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Abstract

We study sums involving multiplicative functions that take values over a nonhomogenous Beatty
sequence. We then apply our result in a few special cases to obtain asymptotic formulas for quantities
such as the number of integers in a Beatty sequence that are representable as a sum of two squares up to
a given magnitude.
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1. Introduction

Let A ≥ 1 be an arbitrary constant, and let FA be the set of multiplicative functions
f such that | f (p)| ≤ A for all primes p and∑

n≤N

| f (n)|2 ≤ A2 N (N ∈N). (1)

Exponential sums of the form

Sα, f (N )=
∑
n≤N

f (n)e(nα) (α ∈R, f ∈ FA), (2)

where e(z)= e2π i z for z ∈R, occur frequently in analytic number theory.
Montgomery and Vaughan have shown (see [8, Corollary 1]) that the upper bound

Sα, f (N )�A
N

log N
+

N (log R)3/2

R1/2 (3)

holds uniformly for all f ∈ FA, provided that |α − a/q| ≤ q−2 with some reduced
fraction a/q for which 2≤ R ≤ q ≤ N/R. In this paper, we use the Montgomery–
Vaughan result to estimate sums of the form
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Gα,β, f (N )=
∑
n≤N

n∈Bα,β

f (n), (4)

where α, β ∈R with α > 1, f ∈FA, and Bα,β is the nonhomogenous Beatty sequence
defined by

Bα,β = {n ∈N : n = bαm + βc for some m ∈ Z}.

Our results are uniform over the family FA and nontrivial whenever

lim
N→∞

log N

N log log N

∣∣∣∣∑
n≤N

f (n)

∣∣∣∣=∞,
a condition which guarantees that the error term in Theorem 1 is smaller than the main
term. One can remove this condition, at the expense of losing uniformity with respect
to f , and still obtain Theorem 1 for any bounded arithmetic function f (not necessarily
multiplicative) for which the exponential sums in (2) satisfy

Sα, f (N )= o

(∑
n≤N

f (n)

)
(N →∞).

The general problem of characterizing functions for which this relation holds appears
to be rather difficult; see [1] for Bachman’s conjecture and his related work on this
problem.

We shall also assume that α is irrational and of finite type τ . For an irrational
number γ , the type of γ is defined by

τ = sup
{

t ∈R : lim inf
n→∞

nt Jγ nK= 0
}
,

where J·K denotes the distance to the nearest integer. Dirichlet’s approximation
theorem implies that τ ≥ 1 for every irrational number γ . According to theorems
of Khinchin [6] and Roth [10], τ = 1 for almost all real numbers (in the sense of
the Lebesgue measure) and all irrational algebraic numbers γ , respectively; also
see [2, 11].

Our main result is the following theorem.

THEOREM 1. Let α, β ∈R with α > 1, and suppose that α is irrational and of finite
type. Then, for all f ∈ FA,

Gα,β, f (N )= α
−1
∑
n≤N

f (n)+ O

(
N log log N

log N

)
,

where the implied constant depends only on α and A.

The following corollaries are immediate applications of Theorem 1.

https://doi.org/10.1017/S0004972708000853 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000853


[3] Sums with multiplicative functions over a Beatty sequence 329

COROLLARY 2. The number of integers not exceeding N that lie in the Beatty
sequence Bα,β and can be represented as a sum of two squares is

#{n ≤ N : n ∈ Bα,β , n =�+�} =
C N

α
√

log N
+ O

(
N log log N

log N

)
,

where
C = 2−1/2

∏
p≡3 mod 4

(1− p−2)−1/2
= 0.76422365 . . . (5)

is the Landau–Ramanujan constant.

To state the next result, we recall that an integer n is said to be k-free if pk - n for
every prime p.

COROLLARY 3. For every k ≥ 2, the number of k-free integers not exceeding N that
lie in the Beatty sequence Bα,β is

#{n ≤ N : n ∈ Bα,β , n is k-free} = α−1ζ−1(k)N + O

(
N log log N

log N

)
,

where ζ(s) is the Riemann zeta function.

Finally, we consider the average value of the number of representations of an integer
from a Beatty sequence as a sum of four squares.

COROLLARY 4. Let r4(n) denote the number of representations of n as a sum of four
squares. Then ∑

n≤N
n∈Bα,β

r4(n)=
π2 N 2

2α
+ O

(
N 2 log log N

log N

)
,

where the implied constant depends only on α.

