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Abstract

We describe a contact metric manifold whose Reeb vector field belongs to the (κ, µ)-nullity distribution
as a bi-Legendrian manifold and we study its canonical bi-Legendrian structure. Then we characterize
contact metric (κ, µ)-spaces in terms of a canonical connection which can be naturally defined on them.
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1. Introduction

Contact metric (κ, µ)-spaces, introduced in [2] by Blair et al., are those contact metric
manifolds (M, φ, ξ, η, g) for which the Reeb vector field ξ belongs to the (κ, µ)-
nullity distribution, that is, satisfies, for all vector fields V and W on M ,

RV W ξ = κ(η(W )V − η(V )W ) + µ(η(W )hV − η(V )hW ), (1.1)

for some real numbers κ and µ, where 2h is the Lie derivative of φ in the direction
of ξ . This definition can be regarded as a generalization both of the Sasakian
condition RV W ξ = η(W )V − η(V )W and of those contact metric manifolds satisfying
RV W ξ = 0 which were studied by Blair in [1].

Recently contact metric (κ, µ)-spaces have been studied by various authors (see,
for example, [4–6, 11, 14]) and several important properties of these manifolds have
been discovered. In fact there are many reasons for studying (κ, µ)-spaces. The
first is that, in the non-Sasakian case (that is, for κ 6= 1), condition (1.1) determines
the curvature completely. Moreover, while the values of κ and µ change, the form
of (1.1) is invariant under D-homothetic deformations. Finally, there are nontrivial
examples of these manifolds, the most important being the unit tangent sphere bundle
of a Riemannian manifold of constant sectional curvature with the usual contact metric
structure.
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A complete classification of contact metric (κ, µ)-spaces has been given in [5] by
Boeckx, who proved also that any non-Sasakian contact metric (κ, µ)-space is locally
homogeneous and strongly φ-symmetric.

One of the peculiarities of these manifolds is that they give rise to three mutually
orthogonal distributions Dλ, D−λ and Rξ , corresponding to the eigenspaces of the
operator h. In particular, Dλ and D−λ define two transverse Legendrian foliations of
M so that these manifolds are endowed with a bi-Legendrian structure.

In the same period that contact metric (κ, µ)-spaces were introduced, the theory of
Legendrian foliations was developed by Pang, Libermann and Jayne (see [13, 15, 16]),
so it is tempting to use the techniques and language of Legendrian foliations for the
study of contact metric (κ, µ)-spaces and to begin the investigation of the interactions
between these two areas of the contact geometry. This is what we set out to do in
this paper.

The paper is organized as follows. After some preliminaries on contact metric
manifolds and Legendrian foliations, in Section 3 we study the Legendrian foliations
canonically defined in any contact metric (κ, µ)-space. We find, for both the
foliations, an explicit formula of the invariant 5 introduced by Pang for classifying
Legendrian foliations (see [16]) and we see that the Legendrian foliations in question
are, according to this classification, either nondegenerate or flat. Then we relate these
invariants to the invariant IM used by Boeckx in [5] to classify contact metric (κ, µ)-
spaces. In Section 4 we attach to any contact metric (κ, µ)-space a linear connection
in a canonical way. We study the properties of this connection and, using it, we give an
interpretation of the notion of contact metric (κ, µ)-space in terms of bi-Legendrian
structures. In particular, we prove the following characterization of contact metric
(κ, µ)-spaces.

THEOREM 1.1. A contact metric manifold (M, φ, ξ, η, g) is a contact metric (κ, µ)-
space if and only if M admits an orthogonal bi-Legendrian structure (F , G) such
that the corresponding bi-Legendrian connection ∇ satisfies ∇φ = 0 and ∇h = 0.
Furthermore, the bi-Legendrian structure (F , G) coincides with that determined by
the eigenspaces of h.

This theorem should be compared with the well-known results obtained by Tanaka
[17] and, independently, Webster [22]. They proved that any strongly pseudo-convex
CR-manifold admits a unique linear connection ∇̃ such that the tensors φ, η, g are all
∇̃-parallel and whose torsion satisfies T̃ (Z , Z ′) = 28(Z , Z ′)ξ for all Z , Z ′

∈ 0(D)

and T̃ (ξ, φV ) = −φT̃ (ξ, V ) for all V ∈ 0(T M). In view of this remark and the fact
that any contact metric (κ, µ)-space is a strongly pseudo-convex CR-manifold, one
can see that the connection mentioned in Theorem 1.1 plays the same role for contact
metric (κ, µ)-spaces that the Tanaka–Webster connection has for CR-manifolds. As
we shall see, the connection ∇ uniquely determines a contact metric (κ, µ)-space
modulo D-homothetic deformations and it turns out to be very useful in the study
of this kind of contact metric manifolds.
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2. Preliminaries

