf. [1] I, Theorem 4.
We take B, as the principal p-block of 8. Then 6y=1, rn=1, i.e. to=14,

my=m. We shall choose here the notation such that ¢\ =1 and that ¢ =1

for i=0,1,...,ae—1and "= -1 for i=a,a+1,...,m—1.
Set wj,’ =7, The 7 are the Gauss periods of length m. It is seen easily
that
ta-1
2.7 7i = V,_,.ow‘(?\”'
As is well known, %i, 72, . . . , 7« form a Z-basis for the ring of algebraic in-

tegers of the field Q(») <Q(p) ;™ we have

=1

With each 7, the conjugate complex number 7; appears in {7, 72, . . . ¢}.

We shall use the notation

(29) 77,':7}1'/_

We also give some formulas for the multiplication of the »;..  These can be
proved easily directly, but we apply a group theoretical method.
Let M,,: denote the metacyclic group of order p(p — 1)/t defined as group

with generators P, M with the relations
PP=1, M™=1, M'PM= P°.

Then Ip,; satisfies our conditions for @ and #= (p —1)/m is the number of
conjugate classes of elements of order p. Here, B, is the only p-block. The
non-excepetional characters can be identified with those of i, /<PD>, i.e. of
a cyclic group of order m. For suitable choice of the notation, we have

¢V =¢* (0=k<m), ¢ a character of degree 1. The characters 7" have degree

*) We use the notation Q for the field of rational numbers and the notation Z for
the ring of integers.
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m, ¢”=1. The product 7{"7{" will contain Z%, if and only if Z"¢*= 7.
Taking the element P, we see that this is so, if and only if ;=7 . Hence we

may set
t m-1 k
~2(0)77(0 - o
1O =il + 8i 2. ¢
r=1 k=0

with integral ¢;;>=0 and Kronecker §;;. For the element P, this yields

t
(2.10) 07 = >;11(,‘[jr 7 + moij,

while for the element 1, we find

/-

(2.11) Cijr = m— Bij.

r=1
Since ¢;j» is the multiplicity of the principal character in 7{"7"'7;", we see that

(2.12) Cijr = Cirj = Crijs.

§ 3. Characters of M

The results stated in §2 apply in particular to the group N in (2.1). We
shall write here &, instead of B,. Since BN, no p-block of defect 0 occurs
for N.

The irreducible characters of ¥ have the form ¢#¥*. They may be con-
sidered as characters of § =P xB. Let (o) denote the linear character of €
defined by

() (P'V) =

for Ve B. If the element M is chosen suitably, we may assume that
(3.1) (0" = (p°.

For any j< Z, the character (0)90, of 6 has m associates in M. It follows

that this character induces an irreducible character
3.2) ((0)98)* =€

of M. Using (3.1) we see without difficulty that
23 v
(3.3) &€= 2300 2 ()"

w=0 v

where in the inner sum, » ranges over all members of a residue system mod
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p—1 for which v=j+ pt(mod £,). Comparison of (3.3) with (2.5), (2.6)

shows that &, &V, ..., &)L, are the #. exceptional characters in .. The

signs &

here are + 1. It is now also clear that £;" remains unchanged, if j
is changed mod #.. The degree of ¢;" is mf\(1) = mf,.

We next form the irreducible character 85 of Nt induced by the character
0, of B. If ¢ is an irreducible constituent of 65, necessarily

TA—1

¢li=e> 0
v=0

with integral ¢>0. Comparing this with (2.5), (2.6), we see that ¢ is a non-
exceptional character of 5, and that e=1. Hence ¢ has degree r,f, and it ap-
pears only once in 6. This shows that 8 splits into the m, non-exceptional
characters of b\ each appearing with multiplicity 1. In our present case, the
signs ¢’ are also +1.

