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Peeling fingers in an elastic Hele-Shaw channel
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Using experiments and a depth-averaged numerical model, we study instabilities of
two-phase flows in a Hele-Shaw channel with an elastic upper boundary and a non-uniform
cross-section prescribed by initial collapse. Experimentally, we find increasingly complex
and unsteady modes of air-finger propagation as the dimensionless bubble speed Ca and
level of collapse are increased, including pointed fingers, indented fingers and the feathered
modes first identified by Cuttle et al. (J. Fluid Mech., vol. 886, 2020, A20). By introducing
a measure of the viscous contribution to finger propagation, we identify a Ca threshold
beyond which viscous forces are superseded by elastic effects. Quantitative prediction
of this transition between ‘viscous’ and ‘elastic’ reopening regimes across levels of
collapse establishes the fidelity of the numerical model. In the viscous regime, we recover
the non-monotonic dependence on Ca of the finger pressure, which is characteristic of
benchtop models of airway reopening. To explore the elastic regime numerically, we
extend the depth-averaged model introduced by Fontana et al. (J. Fluid Mech., vol.
916, 2021, A27) to include an artificial disjoining pressure that prevents the unphysical
self-intersection of the interface. Using time simulations, we capture for the first time
the majority of experimental finger dynamics, including feathered modes. We show that
these disordered states evolve continually, with no evidence of convergence to steady or
periodic states. We find that the steady bifurcation structure satisfactorily predicts the
bubble pressure as a function of Ca, but that it does not provide sufficient information
to predict the transition to unsteady dynamics that appears strongly nonlinear.
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1. Introduction

Thin-film flows confined by elastic boundaries occur in a plethora of applications related to
industrial, geophysical and biological processes (Modarres-Sadeghi 2021), e.g. from roll
coating (Carvalho & Scriven 1997) to splenic filtration of red blood cells (Moreau et al.
2023). In microfluidics, there is considerable interest in incorporating thin membranes
and other soft boundaries into devices to harness flow-induced functionality and enable
passive flow control (Stone 2009; Alvarado et al. 2017; Gomez, Moulton & Vella 2017;
Christov 2022). However, many practical microfluidic flows are multiphase, and are thus
influenced jointly by elastic boundaries and moving fluid interfaces, which each introduce
nonlinearities into otherwise linear flows in the Stokes limit. In this paper, we use a
combined approach of experiments and numerical modelling to map out remarkably
complex dynamics in a conceptually simple example of such a flow, namely a two-phase
displacement flow in a Hele-Shaw channel where the top wall is an elastic sheet.

Two-phase displacement in a rigid Hele-Shaw channel, a channel whose width is
much greater than its depth, is an exemplar of complex interfacial dynamics (Homsy
1987; Couder 2000; Casademunt 2004). When a less viscous fluid, usually air, invades
a more viscous fluid, the Saffman–Taylor viscous fingering instability leads to the steady
propagation of a single, centred finger (Saffman & Taylor 1958), which can be captured
accurately with numerical models (McLean & Saffman 1981), provided that the liquid
films left behind the advancing finger tip are taken into account (Tabeling & Libchaber
1986). Although this finger is linearly stable (Bensimon, Pelce & Shraiman 1987) for all
dimensionless finger speeds, quantified by a capillary number Ca, finger instabilities are
readily observed under finite-amplitude perturbations imposed either via the geometry
(Couder 2000) or via the fluid, e.g. by suspending particles (Chevalier, Lindner & Clément
2007).

In the rigid configuration, injected air displaces resident fluid along the length of the
channel. In contrast, the injection of air into a liquid-filled compliant channel inflates its
elastic top wall, imposing a reopening channel profile that localises fluid redistribution to a
wedge-shaped region ahead of the advancing interface (Juel, Pihler-Puzović & Heil 2018).

This results in the peeling of the elastic top sheet from the rigid bottom wall at an
angle that is set by the fluid–structure interaction (Peng et al. 2015; Pihler-Puzović et al.
2015; Peng & Lister 2019). Related peeling scenarios arise in the context of pulmonary
airway reopening (Grotberg 2001; Heil & Hazel 2011), where benchtop models have
characterised the steady propagation of an air finger into two-dimensional elastic channels
under axial tension (Gaver, Samsel & Solway 1990; Gaver et al. 1996; Jensen et al. 2002)
and collapsed elastic tubes (Hazel & Heil 2003; Juel & Heap 2007). For moderate levels of
tube collapse where the top elastic wall does not contact the bottom boundary, reopening
takes place either via steady peeling modes, where an increase in pressure drives faster
fingers, or steady pushing modes, where the converse is true, i.e. an increase in pressure
drives slower fingers. Transition between these two modes occurs at a critical Cac and a
yield pressure difference (bubble pressure relative to the pressure in the collapsed channel)
that must be exceeded in order for a finger to propagate. The less intuitive pushing
mode (Ca < Cac), which has been found to be unstable in a two-dimensional model
(Halpern et al. 2005), follows from the fact that as Ca is reduced, the elastic channel
must expand indefinitely to accommodate redistribution of a finite volume of fluid within
the ever-thinning films on its walls (Hazel & Heil 2003).

It is well established that in a radial Hele-Shaw cell of uniform depth, an elastic top wall
leads to the suppression of viscous fingering instabilities (Pihler-Puzović et al. 2012; Juel
et al. 2018). This is because the interface advances into a convergent channel, where both
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viscous and surface tension forces act to stabilise interface perturbations (Al-Housseiny,
Tsai & Stone 2012; Pihler-Puzović et al. 2018; Peng & Lister 2019). The situation is more
complex for finger propagation in our rigid Hele-Shaw channel where the top boundary
is an elastic sheet. This is because the presence of side walls and initial channel collapse
lead to a cross-section of non-uniform depth, with maximum constriction in the centre
of the channel. The reopening mechanics of this system was first explored by Ducloué
et al. (2017b). Remarkably, they found that unsteady finger propagation, characterised
by complex pattern formation at the finger tip, was supported for sufficiently large Ca
across a broad range of initial levels of collapse. For relatively large initial collapse,
Cuttle, Pihler-Puzović & Juel (2020) identified two apparently persistent modes of finger
propagation amongst a host of transient dynamics, which were mediated over a region of
bistability by unstable pushing behaviour. These distinct reopening modes were shown to
be dominated by viscous and elastic forces, respectively. The elastic reopening mode was
associated with small-amplitude fingering perturbations that yielded intricate interfacial
patterns referred to as ‘feathered’ modes. However, the nature of these feathered modes
remains elusive.