2.1. Contact manifolds An almost contact metric manifold is a (2n + 1)-
dimensional Riemannian manifold (M, g) which admits a tensor field φ of type (1, 1),
a global 1-form η and a global vector field ξ , called a Reeb vector field, satisfying

η(ξ) = 1, φ2V = −V + η(V )ξ, g(φV, φW ) = g(V, W ) − η(V )η(W ),

(2.1)
for all vector fields V and W on M . Given an almost contact metric manifold,
a 2-form 8, called the fundamental 2-form of the structure, can be defined by
8(V, W ) = g(V, φW ). Then we say that (M, φ, ξ, η, g) is a contact metric manifold
if the additional property dη = 8 holds. From (2.1) it can be proved (see [3]) that:

(i) φξ = 0, η ◦ φ = 0;
(ii) ∇ξφ = 0 and ∇ξ ξ = 0;
(iii) φ|D is an isomorphism.

Here ∇ denotes the Levi-Civita connection and D = ker(η) is the 2n-dimensional
distribution orthogonal to ξ and called the contact distribution. It is also easy to prove
that, for any X ∈ 0(D), the bracket [X, ξ ] still belongs to D.

In any contact metric manifold the 1-form η satisfies the relation

η ∧ (dη)n
6= 0, (2.2)

everywhere on M . Any (2n + 1)-dimensional smooth manifold which carries a global
1-form satisfying (2.2) is called a contact manifold. Thus any contact metric manifold
is a contact manifold. Conversely, it is well known that any contact manifold admits
a compatible contact metric structure (φ, ξ, η, g). It should be remarked that (2.2)
implies that the contact distribution D is never integrable.

Given a contact metric manifold, we can define a tensor field h by h = (1/2)Lξφ,
L denoting the Lie differentiation. It can be shown (see [3]) that h is a trace-free,
symmetric operator satisfying hξ = 0, φh = −hφ and

∇V ξ = −φhV − φV, (2.3)

for all V ∈ 0(T M). Moreover, ξ is Killing if and only if h vanishes identically; in this
case we say that (M, φ, ξ, η, g) is a K -contact manifold.

On a contact metric manifold M an almost complex structure J on the product
manifold M × R can be defined by setting J (V, f d/dt) = (φV − f ξ, η(V ) d/dt),
where V is a vector field tangent to M and f a function on M × R. If the almost
complex structure J is integrable then (M, φ, ξ, η, g) is said to be Sasakian. It is well
known that each of the following conditions characterizes Sasakian manifolds:

(∇V φ)W = g(V, W )ξ − η(W )V, (2.4)

RV W ξ = η(W )V − η(V )W, (2.5)
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for all vector fields V and W on M . A generalization of condition (2.5) leads to the
notion of the (κ, µ)-manifold. If the curvature tensor field of a contact metric manifold
satisfies (1.1) for some real numbers κ and µ we say that ξ belongs to the (κ, µ)-nullity
distribution or, simply, that (M, φ, ξ, η, g) is a contact metric (κ, µ)-space. This type
of contact metric manifolds were introduced and studied in depth in [2]. Among other
things, the authors proved the following results.

THEOREM 2.1 [2]. Let (M, φ, ξ, η, g) be a contact metric manifold with ξ belonging
to the (κ, µ)-nullity distribution. Then κ ≤ 1. Moreover, if κ = 1 then h = 0 and
(M, φ, ξ, η, g) is a Sasakian manifold; if κ < 1, the contact metric structure is not
Sasakian and M admits three mutually orthogonal integrable distributions D0 = Rξ ,
Dλ and D−λ corresponding to the eigenspaces of h, where λ =

√
1 − κ .

THEOREM 2.2 [2]. Let (M, φ, ξ, η, g) be a contact metric manifold with ξ belonging
to the (κ, µ)-nullity distribution. Then the following relations hold, for any X, Y
∈ 0(T M):

(∇Xφ)Y = g(X, Y + hY )ξ − η(Y ) (X + h X),

(∇X h)Y = ((1 − κ)g(X, φY ) + g(X, φhY ))ξ + η(Y ) h(φX + φh X) − µφhY.

Blair et al. proved also that the (κ, µ)-nullity condition remains unchanged under
D-homothetic deformations. The concept of D-homothetic deformation for a contact
metric manifold (M, φ, ξ, η, g) was introduced by Tanno in [18] and then intensively
studied by many other authors. We recall that, given a real positive number a, by a
D-homothetic deformation of constant a we mean a change of the structure tensors in
the following way:

φ̃ = φ, η̃ = aη, ξ̃ =
1
a
ξ, g̃ = ag + a(a − 1)η ⊗ η. (2.6)

In [2] the authors proved that if M is a contact metric manifold whose Reeb vector
field belongs to the (κ, µ)-nullity distibution, then for the contact metric manifold
(M, φ̃, ξ̃ , η̃, g̃) the same property holds. Specifically, ξ̃ belongs to the (̃κ, µ̃)-nullity
distribution where

κ̃ =
κ + a2

− 1

a2 , µ̃ =
µ + 2a − 2

a
.