The characters of the principal block &, have kernels including 8. Since
N/ is cyclic of order m, we can find a linear character ¢'“<b, such that
¢ (M) is a primitive m-th root of unity while ¢'”|€ =1. Then the non-excep-

tional characters of b, are

¢ =", (i=0,1,2, ...,m~1).
Let ¢**) now denote a non-exceptional character of b,. It is clear that,
for any ¢,
(3. 4) (ﬁ(l_x) — (¢(0))i¢'()‘)

is also an irreducible non-exceptional character of 5,. Conversely, if ¢ is an
irreducible non-exceptional character of b,, then ¢¢™™ must contain a consti-
tuent in b,. This can be seen from (2.6). It also follows from the general
theory. Since the kernel of ¢¢ includes P, this constituent can only be a

Tt then follows that ¢ is the character ¢{".

tional characters of b, are the ¢ with 7=0,1,2, ..., m —1. Necessarily,

We see that the non-excep-

(8.5) e (@) =g,
We now have

(8 A) The block bx of M comsists of the . exceptional characters & and
the m, non-exceptional characters ¢, 0<j<tr; 0=<i<m,. The &;" have

degree mfs while the ¢\ have degree ©\f,. The kernmel of each ¢} includes P.
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Since the sign associated with each ¢ is +1, the tree corresponding to

b, is a “‘star” whose center corresponds to the set of exceptional characters

while each free end point corresponds to a ¢{”. This shows that the modular

irreducible characters ¢ of b, are simply the restrictions of the ¢ to the

set of p-regular elements; 7=0,1,2, ..., m —1. The chief indecomposable

character @;"' corresponding to ¢;* then is given by
123
(3.6) 0 = ¢ + 33850,
i=1
It also follows that, for p-regular elements ¢ = %, we have
mx—1 N
(8.7 &) = 2 0 (0).
=

Taking the element 1 in (3.6) and using (3 A) and (2.2), (2.3) we obtain
(83 B) The character 0" has the degree prafi.
The next statement is also an immediate consequence of (3.6) :

(3C) The Z-module of functions spanned by the irreducible characters in
by has the basis 0, £ with i=0, ..., m.—1 and j=1,2, ..., h.

We conclude §3 with the proof of three lemmas concerning the products

of the characters of .
(3D) For ixj (mod #), £NE;" is @ sum of exceptional characters.

Indeed, it can be seen from (3.3) that, for i % j(mod 1), &V&"|€ is a sum

of irreducible characters ﬁ(p)k where 0 is a character whose kernel includes

% and where (p)*=1. It follows that each constituent of &'z is non-trivial

on B. By (3 A), all constituents are exceptional characters.

(8E) We have formulas

l-1my-1

(3.9 0" = 23 21 gt 0"

T=0 k=1
B
where ¢y € Z and where

(3.9) 0= g% < cufufslfr

Proof. We can set
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-1 ma—1

ey = 20 20 aflpgl®

a=0 2=0

with @}, € Z, aff;=0. This formula remains valid, if each ¢ is replaced by
the corresponding ¢. Now [41, (64) and (76) show that

my-—1
(3.10) 0V = E 2 aiioy”
o =
We claim that (3.8) holds with
m3—1
(3.11) @i = 2 afli.

Since the chief indecomposable characters @ vanish for p-singular elements,
it suffices to check (3.8) for p-regular elements s. Here, (3.8) is obtained by
summing (3.10) for »=0,1, ..., ms— 1 and using (3.7) and (3.11). It is now
evident that ¢" € Z, qi; =0.

We note next that @ is the multiplicity of the principal character in

¢Y‘T)¢(%)¢};G) — (/}(T)‘p(f’)(z"(a) (¢(0))k+v—i,

cf. (38.4). For fixed a, B, 1, then ¥ depends only on Z+»—i  Moreover,
(3.5) shows that @}, remains unchanged if one one of the indices i, », or %
is changed modulo the greatest common divisor d of m,, m;, m+. Let dU
denote the sum of the @’}; where one of the subscripts ranges over a residue
system mod 4. Then (3.11) reads

(3.12) a3} = meU = mU] .

aBY

On the other hand, since @%}; is the multiplicity of ¢}~ in ¢{*'¢ ",

—1my—1

(3.13) P = Z‘. 3 affigi-
On comparing degrees, we have
mY
TaThfaflegla;";]éTrfr = my Uty f+ = mUf~.