A modelling framework for fluid–structure interaction flows was proposed by Fontana
et al. (2021), based on a depth-averaged model to describe the propagation of an air finger
into a collapsed elasto-rigid channel. They showed that the presence of the elastic wall
can lead to interaction between solution branches that are isolated in the rigid channel,
thus altering their stability and potentially leading to complex dynamics at higher levels
of initial collapse. However, the model was unable to predict the myriad exotic fingering
patterns found experimentally (Ducloué et al. 2017b; Cuttle et al. 2020). In this paper,
we enable the simulation of intricate interfacial patterns by extending the depth-averaged
model introduced by Fontana et al. (2021) to include an artificial disjoining pressure
to prevent self-intersection of the interface. We investigate systematically the transition
to feathered modes across a range of levels of collapse. Remarkably, we find that they
arise after long oscillatory transients that resemble our experimental observations at lower
capillary numbers. Furthermore, both experiment and model indicate that the small-scale
indentations that develop and advect around the finger tip are refined through tip-splitting
as the finger propagates. This implies that the feathered modes of propagation are in fact
evolving continually, with no evidence that these disordered states converge to steady
or periodic states. Fontana et al. (2021) also demonstrated that a thin-film model is
fundamental to capturing experimental results both qualitatively and quantitatively. In
this paper, we refine their thin-film model to improve the prediction of finger speed as
a function of injection flow rate, but we also find that the dynamics is not sensitive to the
exact choice of thin-film model.

The paper is organised as follows. We recall the experimental methodology in § 2, and
highlight the essential new features of the numerical model in § 3. Results are presented in
§ 4. We introduce a measure of the dimensionless finger speed based on viscous dissipation
within the fluid ahead of the finger tip in § 4.1, which enables us to identify a threshold
value of Ca beyond which viscous forces are superseded by elastic effects. Quantitative
prediction of this transition between ‘viscous’ and ‘elastic’ reopening regimes across
levels of collapse establishes the fidelity of the numerical model. We show in § 4.2 that
in the viscous regime, we recover the non-monotonic dependence on Ca of the finger
pressure, which is characteristic of benchtop models of airway reopening. In § 4.3, we
explore the elastic regime and the transition to feathered states as a function of Ca. We
capture feathered states numerically for the first time in § 4.3.1. A detailed analysis of
the steady bifurcation structure in § 4.3.2 reveals that steady numerical solutions match
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the bounding envelopes of unsteady fingers in the elastic regime, and thus satisfactorily
predict the bubble pressure. However, the steady bifurcation diagram does not inform the
transition to unsteady dynamics, which appears strongly nonlinear.

2. Experimental set-up

We performed experiments in a rigid Hele-Shaw channel topped with an elastic sheet,
shown schematically in figure 1(a). This experimental set-up was described previously
by Cuttle et al. (2020). A channel of length 60 cm, width W∗ = 30 ± 0.02 mm and
depth b∗

0 = 1.05 ± 0.01 mm was precision-milled into a block of Perspex, achieving a
10 µm roughness along the base. For the top boundary, we used a latex sheet (Supatex)
with Young’s modulus E∗ = 1.44 ± 0.05 MPa, Poisson’s ratio ν = 0.5 and thickness
h∗ = 0.46 ± 0.01 mm. A uniform pre-stress was imposed on the elastic sheet, directed
across the width of the channel, by hanging evenly distributed weights (totalling 3.03 kg)
along one long edge of the sheet. This pre-stress was maintained by clamping the
elastic sheet in place using an aluminium frame secured with 11 evenly-spaced G-clamps
along each long edge and a single bolt along each short edge. The constitutive relation
between transmural pressure difference across the elastic sheet and level of collapse, which
was measured in the experimental channel under static conditions, matches numerical
simulations performed using a pre-stress that is 30 % of the value predicted from the
sheet dimensions and applied weight (see Appendix A). This loss of applied pre-stress is
expected, due to unavoidable slippage of the elastic sheet during the clamping procedure.
However, the reproducibility and consistency of the experimental results suggest that the
pre-stress was uniform and remained constant once the elastic sheet was clamped in place.

To set the initial conditions of each experiment, the channel was filled with silicone oil
of dynamic viscosity µ∗ = 0.099 Pa s, surface tension γ ∗ = 21 mN m−1 and density ρ∗ =
973 kg m−3 at laboratory temperature T∗ = 21 ± 1 ◦C. The inlet was then closed, and oil
was allowed to drain from the outlet of the channel, via a length of flexible tubing open
to the atmosphere at one end. By adjusting the height of the outlet of the tubing relative
to the channel, we could set the hydrostatic pressure difference between the channel and
the atmosphere. At equilibrium, this hydrostatic pressure difference is equal to p∗

trans, the
transmural pressure difference across the elastic sheet, which acts to deform the sheet.
Hence we were able to control the extent to which the elastic sheet was collapsed initially.
We measured the initial collapse using a laser sheet projected to a line across the width
of the channel, and imaged this line at an oblique angle using a camera of resolution
22.9 ± 0.02 pixels mm−1 (the same camera was used for visualising sheet deformation
during the reopening experiment, see below). The resulting profiles of the sheet in terms
of the local depth b∗ of the channel as a function of the lateral coordinate x∗

2 are shown
in figure 1(b). We quantify the extent of initial collapse with the parameter Ai, which is
defined as the ratio of cross-sectional area under the sheet to the uncollapsed area W∗b∗

0.
Hence for an uncollapsed channel, Ai = 1. By Ai = 0.36, the elastic sheet sags sufficiently
to contact the centreline of the bottom wall, which we refer to as opposite wall contact. We
studied channels collapsed within the range 0.43 ± 0.02 ≤ Ai ≤ 0.95 ± 0.02, as detailed
in figure 1(b).