2.2. Legendrian foliations A Legendrian distribution on a contact manifold
(M2n+1, η) is defined by an n-dimensional subbundle L of the contact distribution
such that dη(X, X ′) = 0 for all X, X ′

∈ 0(L). When L is integrable, it defines a
Legendrian foliation of (M2n+1, η). Legendrian foliations have been extensively
investigated in recent years from various points of view (see, for example, [8, 13, 15,
16]). In particular, Pang provided a classification of Legendrian foliations by means
of a bilinear symmetric form 5F on the tangent bundle of the foliation, defined by
5F (X, X ′) = −(LXLX ′η) (ξ) = −η([X ′, [X, ξ ]]). He called a Legendrian foliation
F nondegenerate, degenerate or flat depending respectively on whether the bilinear
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form 5F is nondegenerate, degenerate or vanishes identically. In terms of an
associated metric g, 5F is given by

5F (X, X ′) = 2g([ξ, X ], φX ′). (2.7)

The above formula provides a geometrical interpretation of this classification.

LEMMA 2.3 [13]. Let (M, φ, ξ, η, g) be a contact metric manifold and let F be a
foliation on it. Then:

(i) F is flat if and only if [ξ, X ] ∈ 0(TF) for all X ∈ 0(TF);
(ii) F is degenerate if and only if there exist X ∈ 0(TF) such that [ξ, X ] ∈ 0(TF);
(iii) F is nondegenerate if and only if [ξ, X ] /∈ 0(TF) for all X ∈ 0(TF).

Given a compatible contact metric structure (φ, ξ, η, g) and a Legendrian
distribution L on M , we may consider the distribution Q = φL . It can be proved
(see [13]) that Q is a Legendrian distribution on M which in general is not integrable,
even if L is; it is called the conjugate Legendrian distribution of L , and the tangent
bundle of M splits as the orthogonal sum T M = L ⊕ Q ⊕ Rξ . When both L and Q
are integrable, they define two orthogonal Legendrian foliations F and G on M , and
the pair (F , G) is an example of a bi-Legendrian structure on M . More generally, a
bi-Legendrian structure is a pair of two complementary, not necessarily orthogonal,
Legendrian foliations on M .

To any contact manifold (M2n+1, η) endowed with a pair of complementary
Legendrian distributions (L , Q), it was attached [7] a linear connection ∇ uniquely
determined by the following properties:

(i) ∇L ⊂ L , ∇Q ⊂ Q, ∇(Rξ) ⊂ Rξ ;

(ii) ∇dη = 0;

(iii) T (X, Y ) = 2dη(X, Y )ξ, for all X ∈ 0(L), Y ∈ 0(Q),

T (V, ξ) = [ξ, VL ]Q + [ξ, VQ]L , for all V ∈ 0(T M).

(2.8)

Here T denotes the torsion tensor of ∇ and VL and VQ the projections of V
onto the subbundles L and Q of T M , respectively. Such a connection is called
the bi-Legendrian connection associated with the pair (L , Q) and it is defined as
follows (see [7]). For all V ∈ 0(T M), X ∈ 0(L) and Y ∈ 0(Q), ∇V X := H(VL , X)L
+ [VQ, X ]L + [VRξ , X ]L , ∇V Y := H(VQ, Y )Q + [VL , Y ]Q + [VRξ , Y ]Q and ∇ξ

= 0, where H denotes the operator such that, for all V, W ∈ 0(T M), H(V, W ) is
the unique section ofD satisfying iH(V,W )dη|D = (LV iW dη)|D. Further properties of
this connection are gathered together in the following proposition.

PROPOSITION 2.4 [7]. Let (M, η) be a contact manifold endowed with two
complementary Legendrian distributions L and Q and let ∇ denote the corresponding
bi-Legendrian connection. Then the 1-form η and the vector field ξ are ∇-parallel
and the torsion tensor field satisfies T (X, X ′) = −[X, X ′

]Q for all X, X ′
∈ 0(L) and

T (Y, Y ′) = −[Y, Y ′
]L for all Y, Y ′

∈ 0(Q).
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Now consider a contact metric manifold (M, φ, ξ, η, g) endowed with two
complementary Legendrian distributions L and Q. The definition of the corresponding
bi-Legendrian connection does not involve the compatible metric g; however, it makes
sense to find conditions which ensure that ∇ is a metric connection at least when Q is
orthogonal to L . This problem was solved in [9] where the author proves the following
result.