Now (8.12) shows that (3.9) holds.

(8F) We have formulas

—1my—1

(3.14) 0o = ZE TR0y
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where AR, € Z and where
(8.15) OSAXLS G+ o) tarsfof s/ -

Proof. Again, it suffices to consider p-regular elements in (3.14). On
adding (8.8) for j=1,2, ...,% and (3.10), we see that (3.14) holds with

alT __ 4, 8T a8T aBT 8T
Pe=1ah + aig =1l + ey

Now (3.15) is obtained from (3.9), since (3.13) implies @5y S tatsfafs/ (v fr).

§ 4. Some results concerning the characters of &

It follows from (2.5) and the results of §3 that the difference 7;"|% —
¢ V¢ is a generalized character of  which vanishes for all p-singular elements ;
(A=0,...,1—1; j=1,2,...,t). Consequently, the difference is a linear
combination of the chief indecomposable characters 0§ of M with coefficients
u in Z, (cf. for instance [2], Theorem 17). Moreover, since the values of the
0;” lie in the field 2 of the go-th roots of unity over Q, application of an
element of the Galois group of 2(p) over 2 shows that the coefficients % do

not depend on 5. Hence we may set

(4.1 ZPIR = N8 + w08
o, 7

where in the sum on the right, « ranges over 0, ... ,/—1 and, for given «,

y ranges over 0,1, ..., m,— 1.

(4 A). In (4.1), the integers u')r are nom-negative. If ¢¥ = —1, there

. . ). ey
exists an v for which u\)r is positive.

This becomes evident, if we use the formulas (3.6) to express (4.1) by
means of the irreducible charcters of Nt. Since X;”|N is a character of N, the

(a) (A
i

coefficients of each ¢,” and each &;" must be non-negative.

(4 B) Choose a fixed value of . There exist coefficients har € Z such that

a—-1 t

(4.2 a) 1A = Eonf) + Z':hiirl‘r'” + T+ dii s
w= r=
m-1 t

(4.2 1) IO = 3¢+ Z}hm%‘)’ + T+ 4ij
v=a r=

for i+ j mod ¢.. Here I" is a character whose irreducible constituents are non-

exceptional characters ¢’ € By and which does not depend on i, j, and d.s is a
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character whose irreducible constituents do not lie in B.. (The integers hqsr and
the characters I' and 4. will depend on 1).

Proof. Choose {7 (mod #\) and form the generalized character
5= x()\)x()\) —_ 7}(3)‘)7;'2)\).

Then Z vanishes for all p-regular elements of &. Express Z by the irreducible
characters of & and let 5, denote the sum of the terms which lie in B, say

-1 - t
g = quc“”+ Zyxc“"+ Slatd.
r=1

Then E, also vanishes for p-regular elements. On the other hand, for every
value of 7,

a—1 m-—1

Y 0

}_]CL_‘” — 2 Ci ) E(O)X(ro)
v=a

w=0

vanishes for p-regular elements, cf. [1] I, Theorem 6. If we set z= >z, it

follows that

a=1

Z (% + 92)C0 + 2 (yy — ")

v=a

vanishes for p-regular elements. Since the ¢{” are still linearly independent on

the set of p-regular elements, we find x. = — "z, y, = ¢*2. Now, the prinicipal
character ¢{" appears with the multiplicity —1in Z; we have o= — 1. Hence
(4.3) eV =z2=>2, xu= -1, y,=1
Thus,

m—1
(4.4) AT =100 — Ec’°’+ Ec‘°‘+ Ezr/‘r°’+u,,k
where £, is a character of & whose irreducible constituents lie in blocks
other than B,. In particular, this shows that ¢}”, ¢, . . ., ¢4, are constituents
of V7 and that ¢7', .. ., Cml, are constituents of X‘“y‘,“.