The channel was reopened by injecting air at a constant volumetric flow rate Q∗, which
varied within the range 5 ≤ Q∗ ≤ 330 ml min−1, resulting in a long continuous finger of
air. The finger propagated along the length of the channel, displacing oil and parting the
channel walls. Flow was imposed using a syringe pump (KD Scientific) fitted with Gastight
syringes (Hamilton), with a small precursor bubble (<1 ml) injected immediately before
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Figure 1. (a) Schematic diagram of the experimental set-up. Adapted from Cuttle et al. (2020). (b) Initial
elastic-sheet profiles across the width W∗ of the channel. Membrane height b∗, measured by the laser sheet
depicted in (a), as a function of the scaled lateral coordinate x∗

2/W∗, normalised by the channel depth b∗
0.

Labels refer to Ai, a measure of initial collapse. (c) Top: image of air finger within the experimental region of
interest. This image was captured by the top-view camera during the reopening of a channel with Ai = 0.53
at flow rate Q∗ = 90 ml min−1. Bottom: composite image produced by overlaying successive images from the
experiment, taken at time intervals of 0.17 s. Time increases from left to right. (d) Instantaneous elastic-sheet
height H∗ midway between the channel walls (x∗

2 = 0) as a function of axial coordinate x∗
1 during reopening

(taken from the same experiment as (c)). The dashed line indicates the position of the air–oil interface at the
tip of the air finger.

each experiment to set the initial conditions. The pressure p∗
b of the air finger was measured

with a differential pressure sensor (Honeywell, ± 5" H2O) with ±1 Pa resolution. Over a
250 mm length of the channel, which was chosen as the region of interest (ROI) for our
measurements, we recorded constant air-bubble pressure traces to within typical tolerance
10 Pa.

The air finger was imaged from above by a second camera (4.8 ± 0.1 pixels mm−1)
recording images at fixed rates 0.33–30 frames per second (f.p.s.) depending on Q∗ and Ai.
The channel was back-lit by LED lights diffused through opalescent acrylic. An example
of a top-view image is shown in the upper part of figure 1(c). The tip of the air finger was
located in each frame using image analysis routines (MATLAB 2016a), which allowed us
to calculate the instantaneous axial speed u∗

f of the finger. To illustrate the time evolution
of the finger over an experiment, we will refer to composite images of the kind shown
in the lower part of figure 1(c), which are generated by overlaying background-subtracted
images from successive frames of an experiment. In figure 1(c), the finger shape is steady
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over the entire ROI, and since the interfaces are equally spaced at fixed time intervals, the
finger advances at a constant speed.

The deflection of the elastic sheet during reopening was measured by recording images
of the laser sheet (at 40–160 f.p.s.), which was located near the end of the ROI; see
figure 1(c). Measurements of the height H∗ of the elastic sheet midway between the walls
of the channel, along with knowledge of the finger speed u∗

f , allowed us to reconstruct
the profile of the elastic sheet around the finger tip, as shown e.g. in figure 1(d). Ahead
of the finger tip (located at axial coordinate x∗

1 = 0), the channel is still collapsed, while
behind it the channel is inflated. Hence the air finger advances into a tapered region behind
a wedge-shaped volume of oil.

3. Model

We extend the modelling framework developed by Fontana et al. (2021), which couples
depth-averaged lubrication equations for the fluid flow to the Föppl–von Kármán plate
equations with in-plane pre-stress for the elastic sheet. The original model was developed
in a frame of reference moving with the axial velocity of the finger tip so that
steady solutions represented fingers propagating steadily in the frame of the laboratory.
This model was implemented numerically in oomph-lib (Heil & Hazel 2006) to
calculate steady solutions, evaluate their linear stability and perform time simulations.
Compared to the model of Fontana et al. (2021), the new model includes an additional
artificial disjoining pressure, which has been implemented to prevent the unphysical
self-intersection of air-finger interfaces when deep indentations develop during time
simulations; see § 3.2.2. Furthermore, the effect of different approximations for the liquid
films separating the finger from the walls of the channel in comparison with experiments
has been analysed.

3.1. Governing equations
We define a frame of reference in Cartesian coordinates (x∗

1, x∗
2, x∗

3) moving with the
instantaneous axial speed of the finger u∗

f (t
∗). The coordinate x∗

1 spans the channel
length, x∗

2 spans the channel width, and x∗
3 is the out-of-plane (height) coordinate. The

domain of the channel is bounded so that −L∗
up < x∗

1 < L∗
down, −W∗/2 ≤ x∗

2 ≤ W∗/2
and 0 ≤ x∗

3 ≤ b∗(x∗
1, x∗

2, t∗), where b∗(x∗
1, x∗

2, t∗) is the local height of the channel, and
L∗ = L∗

up + L∗
down = 25W∗ is the channel length. Throughout this paper, dimensional

quantities are always starred, while dimensionless ones appear unstarred.
We use the channel width W∗ to non-dimensionalise the in-plane coordinates (x1, x2),

and the undeformed channel height b∗
0 for the out-of-plane coordinate x3. These

define the aspect ratio α = W∗/b∗
0 of the channel. The displacement in the elastic

sheet is non-dimensionalised using the in-plane length scale, and the fluid pressure is
non-dimensionalised using P∗ = 12µ∗α2/T ∗, where T ∗ is the time scale defined as
T ∗ = W∗2b∗

0/Q∗. Finally, in-plane velocities are non-dimensionalised by U∗ = W∗/T ∗.
Assuming incompressibility, we apply the Reynolds lubrication approximation to

the Stokes equation, defined in the frame moving with instantaneous velocity
uf (t) = u∗

f (t)T ∗/W∗, which yields the depth-averaged governing equation for the fluid
pressure p:

∂b
∂t

− uf
∂b
∂x1

= ∂

∂xβ

(
b3 ∂p

∂xβ

)
, (3.1)
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where we use the summation convention, and the index β – and all subsequent Greek
indices – takes the values 1 and 2. The unknown speed uf (t) is determined by enforcing
that the maximum x1 coordinate of the interface (i.e. the x1 coordinate of the finger tip
x1,tip) is set to zero.