Any implied constants in the symbols O and � may depend on the parameters α
and A but are absolute otherwise. We recall that the notation X � Y is equivalent to
X = O(Y ).

2. Preliminaries

2.1. Discrepancy of fractional parts We define the discrepancy D(M) of a
sequence of real numbers b1, b2, . . . , bM ∈ [0, 1) by

D(M)= sup
I⊆[0,1)

∣∣∣∣V(I, M)

M
− |I|

∣∣∣∣, (6)

where the supremum is taken over all possible subintervals I = (a, c) of the interval
[0, 1), V(I, M) is the number of positive integers m ≤ M such that bm ∈ I , and
|I| = c − a is the length of I .
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If an irrational number γ is of finite type, we let Dγ,δ(M) denote the discrepancy of
the sequence of fractional parts ({γm + δ})M

m=1. By [7, Theorem 3.2, Ch. 2], we have
the following result.

LEMMA 5. For a fixed irrational number γ of finite type τ and for all δ ∈R,

Dγ,δ(M)≤ M−1/τ+o(1) (M→∞),

where the function defined by o(·) depends only on γ .

2.2. Numbers in a Beatty sequence The following result is standard in
characterizing the elements of the Beatty sequence Bα,β .

LEMMA 6. Let α, β ∈R with α > 1, and set γ = α−1 and δ = α−1(1− β). Then
n = bαm + βc for some m ∈ Z if and only if 0< {γ n + δ} ≤ γ .

From Lemma 6, an integer n lies in Bα,β if and only if n ≥ 1 and ψ(γ n + δ)= 1,
where ψ is the periodic function with period one whose values on the interval (0, 1]
are given by

ψ(x)=

{
1 if 0< x ≤ γ ,
0 if γ < x ≤ 1.

We wish to approximate ψ by a function whose Fourier series representation is well
behaved. This will give rise to the aforementioned exponential sum Sα, f (N ). To this
end, we use the result of Vinogradov (see [15, Ch. I, Lemma 12]) which states that for
any 1 such that

0<1< 1
8 and 1≤ 1

2 min{γ, 1− γ },

there exists a real-valued function 9 with the following properties:

(i) 9 is periodic with period one;
(ii) 0≤9(x)≤ 1 for all x ∈R;
(iii) 9(x)= ψ(x) if 1≤ {x} ≤ γ −1 or if γ +1≤ {x} ≤ 1−1;
(iv) 9 can be represented by a Fourier series

9(x)=
∑
k∈Z

g(k)e(kx),

where g(0)= γ and the Fourier coefficients satisfy the uniform bound

g(k)�min{|k|−1, |k|−21−1
} (k 6= 0). (7)

3. Proofs

3.1. Proof of Theorem 1 Using Lemma 6, we rewrite the sum (4) in the form

Gα,β, f (N )=
∑
n≤N

f (n)ψ(γ n + δ).
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Replacing ψ by 9, we obtain

Gα,β, f (N )=
∑
n≤N

f (n)9(γ n + δ)+ O

( ∑
n∈V (1,N )

f (n)

)
, (8)

where V (1, N ) is the set of positive integers n ≤ N for which

{γ n + δ} ∈ [0, 1) ∪ (γ −1, γ +1) ∪ (1−1, 1).

Since the length of each interval above is at most 21, it follows from definition (6)
and Lemma 5 that

|V (1, N )| �1N + N 1−1/(2τ),

where we have used the fact that α and γ have the same type τ . Thus, taking (1) into
account, Cauchy’s inequality gives∣∣∣∣ ∑

n∈V (1,N )

f (n)

∣∣∣∣ ≤ ∣∣V (I, N )
∣∣1/2( ∑

n≤N

| f (n)|2
)1/2

� ((1N )1/2 + N 1/2−1/(4τ))N 1/2

= 11/2 N + N 1−1/(4τ). (9)

Next, let K ≥1−1 be a large real number (to be specified later), and let 9K be the
trigonometric polynomial given by

9K (x)=
∑
|k|≤K

g(k)e(kx)= γ +
∑

0<|k|≤K

g(k)e(kx) (x ∈R). (10)