We may choose our notations such that (4.2 a) holds for i=1 and that
hur, ', 4y have the significance stated in (4 B). Then (4.4) with 2=1 shows
that (4.2 b) holds, if we set kij» = hur—+2,. It follows from (4.3) that

12 t
(4 5) Z:hijr = Elhnr + 5(0)-

If we now apply (4.4) with any %, we see that (4.2 a) holds in general. In
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addition, we have

(4.6) éhkkr = ?:_;‘hijr -
This completes the proof of (4 B).

(4C) In (4 B), the hijr are non-negative. There exists a number H such
that

t t
4.7 SV hijr = H for ixj (mod £\, Elhiir =H-—¢°.
r=1 r=

The first statement is obvious since k. is the multiplicity of 73" in XM%s".
The second statement is a consequence of (4.5) and (4.6).
Our next aim is to give an estimate for the number H. We shall now

make the following assumptions:

I. t=3
(AI). There does not exist a normal subgroup & of © such that &/R is
isomorphic with the metacyclic group Mp,: of order p(p — 1)/t *.

Suppose that in (4.1) for A=0, all %\, vanish. Necessarily ¢” =1 and
(1) =m<(p-1)/2. We take & as the kernel of {”. By (2.5), PER and
hence ® has an order prime to p. Then the principal blocks of @ and of
& = ®/® can be identified, see e.g. [3], Theorem 1. In particular, we see that
the number » remains the same if @ is replaced by . Now the results of
[1] II show that =M, a contradiction.

We may therefore assume that (4.1) for 1= 0 reads
(4.8) IR = eV w000 F - e e w1

Since #=3, we can choose i%j (mod #) in (4.2 b). Restrict the arguments to
N and express all characters of % by means of the £, 0, cf. (3C), (3.6).
Now (4.8) shows that @}’ will appear at least with the coefficient H in (4.2 b).

On the other hand, on account of (4.1), we have
;{(,'Mi}”l q? — E;A)E}x) + z nzu%)ué;)m;‘u)agﬁ)
a,r B,8

(A) (2 (M) 7 (a) A(\) ()
+e zua,r[‘fi 0r +51 Oy 1
o, r

* The assumption (II) is only used to eliminate the case that x}°>(1)=(p—1)/t§
(p—1)/3.
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where (a, 7) and (8, s) range over the pairs (q, #) withg=0, ... ,/—1and
#=0,1,...,mg—1. Again express all the characters on the right in accor-
dance with (3 C). It follows from (3D), (3E), (3 F) that the coefficient of
@, is equal to

A, (\) %T ()\) (X) d)\T AT ¥
Zzudruﬁs Aa Zu 7‘k +qu*

& rfys

where we set @}, = 0},.". Now (3.9) and (3.15) show that in the case ¢~ =1,

this quantity and hence H is at most equal to

(t+ ) f;‘[z uytofu P +2 fxf?‘Z Uy tofe.

In the case ¢ = — I, the second summand can be deleted. In either case
we set
(4.9) R=>ulytufo

Then our result shows that

(4.10a) HS(@#+1DR*+2AR  for P =1;
(4.10b) H=(t+1R? for M= —1.

Set #=7;"(1). Then (4.1) in conjunction with (3 A) and (3 B) yields

(4.11) n=e"mfr+ P ulyrefs = Vmfr + pR.

Suppose first that ¢*’ =1. If we put #/p = K, we have
=p/(K—R)/m=(t+1)(K—R)
and (4.10) becomes
H<(t+1D)(R*+2(K-R)R) < (t+ 1K™

Suppose then that €™ = —1. As remarked in (4 A), some #'} is positive and
hence
R=z7 /o,
n= — mfy+ prrfro > — mfs+ mitr fo.

Thus, mfy<n(—1)"". For n/p=K, by (4.11)
R<EQ1+(h-D™) =Kt/ (h-1) = 5 K.

This can be substituted in (4.10 b), We have now shown.
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(4 D) If ® satisfies the assumptions (1) and (XD, then

H<(t+1) 7% /D (for €M =1).
H< @+ D@/ (=D /) < 5 ¢+ Da/p (for ¢V = —1).