We use the Föppl–von Kármán equations (Landau & Lifshitz 1970)

(
∂2

∂xβ ∂xβ

) (
∂2

∂xγ ∂xγ

)
w − η

∂

∂xγ

(
σβγ

∂w
∂xβ

)
= P,

∂σβγ

∂xγ

= 0, (3.2a,b)

as the governing equations to determine the in-plane and out-of-plane displacements of
the elastic sheet, (v1, v2) and w, respectively. The pressure load P∗ on the elastic sheet
is non-dimensionalised using the bending modulus K∗ = E∗h∗3/12(1 − ν2) so that P =
P∗W∗3/K∗. The parameter η = 12(1 − ν2)(W∗/h∗)2 describes the relative importance of
the in-plane and bending stresses. Finally, the in-plane components of the stress tensor σβγ

are

σ11 = ε11 + νε22

1 − ν2 , σ22 = σ
(0)
22 + ε22 + νε11

1 − ν2 , σ12 = σ21 = ε12

1 + ν
, (3.3a–c)

where the in-plane strain is given by

εβγ = 1
2

(
∂vβ

∂xγ

+ ∂vγ

∂xβ

)
+ 1

2
∂w
∂xβ

∂w
∂xγ

, (3.4)

and a non-zero pre-stress component σ
(0)
22 is introduced to mimic the clamping procedure

performed in the experiment, which tensions the sheet in the x∗
2 direction. The pre-stress

components σ
(0)
11 and σ

(0)
12 are fixed at zero. However, as mentioned in § 2, the experimental

value of σ
(0)
22 is not known accurately, so, following Fontana et al. (2021), we estimate it by

matching the constitutive relation of the experimental channel to numerical simulations.
Details of this procedure are presented in Appendix A.

The equations governing the fluid pressure (3.1) and elastic sheet deformation (3.2a,b)
are coupled in two distinct ways. First, the height b of the channel is determined by the
out-of-plane displacement w of the elastic sheet:

b(x1, x2, t) = 1 + αw. (3.5)

Second, the pressure load P on the elastic sheet depends on the pressure p of the fluid and
the pressure pb of the air finger:

P = Ipb in Ωair, P = Ip in Ωfluid, (3.6a,b)

where the non-dimensional fluid–structure interaction parameter

I = 144µ∗α3(1 − ν2)Q∗

E∗h∗3 (3.7)

provides a measure of the typical viscous stresses in the fluid relative to the bending stress
of the elastic sheet. As I → 0, the elastic sheet becomes rigid and the governing equations
(3.1) and (3.2a,b) decouple.
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x1 = –xup x1 = 0 x1 = xdown

btip

x1 = –xup x1 = 0 x1 = xdown
x2 = –0.5

x2 = 0.5

x1

x2

x1

x3

Top view Side view

λ Ωair

Ωair
s

pb

p Ωfluid

b b – f1(Ca) b

Ωfluid

(a) (b)

Figure 2. (a) Numerical domain in a frame of reference moving at the velocity of the finger tip. The rigid
side walls are located at x2 = 0.5 and x2 = −0.5. The domain is truncated at x1 = −xup upstream and at
x1 = xdown downstream. The x1 coordinate of the finger tip is fixed at 0, and the finger width is λ. (b) Sketch
of the transverse view of the channel along the line x2 = x2,tip that crosses the finger tip. The thickness of the
fluid film is f1(Ca) b, and the thickness of the air finger is b − f1(Ca) b. The height of the elastic sheet at the
finger tip is denoted by btip = b(x1,tip, x2,tip).

3.2. Boundary conditions
At the side walls of the channel, the boundary conditions are non-penetration of fluid and
a clamped elastic sheet:

∂p
∂x2

= 0, v1 = 0, v2 = 0, w = 0,
∂w
∂x2

= 0 at x2 = ±0.5. (3.8)

The numerical domain is truncated in the axial direction at the upstream (x1 = −xup)
and downstream (x1 = xdown) ends; see figure 2(a). We set xup = 10 and xdown = 15, and
checked that the computed solutions are not affected by increasing the length of the
domain. Following Hazel & Heil (2003), at these truncated boundaries, we impose the
conditions

v1 = 0, v2 = 0,
∂w
∂x1

= 0,
∂p
∂x1

= 0 at x1 = −xup,

v1 = 0, v2 = 0,
∂w
∂x1

= 0,
∂p
∂x1

= G at x1 = xdown.

⎫⎪⎪⎬
⎪⎪⎭

(3.9)

These mean that far away from the finger tip, all disturbances should decay. We allow
the upstream pressure gradient G to be an unknown, which we determine by imposing that
the fluid flux at the downstream boundary is equal to the flux at x1 → ∞:∫ 0.5

−0.5
(−b3G − buf )|x1=xdown dx2 = −Aiuf , (3.10)

where Ai is the initial level of collapse defined in § 2.

3.2.1. Effect of fluid films left behind the advancing interface
Following Peng et al. (2015) and Fontana et al. (2021), we incorporate into the boundary
conditions at the air-finger interface the effects of fluid films left behind the advancing
interface. The kinematic boundary condition is given by

(b − f1(Ca) b)

[
∂R
∂t

+ uf e1

]
· n = −b3 ∂p

∂xα

nα on ∂Ωair, (3.11)

where R(s, t) is the position of the advancing air–fluid interface in the moving frame,
parametrised by the coordinate s, and n is the in-plane outer unit normal vector to the
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Peeling fingers in an elastic Hele-Shaw channel

interface; see figure 2. The dynamic boundary condition is given by

�p = p|∂Ωair − pb = − uf

12α2 Ca

(
κ + α

2
b

f2(Ca)