PROPOSITION 2.5. Let (M, φ, ξ, η, g) be a contact metric manifold and L be a
Legendrian distribution on M. Let Q = φL be the conjugate Legendrian distribution
of L and ∇ the associated bi-Legendrian connection. Then the following statements
are equivalent:

(i) ∇g = 0;
(ii) ∇φ = 0;
(iii) g is a bundle-like metric with respect both to the distribution L ⊕ Rξ and to

Q ⊕ Rξ ;
(iv) ∇X X ′

= −(φ[X, φX ′
])L for all X, X ′

∈ 0(L), ∇Y Y ′
= −(φ[Y, φY ′

])Q for all
Y, Y ′

∈ 0(Q) and the operator h maps the subbundle L onto L and the
subbundle Q onto Q.

Furthermore, assuming that L and Q are integrable, (i)–(iv) are equivalent to the total
geodesicity of the Legendrian foliations defined by L and Q.

By a bi-Legendrian manifold we mean a contact manifold endowed with two
transversal Legendrian foliations. In particular, in this paper we deal with contact
metric manifolds foliated by two mutually orthogonal Legendrian foliations. In this
regard, it will be useful to prove the following lemma, which states essentially that in
a bi-Legendrian manifold the operator h is deeply linked to the given bi-Legendrian
structure. This is the starting point for our work.

LEMMA 2.6. Let F and G be two mutually orthogonal Legendrian foliations on the
contact metric manifold (M, φ, ξ, η, g). Then, for all X, X ′

∈ 0(TF),

5F (X, X ′) − 5G(φX, φX ′) = 4g(h X, X ′). (2.9)

PROOF. By the orthogonality betweenF and G, φ(TF) = TG. Using (2.7), therefore,

5F (X, X ′) − 5G(φX, φX ′) = 2g([ξ, X ], φX ′) − 2g([ξ, φX ], φ2 X ′)

= 2g([ξ, φX ], X ′) − 2g(φ[ξ, X ], X ′)

= 4g(h X, X ′). 2

COROLLARY 2.7. If M is K-contact thenF and G belong to the same class according
to Pang’s classification (see above).

COROLLARY 2.8. If F and G are both flat then M is K-contact.
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3. On the bi-Legendrian structure associated with a contact metric (κ, µ)-space

Let (M, φ, ξ, η, g) be a contact metric manifold such that ξ belongs to the (κ, µ)-
nullity distribution. By Theorem 2.1 the orthogonal distributions Dλ and D−λ defined
by the eigenspaces of h are involutive and define on M two orthogonal Legendrian
foliations which we denote by Fλ and F−λ, respectively. In this section we begin the
study of the bi-Legendrian manifold (M,Fλ,F−λ).

PROPOSITION 3.1. Let (M, φ, ξ, η, g) be a contact metric (κ, µ)-space which is not
K-contact. Then the Legendrian foliations Fλ and F−λ are either nondegenerate
or flat. Specifically, Fλ (F−λ) is flat if and only if κ + µλ − (λ + 1)2

= 0 (κ − µλ

− (λ − 1)2
= 0), and nondegenerate otherwise.

PROOF. Let X ∈ 0(Dλ). Then, by (1.1),

RXξ ξ = κ X + µh X = (κ + µλ)X.

On the other hand, using (2.3),

RXξ ξ = −∇ξ∇Xξ − ∇[X,ξ ]ξ

= ∇ξφX + λ∇ξφX + φ[X, ξ ] + φh[X, ξ ]

= X − λX − [φX, ξ ] + λX − λ2 X − λ[φX, ξ ] + φ[X, ξ ] + φh[X, ξ ]

= (λ + 1)2 X − λφ[X, ξ ] + φh[X, ξ ],

so that
φh[X, ξ ] = λφ[X, ξ ] + (κ + µλ − (λ + 1)2)X.

Hence, applying φ and taking into account that [X, ξ ] ∈ 0(D),

−h[X, ξ ] = −λ[X, ξ ] + (κ + µλ − (λ + 1)2)φX.