Here, n is the degree of the exceptional characters 13" .

§ 5. Proof of Theorem 1

TreorREM 1. Let ® be a group of order g=pg, where p is a prime and
where g, is an integer not divisible by p. Assume that the p-Sylow group B of
S is not nwormal in & and that & contains =3 conjugate classes of elements of
order p. If 1V of degree m is a faithful exceptional irreducible character of ®
(for the prime p), then

(5.1) P=1<w(w—-2%)/(#-2)

where w= (t+1)t.98/9° in the case &M =1 and w= ¢+1)- @/ E — 1)« (52/p%)

in the case €V = —1. Here ¢V and ¥

characters of the p-blocks B, and B.

are the signs belonging to the exceptional

Remark. The assumption that 7'* is faithful is not needed in the following
two cases: 1) if M, is not a homomorphic image of &. 2) if 7™ (1) >
(»—1/3.

Proof. We shall first make the additional assumption that M, : is not a
homomorpic image of 8. Then (4 D) applies. We give a lower estimate for
H. Form

S’ = v"VEZ%X&”(PV) 1 (PY).

It follows at once from (2.5) that

-1
—(a)

() (a)
af = Z Wa VW +vE-
v=0

On the other hand, we can use (4.2) to find SYy. The equation (2.6) implies
that
S C(PY) = ¢,

reg
Similarly, by (2.5)

lﬁ%X}o)(PV) = e(ova}o) = %oy,
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Since 4,; consists of constituents not in B,, a similar argument shows that
2 Aaﬁ(PV) =
vER
Since &’ =1 for 0=<i<a and " = — 1 for a<i<m, (4.2) implies

S(a),;;; = (0) Ehaﬁrﬂr + X+ mﬁ()‘)

where x< Z does not depend on a«, 8 and where 8% =1 or 0 according as to

whether or not a = 8(mod #).

Hence

(52) 2(')a+vt10('§)-‘i-)yt ‘0) Zhaﬂrﬂr + X+ mB(M

It follows from (2.7) that

TA—1 TA~1 N TA—=1 TA—-1
_ () — (
(5~3) NN = 2_; 24 Wi\ EWjppt = 20 E w,+utw,+)ut+»t
v= =0 v w=
If we set
TA—-1
N\
(5.4) Cijr = Z’o Ri, j+ut,r,
=

substitution of (5.2) into (5.3) yields
(5.5) 77 = € ZC,er + %+ m(?m

where 8} =1 or 0 according as to whether or not i=j(mod#). On account
of (4.7), we find

¢
(5.6) >\ Cijr = 1 H — 8.
r=1
We may now compare (5.5) and (2.10). Since 1, 7, ..., 7 are linearly

independent over Z and since their sum is —1, this yields
(5.7) e Cijy — Ta% = cijr.

In particular, (2.12) shows that

(5.8) Cupr = Corp = Crap.

It also follows from (5.7), (5.6) and (2.11) that

(5.9) ¢V H - hx=m,
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Since =3, we can choose i%j (mod ). We use (5.5) to express
i) 7j = (i) Wi
in two ways as linear combination of 71, 7, . . . , 7m. Comparing the coefficient
of 7; =7, we find
t t
SVCiir Crjj. — ¥ ) Ciiyrax — e OmCiij + vx + m
r=1 r=1
t t
= 'glcijfcfij' - E(o)'glncijrf)\x d 5(0) CUIm.
On account of (5.8) and (5.6), this becomes
t t
ZICiierjr“l' m+27x= E__Iucg'jr-
Since all C,;r are non negative,
t . t 2 .
m+20x= EC,-,-, = <'§ C,'j,.> = ',.')‘HZ.
On account of (5.9), this becomes
mt® + 20 H — m)t<t.H*
which can rewritten in the form
(5.10) (P-D(@t-2)=tHHHH—-2Y).

Now, (5.1) is a consequence of (4 D).