)
, (3.12)

where κ is the in-plane curvature of the air-finger interface and Ca = µ∗u∗
f /γ

∗ is the
capillary number. Note that the capillary number is based on the instantaneous velocity of
the finger tip. This means that for unsteadily propagating fingers, Ca is time-dependent.
The functions f1(Ca) and f2(Ca) incorporate the effect of the fluid films into the model.
We use the expressions

f1(Ca) = Ca2/3

0.76 + 2.16 Ca2/3 (3.13)

and

f2(Ca) = 1 + Ca2/3

0.26 + 1.48 Ca2/3 + 1.59 Ca, (3.14)

which Peng et al. (2015) introduced and validated for use in elastic cells. The effects of
fluid films are removed if we set f1(Ca) = 0 and f2(Ca) = 1. Peng et al. (2015) assumed
that the thickness of the fluid film is set at the finger tip position Πtip = (x1,tip, x2,tip),
where it is formed. This means that in their model, the fluid film has a uniform thickness
f1(Ca) btip at every point (x1, x2) of the air finger, where btip = b(x1,tip, x2,tip). This choice
differs from the assumption made by Fontana et al. (2021), where the thickness of the
fluid film was a constant proportion of the channel height f1(Ca) b(x1, x2) at each point
(x1, x2) of the air finger. We refer to these assumptions as uniform and non-uniform film
thickness models. In this paper, we follow Fontana et al. (2021) and assume a non-uniform
film thickness model. In Appendix B, we compare both assumptions with experiments
and, in addition, show that the relationship between bubble pressure and capillary number
predicted by the model remains the same under both assumptions. The imposed flow rate
necessary to reach a given capillary number, however, depends on the assumption made for
the film thickness. In fact, both assumptions are simplifications of the three-dimensional
fluid rearrangement that takes place within the films; and three-dimensional Stokes
simulations would be needed to capture accurately the distribution of fluid films required
for detailed quantitative agreement with experiment. Moreover, we find that the behaviour
of the fluid in these films does not affect the overall qualitative dynamics.

3.2.2. Disjoining pressure
Fontana et al. (2021) found that time simulations at high Ca and low Ai produced unsteady
fingers with small-scale indentations originating near the finger tip. These indentations
could grow into clefts sufficiently deep and narrow that they led to the self-intersection
of the air-finger interface, thus terminating the simulation. However, self-intersection
of the air-finger interface was never observed in the experiments presented by Ducloué
et al. (2017b) and Cuttle et al. (2020), and in this paper. It is most likely that the
self-intersection in the model is a result of the approximations made when simplifying
the three-dimensional liquid-film dynamics. In order to allow time simulations to continue
beyond the point of self-intersection, rather than moving to three-dimensional calculations,
we prevent self-intersection by adding an artificial repulsive disjoining pressure pd to
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our model. We choose the form

pd = AH

(
λd

d

)3

, (3.15)

based on the disjoining pressure in thin films introduced by Derjaguin (1955). The
constant AH gives the strength of the repulsive interaction, and λd is the length scale of
the interaction. The interface–interface distance d – see depiction in figure 3(a) – was
calculated as the distance between a pair of points on the interface, one on each side of
the indentation. Each interface point was paired with the point the shortest distance from
it, with the additional constraint that the unit normal vectors to the interface at these two
points have a negative inner product. This constraint ensures that the points are always
localised at opposite sides of the indentation. Once a pair is assigned for each point at
the interface, we calculate the local value of the disjoining pressure pd for that point.
In order to identify the pairs of points located at indentations, we map all pairs in the
entire finger interface. It is possible to show that for the pairs of points that are not on
an indentation (e.g. a pair of points located far behind the finger tip, on opposite sides
of the finger width), the distance d is always of the order of the finger width (between
0.4 and 0.7), while for pairs that are on an indentation, the distance d is 0.05 or smaller.
For sufficiently large values of d, pd becomes negligible, and in order to speed up the
calculations by reducing the length of the interface that must be scanned, we set the value
of pd to zero for points separated by a distance greater than a cutoff value 0.1. For our
chosen values of AH and λd (see below), pd < 10−6 when d > 0.1. The overall effect of
this implementation of disjoining pressure is a short-ranged repulsive interaction that acts
only to prevent self-intersection on interface indentations.

The disjoining pressure was added to the dynamic boundary condition (3.12), resulting
in a new condition:

�p = p|∂Ωair − pb − pd. (3.16)

We used trial and error to select the parameter values AH = 10−3 and λd = 10−2 so that
the disjoining pressure prevents self-intersection of the interface during time-dependent
calculations but affects the dynamics only when the interface is on the verge of
self-intersection. For steady-state simulations, we set pd = 0.

Figure 3 shows a comparison between time simulations without (figure 3b) and with
(figure 3c) the addition of a disjoining pressure. Both simulations are shown for the same
time step and simulated with the same parameters and initial conditions. In the time step
following the snapshot of figure 3(b), the interface self-intersects, thus terminating the
numerical simulation, whereas this does not occur in figure 3(c). There, the addition of
pd reduces the depth of the indentation and increases the distance d between the sides
of the indentation. This brings unsteady finger dynamics in the simulations closer to
the experiments, where indentations reduce in depth as they are advected to the side of
the finger before eventually disappearing; see § 4.3.1. However, three-dimensional Stokes
simulations would be necessary to fully capture the interface–interface interaction in the
region of indentations. In the case of deep indentations, the separation d∗ can be as small
as the unperturbed channel gap b∗

0, making the lubrication approximation invalid.

3.3. Numerical implementation
The numerical implementation of our model follows that of Fontana et al. (2021), with
the addition of the disjoining pressure to the fluid dynamic boundary condition and the
possibility to choose between fluid film correction of uniform and non-uniform thickness.
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Figure 3. (a) Example of a numerical time-dependent solution where the air-finger interface develops an
indentation. One in every 25 nodes is shown with a circle on the interface, along with its normal vector.
The magnitude of the vector dij corresponds to the distance between the points i and j. At the point i, the
interface–interface distance d is equal to |dik|. (b) Example of an unsteady simulation where the finger develops
an indentation in the absence of disjoining pressure. (c) The same unsteady simulation as in (b), and at the same
time, but with the addition of disjoining pressure.