Decomposing [X, ξ ] in the directions of Dλ and D−λ gives

−h([X, ξ ]Dλ
+ [X, ξ ]D−λ

) = −λ[X, ξ ] + (κ + µλ − (λ + 1)2)φX,

from which it follows that

2λ[X, ξ ]D−λ
= (κ + µλ − (λ + 1)2)φX, (3.1)

and we conclude, by Lemma 2.3, that Fλ is either flat or nondegenerate. The first
case occurs if and only if κ + µλ − (λ + 1)2

= 0 and the second if and only if κ + µλ

− (λ + 1)2
6= 0. In a similar way one can prove the analogous results for F−λ. 2

REMARK 3.1. From Corollary 2.7 it follows that the bi-Legendrian structure
(Fλ,F−λ) is flat if and only if κ = 1 and hence M is Sasakian. This can also be
proved directly by observing that, by Proposition 3.1, the functions

f (κ, µ) = κ + µλ − λ(λ + 1)2
= 2(κ − 1) + (µ − 2)

√
1 − κ
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and
g(κ, µ) = κ − µλ − λ(λ − 1)2

= 2(κ − 1) + (2 − µ)
√

1 − κ

both vanish if and only if κ = 1.

Proposition 3.1 extends and improves the results obtained in [12] for contact metric
manifolds for which ξ belongs to the κ-nullity distribution (see [19]), that is, the
Levi-Civita connection of g satisfies RV W ξ = κ(η(W )V − η(V )W ). Jayne proved
in [12] that the bi-Legendrian structure associated with such contact metric manifolds
is nondegenerate; we recall that in his proof he used the fact that the nondegenerate
plane sections containing ξ have constant sectional curvature and this last property
does not hold for contact metric (κ, µ)-spaces, as proved in [2].

We remark also that an explicit expression for the invariants 5Fλ
and 5F−λ

of
the Legendrian foliations Fλ and F−λ follows from the proof of Proposition 3.1.
Specifically, from (3.1) and (2.7) one can prove the following proposition.

PROPOSITION 3.2. Let (M, φ, ξ, η, g) be a contact metric (κ, µ)-space which is not
K-contact. Then the canonical invariants associated with the Legendrian foliationsFλ

and F−λ are given by

5Fλ
=

(λ + 1)2
− κ − µλ

λ
g|Fλ×Fλ

and (3.2)

5F−λ
=

−(λ − 1)2
+ κ − µλ

λ
g|F−λ×F−λ

,

respectively.

It should be remarked that the pair (5Fλ
, 5F−λ

) is an invariant of the contact
metric (κ, µ)-space in question up to D-homothetic deformations. Indeed, let
(φ̃, ξ̃ , η̃, g̃) be a D-homothetic deformation of (φ, ξ, η, g). Then, first of all,
since h̃ = (1/2)Lξ̃ φ̃ = (1/a)h (see [2]), the eigenvalues of h̃ are ±̃λ = ±(1/a)λ, in
addition to 0. It follows that the eigenspaces Dλ̃ and D

−̃λ coincide with Dλ and
D−λ, respectively. Next, for all X, X ′

∈ 0(Dλ̃) = 0(Dλ), the equalities 5Fλ̃
(X, X ′)

= −η̃([X ′, [X, ξ̃ ]]) = −aη((1/a)[X ′, [X, ξ ]]) = 5Fλ
(X, X ′) hold. Analogously one

can prove that 5F
−̃λ

= 5F−λ
. Moreover, it should be observed that the invariant 5F

of any Legendrian foliation F depends only on the Legendrian foliation and on the
contact form η and not on the associated metric g. In particular, the function

5Fλ
(X, X ′) + 5F−λ

(φX, φX ′)

5Fλ
(X, X ′) − 5F−λ

(φX, φX ′)
, (3.3)

for all X, X ′
∈ 0(Dλ) such that 5Fλ

(X, X ′) 6= 0 (or, equivalently, g(X, X ′) 6= 0), is an
invariant of the bi-Legendrian manifold M up toD-homothetic deformations and does
not depend on the vector fields X, X ′

∈ 0(Dλ). Indeed, a straightforward computation,
taking into account Lemma 2.6, (3.2) and (2.1), shows that (3.3) is a constant,

5Fλ
(X, X ′) + 5F−λ

(φX, φX ′)

5Fλ
(X, X ′) − 5F−λ

(φX, φX ′)
=

1 − (µ/2)

4
√

1 − κ
=

1
4

IM ,
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where IM is the invariant introduced by Boeckx in [5] for classifying contact metric
(κ, µ)-spaces. In particular, if Fλ (F−λ) is flat then IM attains the value 4 (−4).
Moreover, we can also give an explicit formula for the constant µ in terms of
Legendrian foliations

µ =
5Fλ

(X, X ′)

g(h X, X ′)
=

5Fλ
(X, X ′)

λg(X, X ′)
, (3.4)

for all X, X ′
∈ 0(Dλ) such that g(X, X ′) 6= 0.

4. An interpretation of contact metric (κ, µ)-spaces

Let (M, φ, ξ, η, g) be a contact metric (κ, µ)-space. We can attach to the
bi-Legendrian structure (Fλ,F−λ) the corresponding bi-Legendrian connection ∇,
that is, the unique linear connection on M such that properties (2.8) hold. Furthermore,
we have the following result.