It remains to deal with the case that & contains a normal subgroup &
such that 8 =@/ =>~My,¢. Clearly, & then is the maximal normal subgroup
of & of an order prime to p. This implies that the principal p-blocks of &
and of @ coincide, cf. [3], Theorem 1. Since the p-Sylow subgroup of & is
self-centralizing, the natural homorphism of @ onto & maps B into ®/® and

we have B R. It is now clear that
(5.11) ® =<8B, M>

and that &P is a normal subgroup of index m in ©.
We assume now that X is a faithful character of @.

We now use induction with regard to m to prove that
(5.12) (p =1 (2 -2) Swo(wo—2)

with wy= (¢ + l)tmz/_;b’. This will imply (5.1). Since ¢=3, we have p=7. As
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B is not normal in @, it cannot be normal in K.

If m=1, then t=t=p—1. It will suffice to show #=p —1 since then
we> (p—1)(»p—2) and hence (5.12) will hold. If z<p—1, it follows from
[1] II, Theorem 1 and Corollary 2 that z= f, and that for the single non-

exceptional character ¢;" of By, we have ¢{"|G = 6,, while 7} is obtained from

¥ by multiplication with a linear character of $=~@®&/®. Thus, B belongs to
the kernel § of ¢{" and 9 cannot contain p-regular elements G =1 of @. Hence
$=P and we have PG, a contradiction.

Suppose then that m>1. Let s be a prime dividing » and set M* = M?,
G = <R, M.

Then &* is a normal subgroup of & of index s. Moreover, &* is of the same
structure as ® with » replaced by m*=m/s, i.e. with ¢ replaced by t*=ts.
In (4.2a), the ¢, ..., ¢, are the m linear characters of the cyclic group
®/8P of order m; @a=m. Since s of them have a kernel including &%, it
follows from (4.2 a) that X’|®* is reducible. Consequently, 7;*'|®* splits
into s irreducible characters of degree #*=#/s. The formulas (2.5) show
that some of these constituents belong to the block BX of &™* associated with
6,. If oF, tf have the same significance for BY as r,, £ have for B, clearly,
t¥<ry and £ <sth. It we set wy = (¢F+ 1) #™/p’, we have wy<w,. It is
now clear that the analogue of (5.12) for &* implies (5.12) and the proof of
Theorem 1 is complete.

CoroLLARY. In Theorem 1, we have

7> %t;”‘ﬁ“.

Proof. If we have w—2¢">2w, then "= —1, w<2 and (5.1) reads
p—1<8/(t—2). This is only possible for p=7, +=3. Since w<2 we have
1242 <98 and hence #<2. Then #=2. In this case, the result holds.

Assume then that w—-2¢<2w. By (5.1),

P=1<2w/(F—-2) L2+ 1) -2 B — D u'p

Here,
6p/7<p—1, 3(t+1)°<16(t—2)t, 2H=3®H 1)

and we obtain
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PP <63 tthn' <3'En'
and this yields the desired result.

Remark. If an irreducible character ¥ of & has defect 0, it vanishes for
p-singular elements. Thus, all values of ¥ lie in the field of the g,-th roots
of unity. This shows that the Corollary can be stated in the form given in
the Introduction.

§ 6. Proof of Theorem 2
TureoreM 2. Let & be a group of order g=pgy where p is a prime ani g
an integer not divisible by p. Assume that (1) the p-Sylow group B of & is not
normal in & and (2) that the number t of conjugate classes of elements of order
D is at least 3. If @ has a faithful irreducible character ) of degree n<p—1
then n=p— (p—1/t and

6.1) PEL—t+1.

Proof. Since Y has degree n<p-—1, it follows from [1] II, Corollary 2
that 7 is an exceptional character 7' of a p-block of defect 1. It is also

clear that we have one of the cases
Case 1. V=1

(6.22) LM =g
Case 2. M= -1

(6.2b) G N= -7+ o

where 4 is one of the values 0, ..., m\ — 1.