In order to calculate steadily propagating modes (travelling wave solutions), we set all
time derivatives in the governing equations and boundary conditions to zero. Additionally,
we imposed fixed values of the initial level of collapse Ai and another global variable,
which could be the bubble pressure pb, the capillary number Ca or the flow rate Q∗.
Different choices were made for the second controlled variable according to the parameter
continuation between solution branches in the bifurcation diagram to be calculated. Once
we had steady solutions, we analysed the linear stability of these solutions at fixed Q∗
and Ai for consistency with the experiment. The solution of the discrete generalised
eigenproblem was obtained via the Anasazi solver from Trilinos (Heroux et al. 2005).
We computed the 60 most unstable eigenvalues.

Finally, in order to assess the nonlinear stability of the steady solutions, we conducted
time simulations for fixed values of the initial level of collapse and flow rate. We used a
steady solution as initial condition, to which we applied a time-decaying perturbation to
the pressure jump across the interface:

�p = p|∂Ωair − pb − pd − δp, (3.17)

where the perturbation takes the form

δp = −δp0

(
2t
tp

)
e−t/tp e−((x2−x0)/λp)

2
. (3.18)

This perturbation creates a dimple on a length scale λp centred on an interfacial point with
coordinate x2 = x0. This artificial extra pressure is zero at t = 0, reaches the maximum
δp0, and decays to zero for t � tp. We have chosen this particular form of perturbation in
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order to be able to apply it consistently for all values of parameters used. We set a non-zero
value for x0, so we prescribe a perturbation asymmetric about the centreline of the channel,
thus avoiding restricting time simulations to symmetric fingers. In our simulations, we
used the parameters λp = 0.035, x0 = 0.05, tp = 0.04 and δp0 = 0.2pb.

4. Results

We report experiments and numerical simulations of bubble propagation in a collapsed
channel (see figure 1) for different values of Ai and the imposed air flow rate Q∗.
Opposite wall contact is avoided by keeping the level of collapse Ai above the value
0.36. We present results in terms of the capillary number 0 < Ca < 1.3, which provides
a measure of the dimensionless finger velocity and is not sensitive to the choice of
film model, as discussed in § 3.2.1. The choice of experimental parameters listed in § 2
means that the fluid–structure interaction parameter I varies only with Q∗ in the range
0 < I < 1.5 × 104, and that the other non-dimensional parameters are fixed at α = 28.6
and η ∼ 40 000.

4.1. Comparison with the flow into a rigid wedge
We begin by examining the reopening region ahead of the finger. We define a flow metric
that we use to establish the overall fidelity of the model by comparing experimental and
numerical reopening flows across different Ca and levels of initial collapse. When air
is injected into a fluid-filled, collapsed elastic channel, the cross-sectional area of the
collapsed channel expands, and the fluid within it redistributes to accommodate finger
propagation. This process takes place in a reopening region ahead of the finger tip where
the local fluid–structure interaction flow sets the mode of finger propagation (Juel et al.
2018; Cuttle et al. 2020). If we assume that the reopening is dominated by viscous stresses,
then we can approximate the process as flow into a rigid wedge (RW). This geometry is
illustrated in figure 4(a), which shows a schematic diagram of the vertical mid-plane of
the channel (x∗

2 = 0) where the wedge-like reopening region has angle θ , length �l∗ and
pressure drop �p∗. At low Ca, flow into a compliant channel is captured closely by the flow
into a rigid convergent laterally unbounded channel of pressure gradient �p∗/�l∗, where
the wedge angle θ is set by fluid–structure interaction (Gaver et al. 1996; Jensen et al.
2002; Peng & Lister 2019). This approximation is completely two-dimensional, and since
there is no in-plane curvature, only the transverse curvature contributes to the pressure
jump across the interface. In this rigid wedge, the capillary number corresponding to the
dimensionless tip speed is directly proportional to the pressure gradient across the wedge,
and following the depth-averaged approach, can thus be defined as

CaRW ≡ −b∗2(x1,tip, 0)

12γ ∗
�p∗

�l∗
. (4.1)

Here, b∗(x1,tip, 0) = b∗
0 b(x1,tip, 0) is the dimensional height of the elastic sheet at the

centreline of the channel, and at the x1 coordinate of the finger tip, the pressure drop is
approximated by

�p∗ ≈ ( p∗
trans − p∗

b) + 2γ ∗

b∗(x1,tip, 0)
, (4.2)
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Figure 4. (a) Sketch of the fluid wedge in front of the finger. (b) Rigid-wedge capillary number (based on the
pressure gradient in the fluid wedge ahead of the finger) as a function of the mean capillary number Ca of
the propagating finger, time-averaged during the propagation over the ROI. Circles indicate experimental data,
with error bars denoting standard deviations within the ROI; the black dashed line corresponds to the limit
CaRW = Ca. (c) Comparison between experimental data from (b) and numerical simulations shown with lines.
The plots from left to right are for Ai = 0.53, 0.60, 0.82, 0.95, respectively.

where p∗
b is the air pressure in the finger and p∗

trans is the pressure in the collapsed channel
far ahead of the finger, and the length of the wedge �l∗ can be estimated as

�l∗ = b∗(x1,tip, 0) − b∗(∞, 0)

tan(θ)
, (4.3)

where b∗(∞, 0) = b∗
0 b(∞, 0) is the dimensional height of the membrane at the centreline

of the channel, beyond the wedge region (see figure 4a). The geometric quantities
b∗(x1,tip, 0), b∗(∞, 0) and θ were measured while the finger crossed the ROI, and
remained constant in simulations even for unsteady finger propagation.