PROPOSITION 4.1. Let (M, φ, ξ, η, g) be a contact metric (κ, µ)-space and let ∇ be
the bi-Legendrian connection associated with M. Then the tensors φ, h and g are
∇-parallel. Moreover, for the torsion tensor of ∇, one has T (Z , Z ′) = 28(Z , Z ′)ξ

for all Z , Z ′
∈ 0(D).

PROOF. A well-known property of Fλ and F−λ is that they are totally geodesic
foliations (see [2]). Thus, applying Proposition 2.5 gives ∇g = 0 and ∇φ = 0. Next,
for all V ∈ 0(T M), X ∈ 0(D+), Y ∈ 0(D−),

(∇V h)X = ∇V h X − h∇V X = ∇V (λX) − λ∇V X = 0,

(∇V h)Y = ∇V hY − h∇V Y = ∇V (−λY ) + λ∇V Y = 0,

since ∇ preserves Fλ and F−λ. Finally, for any f ∈ C∞(M),

(∇V h) f ξ = ∇V (h( f ξ)) − h(∇V ( f ξ)) = −h( f ∇V ξ) − V ( f )hξ = 0,

since ∇ξ = 0 and hξ = 0. It remains to prove the property for the torsion, but this
follows easily from Proposition 2.4 and from the integrability of Dλ and D−λ. 2

COROLLARY 4.2. With the assumptions and notation of Proposition 4.1, the
connection ∇ is related to the Levi-Civita connection of (M, φ, ξ, η, g) by the
following formula, for all X, Y ∈ 0(D):

∇X Y = ∇X Y − η(∇X Y )ξ. (4.1)

PROOF. Since ∇ is torsion-free along the leaves of the foliations Fλ and F−λ, and is
metric by Proposition 4.1, it coincides with the Levi-Civita connection along the leaves
of Fλ and F−λ. Hence (4.1) holds for all X, Y ∈ 0(Dλ) or X , Y ∈ 0(D−λ) because
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Fλ andF−λ are totally geodesic foliations. Now let X ∈ 0(Dλ) and Y ∈ 0(D−λ). It is
well known (see [2]) that ∇X Y ∈ 0(D−λ ⊕ Rξ). For all Y ′

∈ 0(D−λ), using ∇g = 0,

2g(∇X Y, Y ′) = X (g(Y, Y ′)) + Y (g(X, Y ′)) − Y ′(g(X, Y )) + g([X, Y ], Y ′)

+ g([Y ′, X ], Y ) − g([Y, Y ′
], X)

= X (g(Y, Y ′)) + g([X, Y ], Y ′) + g([Y ′, X ], Y )

= X (g(Y, Y ′)) − g([X, Y ′
]D−λ

, Y ) + g([X, Y ]D−λ
, Y ′)

= 2g([X, Y ]D−λ
, Y ′)

= 2g(∇X Y, Y ′),

from which it follows that ∇X Y = (∇X Y )D−λ
and hence (4.1). Analogously one can

prove (4.1) for X ∈ 0(D−λ) and Y ∈ 0(Dλ). 2

Now we examine an ‘inverse’ problem, in a certain sense. We start with a
bi-Legendrian structure on an arbitrary contact metric manifold M and ask whether M
is a contact metric (κ, µ)-space for some κ, µ ∈ R.

THEOREM 4.3. Let (M, φ, ξ, η, g) be a contact metric manifold, non-K -contact,
endowed with two orthogonal Legendrian foliations F and G, and suppose
that the bi-Legendrian connection corresponding to (F , G) satisfies ∇φ = 0 and
∇h = 0. Then (M, φ, ξ, η, g) is a contact metric (κ, µ)-space. Furthermore, the
bi-Legendrian structure (F , G) coincides with that determined by the eigenspaces
of h.

PROOF. Firstly, we prove that under our assumptions (4.1) holds. Since, by
Proposition 2.5, ∇g = 0 and T (X, X ′) = 0, T (Y, Y ′) = 0 for all X, X ′

∈ 0(TF) and
Y, Y ′

∈ 0(TG), it follows immediately that the bi-Legendrian connection and the Levi-
Civita connection coincide along the leaves ofF and G. Moreover, for all X ∈ 0(TF)

and Y ∈ 0(TG), ∇X Y ∈ 0(TG ⊕ Rξ) because, for all X ′
∈ 0(TF),

g(∇X Y, X ′) = X (g(Y, X ′)) − g(Y, ∇X X ′) = 0,

since F , as well as G, is totally geodesic by Proposition 2.5. Then one can argue as in
the proof of Corollary 4.2 and prove that