Suppose that  has a normal subgroup & for which /R =~M,:. As in
§5 we see that 8P is a normal subgroup of index m in & and that BCR.
It is also clear that the irreducible constituents of X|PB& lie in the =, blocks
B of P determined by the r, associates of #% . All irreducible characters
of Bf have the same degree #* and there is exactly one non-exceptional
character ¢** in BY. Since #*<p — 1, Corollary 2 of [1] II shows that P belongs
to the kernel of ¢"'*,  Again, the exceptional characters of B} are obtained
from the ¢"* by multiplication with the linear characters of PR/S=P. If

we form the character
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zZ=cw
W

of 8P, we see that an element K= & belongs to the kernel § of Z only if it
belongs to the kernel of Z}“, ie. if K=1. Since PcH, we have P<IPRK and
then B <@, a contradiction. Hence ® satisfies the hypothesis (I), (II) in §4,
and all results of §4 can be used.

We show next that the number H in (4.7) cannot vanish. Indeed, if
H=0, (5.6) shows that, for 7, j=1,2, ..., t with i=7, we have

Cijr=0, G Jj=12,...,0.

By (5.9), x= —m/t. Then (5.7) yields cij» = m/t for the same i, j, . It now
follows from (2.10) that

77, = —m/t (for 7% 7).
This is clearly impossible, since »;, 72, . . . , 7 are distinct and #=3. Hence
H=1.
It is now easy to see that the first case is impossible. Indeed, in this

case, R=0 by (4.9), while (4.10 a) shows that R=0.
Suppose then that we have Case 2. By (6.2 b)

n=2"(1) = —mfi+ pfircr = oufu(D ~ m,).
Since m\<m<(p—1)/3, the assumption # <p — 1 implies that v, = f, =1. Thus,
n=p—(p—-1)/t
It now follows from the results of §3 that
2B = mb, ¢1B =61
for all i and 5. Then (3.6) shows that @B =p6,. By (6.2b),
10| B = .

Since 1% was faithful, this implies that B is cyclic and that it belongs to the
center 3(®) of . Moreover, 17" is trivial on B. Then the formulas (2.5)
and (2.6) show that the irreducible constituents of Z{V7"| % belong to b. We
can therefore express XV%’|M as a linear combination of the ¢.” and the

. . = . . (0)
exceptional characters in &. Now &"Z}" contains the linear character ¢.”,

if and only if £ =¢"¢". Since ¢ is trivial on Bx B, this is so, if and only

if « =pB. Moreover, for a = 8, the character ¢, appears with multiplicity 1 in

= P} . AT (A .
WEXM. A similar argument shows that ¢ cannot occur in §'¢¢". Finally,
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MY =1. It now follows from (6.2 b) and (3.6) that
t—1
(6.3) IPTPIN= -1+ 05" + § =2+ + -+ -

where the dots on the right stand for exceptional characters in 4. On ac-

count of (3.6), this can be written in the form
t—-1
IPTVIN = =148 0 + g} E=2+0D00 + -

where the characters not written are again exceptional characters in b,.

We can apply the same method as in §4 and compare our formula with
(4.2) (restricted to M). Since H =0, it follows at once that in (4.8), only
terms 0, with =0 can appear with coefficients %’ =0. Moreover, H<t—1.

Actually, our method shows that we can have H=1%-—1 only if (4.8) has

the form
(6.4 1910 = V8 + 0.

We can then also compare the multiplicity of ¢ in (6.3) for i=7 and in
(4.2 a), restricted to M. On account of (6.4) and (4.7) this yields

=1+ H—€",

Thus, if H=¢—1, we must have ¢”=1. Then 7 (1) =m+p. Since £V ™,
we have 2x0. It follows that B=1 and hence that 3(®) 1. Since ¢ =1,
(6.1) is an immediate consequence of (5.10).

On the other hand, if H<t—2, (5.10) yields

pP-1=P@—-2)+2t=F-28+2t<F -t
This completes the proof of Theorem 2. We also have

TueoreM 2%, If & has center 1, the inequality (6.1) in Theorem 2 can be
replaced by
p<t—2£+2¢+1.

The same is true, if the degrees of the exceptional characters in the principal p-

block of & are different from p+ (p —1)/t.
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