Figure 4(b) shows a plot of CaRW , which is estimated in our elastic channel based on
the pressure gradient across the wedge, as a function of the actual capillary number Ca
based on the finger speed. In the experiment, the finger speed u∗

f could exhibit measurable

fluctuations depending on parameters, thus we use its time-averaged value u∗
f over the time

interval during which the finger tip propagates in the ROI, to calculate a time-averaged
capillary number Ca = µ∗ u∗

f /γ
∗. For the smallest values of Ca investigated (Ca < 0.1),

we find CaRW ≈ Ca as expected in a laterally unbounded rigid wedge. For low levels
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of collapse, Ai ≥ 0.8, CaRW is approximately proportional to Ca over the range of Ca
investigated. The reduced slope of the CaRW curve, compared to that of a rigid wedge,
is due to changes in the finger geometry in the tip region. The fact that there is linear
relationship indicates that the fluid redistribution associated with reopening is shaped
primarily by viscous and capillary forces, so we refer to this regime as viscous reopening.
This viscous reopening regime also occurs for larger initial collapse, with the datasets for
Ai = 0.60, 0.53 and 0.43 exhibiting quasi-linear behaviour as a function of Ca for small
values of Ca.

As Ca increases, the gradient of the CaRW curve for Ai = 0.60 decreases progressively.
This trend is enhanced for Ai = 0.53, in which case CaRW becomes approximately constant
at a threshold value Ca ≈ 0.17, indicating saturation of the pressure gradient over the
fluid wedge, and thus of the viscous stresses, while the velocity of the finger continues
to increase. The pressure gradient saturates because both the elastic wall and air finger
have reached their limiting geometric configurations. Therefore, the fluid wedge no longer
changes its shape, and the pressure drop across it remains constant on the viscous scale, as
also found in three-dimensional elastic tubes by Hazel & Heil (2003) for sufficiently high
propagation speeds. In fact, for Ai = 0.43, CaRW drops to values close to zero for Ca > 0.1
(red points in figure 4b), which suggests that the influence of viscous stresses becomes
negligible for high levels of collapse approaching the point of opposite wall contact. This is
because the elastic sheet steepens significantly in the reopening region, leaving it occupied
mostly by the peeling finger. In this configuration, the value of b∗(x1,tip, 0) becomes so
small that the driving pressure difference (p∗

trans − p∗
b) is counteracted by a large capillary

pressure 2γ ∗/b∗(x1,tip, 0). The result is a small estimated pressure gradient �p∗/�l∗, and
therefore a small CaRW . Thus the finger is shaped primarily by elastic and capillary forces
(Ducloué et al. 2017a; Cuttle et al. 2020), so we refer to this regime as elastic reopening.

The comparison between experiments and steady numerical simulations is detailed with
individual plots of each level of collapse in figure 4(c). Since these are steady numerical
simulations, Ca is used as Ca. A comparison is not shown for Ai = 0.43, because of
difficulties in resolving the simulations for levels of collapse very close to opposite wall
contact, when the fluid layer in the channel becomes very thin. However, the numerical
model (solid lines) shows remarkable quantitative agreement with the experimental data
(circles) for levels of collapse 0.53 ≤ Ai ≤ 0.95. This indicates that our lubrication-based
fluid–structure interaction model captures the key physics underlying finger propagation in
the experiment. We find an initial-collapse-dependent threshold value of Ca that divides
viscous reopening from elastic reopening. Viscous reopening occurs at low Ca and is the
only observed behaviour at low levels of initial collapse. Elastic reopening occurs at high
Ca when the initial collapse is sufficiently large. We now proceed to discuss the modes of
finger propagation associated with these different reopening regimes.

4.2. Viscous reopening in weakly collapsed channels
For Ai = 0.95 and Ai = 0.82, all experiments gave steadily propagating fingers, each
of approximately constant capillary number, consistent with previous studies of airway
reopening (Grotberg 2001; Hazel et al. 2012; Ducloué et al. 2017b). Figure 5 shows
sequences of time-lapse images from experiments for Ai = 0.95. Steady propagation is
indicated by the fact that the shape of the finger does not vary as it propagates, and
the consecutive interfaces are uniformly spaced. As the flow rate is increased from
Q∗ = 5 ml min−1 (panel 1) to 50 ml min−1 (panel 2), the symmetric finger narrows and
its tip curvature increases. This trend is reversed upon further increase of the flow rate for
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Figure 5. Steadily propagating fingers for Ai = 0.95. In experiments 1–5, the mean value of the capillary
number over the ROI is Ca = 0.01, 0.17, 0.45, 0.78, 1.23, respectively, while time intervals between the
interfaces are 3.0, 0.3, 0.1, 0.05 and 0.05 s, respectively. The interfaces in red are the steady numerical solutions
for the same capillary number as in the experiments.

Q∗ ≥ 150 ml min−1 (panels 3–5), with the finger widening and reducing its tip curvature.
The red interfaces in each panel are finger profiles from steady numerical calculations with
the same capillary number as the experiments. They capture accurately the finger profile
in panels 1–3, but differences appear in panels 4 and 5, where the numerical solution is
asymmetric about the centreline of the channel, in contrast to the experimental fingers,
which remain symmetric.

The non-monotonic variation of the finger width λ as a function of Ca is plotted
in figure 6(a), with good agreement between experiments (red symbols) and steady
simulations (solid line). The finger width decreases with increasing Ca only for the
smallest values investigated, Ca < 0.1. This is the limit where CaRW tends to Ca in
§ 4.1, and a decreasing finger width concurs with displacement flows in rigid Hele-Shaw
channels (Tabeling & Libchaber 1986). The steady simulations undergo a pitchfork
bifurcation near Ca = 0.55, where symmetry about the centreline of the channel is lost.
This bifurcation is responsible for the morphological change seen between panels 3 and 4
of figure 5. In figure 6(b), the steady simulations (solid line) capture the overall increase
of the experimental bubble pressure (red circles) with increasing Ca. The turning point at
Ca ≈ 0.15 in the numerical curve is a signature of compliant channel reopening, which
indicates a transition from pushing to peeling fingers (Gaver et al. 1996; Hazel & Heil
2003; Cuttle et al. 2020). In the viscous pushing regime, the p∗

b versus Ca curve has a
negative slope, and a large volume of fluid is displaced by the finger tip. In the viscous
peeling regime, the p∗

b versus Ca slope becomes positive, and very little fluid is pushed by
the finger tip. In both these regimes, however, CaRW is proportional to Ca, indicating that
the dominant balance is between viscous and capillary stresses.