Using (7), we see that the estimate

9(x)=9K (x)+ O(K−11−1)

holds uniformly for all x ∈R; therefore,∑
n≤N

f (n)9(γ n + δ)=
∑
n≤N

f (n)9K (γ n + δ)+ O(K−11−1 N ), (11)

where we have used the bound
∑

n≤N | f (n)| � N which follows from (1).
Combining (8), (9), (10) and (11), we derive that

Gα,β, f (N )= γ
∑
n≤N

f (n)+ H(N )+ O(K−11−1 N +11/2 N + N 1−1/(4τ)),

where
H(N )=

∑
0<|k|≤K

g(k)e(kδ)Skγ, f (N ).
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Put R = (log N )3. We claim that if N is sufficiently large, then for every k in the above
sum there is a reduced fraction a/q such that |kγ − a/q| ≤ q−2 and R ≤ q ≤ N/R.
Assuming this is true for the moment, (3) implies that

Skγ, f (N )�
N

log N
(0< |k| ≤ K );

using (7), we then deduce that

H(N )�
N log K

log N
.

Therefore,

Gα,β, f (N )− γ
∑
n≤N

f (n)�
N log K

log N
+ K−11−1 N +11/2 N + N 1−1/4τ .

To balance the error terms, we choose

1= (log N )−2 and K =1−3/2
= (log N )3,

thus obtaining the bound stated in the theorem.
To prove the claim, let k be an integer with 0< |k| ≤ K = (log N )3, and let

ri = ai/qi be the i th convergent in the continued fraction expansion of kγ . Since
γ is of finite type τ , for every ε > 0 there is a constant C = C(γ, ε) such that

C(|k|qi−1)
−(τ+ε) < Jγ |k|qi−1K≤

∣∣γ |k|qi−1 − ai−1
∣∣≤ q−1

i .

Put ε = τ , and let j be the least positive integer for which q j ≥ R (note that j ≥ 2).
Then

R ≤ q j � (|k|qi−1)
2τ
≤ (K R)2τ = (log N )6τ ,

and it follows that R ≤ q j ≤ N/R if N is sufficiently large, depending only on α. This
concludes the proof. 2

3.2. Proof of Corollary 2 Let f (n) be the characteristic function of the set of
integers that can be represented as a sum of two squares. It follows from [4,
Theorem 366] that f (n) is multiplicative. Hence Corollary 2 is an immediate
consequence of Theorem 1 and the asymptotic formula∑

n≤N

f (n)=
C N

(log N )1/2
+ O

(
N

(log N )3/2

)
(see, for example, [12, 13]), where C is given by (5). 2

3.3. Proof of Corollary 3 Fix k ≥ 2 and let f (n) be the characteristic function of the
set of k-free integers. It is easily proved that f (n) is multiplicative. Thus Corollary 3
follows from Theorem 1 and the following estimate of Gegenbauer [3] for the number
of k-free integers not exceeding N :∑

n≤N

f (N )= ζ−1(k)N + O(N 1/k). 2
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3.4. Proof of Corollary 4 Put f (n)= r4(n)/(8n). From Jacobi’s formula for r4(n),
namely

r4(n)= 8(2+ (−1)n)
∑
d | n
d odd

d (n ≥ 1),

it follows that f (n) is multiplicative and that f (p)≤ 3/2 for every prime p. Moreover,
using the formula of Ramanujan [9] (see also [14]),∑

n≤N

σ 2(n)=
5
6
ζ(3)N 3

+ O(N 2(log N )2)

where σ is the sum of divisors function, we obtain∑
n≤N

| f (n)|2 ≤
∑
n≤N

σ 2(n)

n2 =
5
2
ζ(3)N + O((log N )3)

by partial summation. Therefore, f (n) ∈ FA for some constant A ≥ 1. Applying
Theorem 1, we deduce that∑

n≤N
n∈Bα,β

r4(n)

n
= α−1

∑
n≤N

r4(n)

n
+ O

(
N log log N

log N

)
,

where the implied constant depends only on α.
From the asymptotic formula

∑
n≤N

r4(n)=
π2 N 2

2
+ O(N log N )

(see for example [5, p. 22]), partial summation gives∑
n≤N

r4(n)

n
= π2 N + O((log N )2).

Consequently, ∑
n≤N

n∈Bα,β

r4(n)

n
= α−1π2 N + O

(
N log log N

log N

)
.

Using partial summation once more, we obtain the statement of Corollary 4. 2
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