∇Z Z ′
= ∇Z Z ′

+ η(∇Z Z ′)ξ, (4.2)

for all Z , Z ′
∈ 0(D). Now for all X, Y, Z ∈ 0(D), applying (4.2),

g((∇X h)Y, Z) = g(∇X hY − h∇X Y, Z)

= g(∇X hY + η(∇X hY )ξ − h∇X Y − η(∇X Y )hξ, Z)

= g((∇X h)Y, Z) + η(∇X hY )η(Z)

= g((∇X h)Y, Z) = 0,

since, by assumption, ∇h = 0. Thus the tensor field h is η-parallel and so, by
[6, Theorem 4], (M, φ, ξ, η, g) is a contact metric (κ, µ)-space. To prove the last part
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of the theorem, suppose for the sake of argument that F does not coincide with both
Fλ andF−λ. Let X be a vector field tangent toF and decompose it as X = X+ + X−,
with X+ ∈ 0(Dλ) and X− ∈ 0(D−λ). Then h X = h(X+) + h(X−) = λX+ − λX−

= λ(X+ − X−), from which, since by Proposition 2.5 h preserves F , it follows that
X+ − X− ∈ 0(TF). On the other hand, X+ + X− = X ∈ 0(TF), hence X+ and X−

are both tangent to F , and this is a contradiction. 2

From Theorem 4.3 we get the following characterization of contact metric (κ, µ)-
spaces. Here, in an abuse of terminology, we call any n-dimensional subbundle
L of the distribution D = ker(η) such that dη(X, X ′) = 0 for all X, X ′

∈ 0(L) a
Legendrian distribution of an almost contact manifold, and, as in contact metric
geometry, define 2h as the Lie differentiation of the tensor φ along the Reeb vector
field ξ .

THEOREM 4.4. Let (M, φ, ξ, η, g) be an almost contact metric manifold with ξ non-
Killing. Then (M, φ, ξ, η, g) is a contact metric (κ, µ)-space if and only if it admits
two orthogonal conjugate Legendrian distributions L and Q and a linear connection
∇̃ satisfying the following properties:

(i) ∇̃L ⊂ L, ∇̃Q ⊂ Q;
(ii) ∇̃η = 0, ∇̃dη = 0, ∇̃g = 0, ∇̃h = 0;
(iii) T̃ (Z , Z ′) = 28(Z , Z ′)ξ for all Z , Z ′

∈ 0(D),
T̃ (V, ξ) = [ξ, VL ]Q + [ξ, VQ]L for all V ∈ 0(T M),

where T̃ denotes the torsion tensor field of ∇̃. Furthermore, ∇̃ is uniquely determined,
and L and Q are integrable and coincide with the eigenspaces of the operator h.

PROOF. The proof is rather obvious in one direction: it is sufficient to take as ∇̃ the
bi-Legendrian connection associated with the bi-Legendrian structure defined by the
eigenspaces of h. We now prove the converse. Note that by (ii) it follows also that ξ

is parallel with respect to ∇̃, since, for any V ∈ 0(T M), (∇̃V η)ξ = −η(∇̃V ξ) = 0, so
∇̃V ξ ∈ 0(D). On the other hand, for any Z ∈ 0(D), since ∇̃ is a metric connection
and preserves the subbundle D = L ⊕ Q,

g(∇̃V ξ, Z) = V (g(ξ, Z)) − g(ξ, ∇̃V Z) = 0,

from which ∇̃V ξ is also orthogonal to D and hence vanishes. Now we can prove
the result. We show first that dη = 8, so M is a contact metric manifold. For
any X, X ′

∈ 0(L) and Y, Y ′
∈ 0(Q), dη(X, X ′) = 0 = g(X, φX ′) and dη(Y, Y ′) = 0

= g(Y, φY ′). Moreover,

28(X, Y )ξ = T̃ (X, Y ) = ∇̃X Y − ∇̃Y X − [X, Y ],

from which

28(X, Y ) = g(∇̃X Y, ξ) − g(∇̃Y X, ξ) − g([X, Y ], ξ). (4.3)
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Now g(∇̃X Y, ξ) = X (g(Y, ξ)) − g(Y, ∇̃Xξ) = 0 and, analogously, g(∇̃Y X, ξ) = 0,
so that (4.3) becomes

28(X, Y ) = −η([X, Y ]),

from which it follows that dη(X, Y ) = 8(X, Y ). To conclude that (M, φ, ξ, η, g)

is a contact metric manifold it remains to check that dη(Z , ξ) = 8(Z , ξ) for any
Z ∈ 0(D). Indeed, dη(Z , ξ) = −(1/2)η([Z , ξ ]) = 0 = 8(Z , ξ) since

[Z , ξ ] = ∇̃Zξ − ∇̃ξ Z − T̃ (Z , ξ) = −∇̃ξ Z − [ξ, ZL ]Q − [ξ, Z Q]L ∈ 0(D),

because of (i). Therefore (M, φ, ξ, η, g) is a contact metric manifold endowed with
two complementary (in particular, orthogonal) Legendrian distributions L and Q,
and since ∇̃ξ = 0 the connection ∇̃ coincides with the bi-Legendrian connection ∇

associated with (L , Q). This fact and (iii) imply the integrability of L and Q. Indeed,
for any X, X ′

∈ 0(L),

[X, X ′
]Q = −T (X, X ′) = −T̃ (X, X ′) = −2dη(X, X ′)ξ = 0

and
g([X, X ′

], ξ) = η([X, X ′
]) = −2dη(X, X ′) = 0,

hence [X, X ′
] ∈ 0(L), and in a similar manner one can prove the integrability of Q.

Thus L and Q define two orthogonal Legendrian foliations on M and now the result
follows from Theorem 4.3. 2

The connection ∇̃ is, from certain points of view, an ‘invariant’ of the contact metric
(κ, µ)-space moduloD-homothetic deformations. Indeed, a direct computation leads
to the following result.

PROPOSITION 4.5. The bi-Legendrian connection associated with a contact metric
(κ, µ)-space remains unchanged under a D-homothetic deformation.

The connection stated in Theorem 4.4 should be compared to the Tanaka–Webster
connection of a nondegenerate integrable CR-manifold (see [17, 22]) and to the
generalized Tanaka–Webster connection introduced by Tanno in [20]. This can be
seen in the following theorem, where we prove, using Theorem 4.4, the already quoted
result that any contact metric (κ, µ)-space is a strongly pseudo-convex CR-manifold.

COROLLARY 4.6. Any contact metric (κ, µ)-space is a strongly pseudo-convex CR-
manifold.

PROOF. We define a connection on M as follows. Put

∇̂V W =

{
∇V W if V ∈ 0(D),
−φhW + [ξ, W ] if V = ξ .

Then it easy to check that ∇̂ coincides with the Tanaka–Webster connection of M and
so we get the assertion. 2
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The above characterization may be also a tool for proving properties on (κ, µ)-
spaces. As an application we show in a very simple way that an invariant submanifold
of a contact metric metric (κ, µ)-space, that is, a submanifold N such that φTp N
⊂ Tp N for all p ∈ N , is in turn a contact metric (κ, µ)-space (see [21]).

COROLLARY 4.7. Any invariant submanifold of a contact metric (κ, µ)-space is in
turn a (κ, µ)-space.

PROOF. It is well known (see [3]) that an invariant submanifold of a contact metric
manifold inherits a contact metric structure by restriction. Now let N 2m+1 be
an invariant submanifold of M2n+1 and consider the distribution on N given by
Lx := Tx N ∩Dλx and Qx := Tx N ∩D−λx for all x ∈ N . It is easy to check that L
and Q define two mutually orthogonal Legendrian foliations of N 2m+1 and that the
bi-Legendrian connection corresponding to (L , Q) is just the connection induced on N
by the bi-Legendrian connection associated with (Dλ,D−λ). The result now follows
from Theorem 4.4. 2

We conclude by showing that the assumption in Theorem 4.4 that ξ must be non-
Killing is essential. This can be seen in the following example.

EXAMPLE 4.1. Consider the sphere

S3
= {(x1, x2, x3, x4) ∈ R4

: x2
1 + x2

2 + x2
3 + x2

4 = 1}

with the following Sasakian structure:

η = x3dx1 + x4dx2 − x1dx3 − x2dx4, ξ = x3
∂

∂x1
+ x4

∂

∂x2
− x1

∂

∂x3
− x2

∂

∂x4
,

g =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , φ =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .

Set
X := x2(∂/∂x1) − x1(∂/∂x2) − x4(∂/∂x3) + x3(∂/∂x4)

and
Y := φX = x4(∂/∂x1) − x3(∂/∂x2) + x2(∂/∂x3) − x1(∂/∂x4),

and consider the one-dimensional distributions L and Q on S3 generated by X
and Y , respectively. An easy computation shows that [X, ξ ] = −2Y , [Y, ξ ] = 2X ,
[X, Y ] = 2ξ . Thus L and Q define two nondegenerate, orthogonal Legendrian
foliations on the Sasakian manifold (S3, φ, ξ, η, g). For the bi-Legendrian connection
corresponding to this bi-Legendrian structure, a straightforward computation leads to
∇X X = ∇X Y = ∇Xξ = 0 and ∇Y X = ∇Y Y = ∇Y ξ = 0. Therefore ∇φ = 0 and so,
by Proposition 2.5, also ∇g = 0. Moreover, as ξ is Killing, obviously ∇h = 0.
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