In contrast to the numerical results, the experimental data do not indicate a turning
point at low Ca, but the bubble pressure fluctuates significantly for the smallest value
of Ca = 0.01, with variations of ±20 % over the ROI, despite an approximately constant
velocity. This may be attributed to the presence of gravity forces in the experiment (Hazel
& Heil 2008). The increasing bubble pressure of peeling fingers with increasing Ca means
that the reopening height of the channel increases, thus volume conservation requires the
fluid behind the finger tip to occupy a smaller fraction of the channel width (Ducloué et al.
2017b). Hence the finger width λ increases with Ca, as shown in figure 6(a). We note that
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Figure 6. Slightly collapsed channel, Ai = 0.95. Plots of (a) the finger width λ and (b) the bubble pressure
p∗

b as functions of the mean capillary number Ca. The solid black lines depict the numerical steady solutions,
while the red symbols indicate mean experimental values with error bars corresponding to standard deviations
within the ROI. In both plots, we identify a pitchfork bifurcation where the symmetric round-tipped branch
bifurcates into an asymmetric flat-tipped branch.

the variability of the capillary number over the ROI increases with Ca (up to ±7 %). This
is consistent with thinner liquid films around the peeling finger, which makes the finger
more sensitive to channel imperfections that can affect its velocity (Cuttle et al. 2020). The
experimental data point with the highest Ca in figure 6(b) is not in good agreement with
the numerical prediction. We attribute this discrepancy to the fact that the experimental
bubble pressure (500 Pa) is far outside the range of pressures (−200 Pa < p < +200 Pa)
for which the constitutive channel law used in our model was calibrated; see Appendix A
for details of the calibration. The elastic sheets used in the experiments stiffen under
inflation, meaning that in order to inflate the channel by the same amount, higher pressures
are required in the experiments than in the model; the level of channel inflation is set by
conservation of mass. The stiffening increases nonlinearly, explaining why there is such a
dramatic increase in the difference between experimental and numerical pressures at the
highest value of Ca.

At Ai = 0.82, we observe similar trends in both experiments and simulations; see
Appendix C. However, the turning point in the numerical simulations is displaced to a
40 % lower value of the capillary number. Moreover, a pitchfork bifurcation that leads
to asymmetric fingers (Fontana et al. 2021), indicated in figure 6 for Ai = 0.95 by the
emergence of a solution branch at Ca ≈ 0.55, is displaced to smaller Ca for Ai = 0.82,
and a symmetry-breaking bifurcation is also observed in the experiments.

4.3. Elastic reopening in strongly collapsed channels
We now turn to the elastic reopening regime, which was identified in § 4.1 for increasing
levels of collapse. Figure 7 shows experimental sequences of time-lapse images of finger
propagation at Ca = 0.36, for five values of the initial level of collapse 0.43 ≤ Ai ≤ 0.78.
Steadily propagating fingers are observed only in the least collapsed channel with Ai =
0.78 (panel 1), which reopens viscously based on the findings of § 4.1. By contrast, finger
propagation is unsteady for the larger levels of collapse (panels 2–5) where a dominantly
elastic reopening regime is expected. The unsteadiness is associated with the appearance of
interface dimples on the finger tip, which can grow into clefts and advect around the curved
tip as the finger propagates. They arise either intermittently or approximately periodically.
For the largest initial collapse (Ai = 0.43), the interface indentations form small-scale
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Figure 7. Experimental images of fingers propagating at a fixed mean capillary number Ca = 0.36 over the
ROI. From top to bottom, the initial level of collapse increases: Ai = 0.78, 0.68, 0.56, 0.53, 0.43. The time
interval between interfaces is the same for all experiments: 0.14 s.

corrugations on the finger tip that cause the characteristic feathered pattern highlighted
previously by Cuttle et al. (2020).

The disjoining pressure condition introduced in § 3 enables us to extend the numerical
simulations benchmarked by Fontana et al. (2021) to capture unsteady finger propagation
prevalent in the elastic reopening regime. We focus on unsteady finger propagation at Ai =
0.53, and compare numerical findings with experiments in § 4.3.1. We then compute the
underlying bifurcation structure in § 4.3.2 to gain insight into the transition from viscous
to elastic reopening and unsteady propagation.

4.3.1. Multiple modes of finger propagation
Figure 8(a) shows the wide variety of finger propagation observed experimentally for Ai =
0.53 and flow rates between 5 ml min−1 in panel 1 and 330 ml min−1 in panel 10 (0.01 ≤
Ca ≤ 0.65). We classify the morphological structures seen in the experiments into four
categories: (i) round-tipped, a finger propagating steadily with a symmetric curved front,
depicted in panel 1 of figure 8(a); (ii) flat-tipped, a finger propagating steadily with an
asymmetric flat front, depicted in panel 2 of figure 8(a); (iii) pointed, a finger propagating
steadily with a symmetric triangular shaped front, depicted in panel 5 of figure 8(a); and
(iv) feathered, a finger propagating unsteadily with small-scale perturbations developing
continuously at the tip, depicted in panel 10 of figure 8(a).

For the lowest values of Ca (panels 1 and 2), channel reopening is associated with
the steady propagation of round-tipped symmetric and flat-tipped asymmetric fingers
similar to those discussed in weakly collapsed channels in § 4.2. For Ca = 0.10 (panel
3), the asymmetric finger is prone to intermittent growth of tip perturbations, which is
reminiscent of tip-splitting events in viscous fingering in rigid channels (Couder 2000).
The flat-tipped asymmetric state transitions to a pointed finger in panel 4 (Ca = 0.16).
The appearance of the pointed finger, which is observed over the entire ROI in panel
5, coincides approximately with the saturation of CaRW in figure 4, which marks the
transition to the elastic reopening regime. These pointed fingers were not observed within
the range of flow rates investigated for Ai = 0.60 (Appendix C).

Panels 6–10 in figure 8(a) all show unsteady finger propagation (Ca ≥ 0.24). In panel
6, dimples appear almost periodically on one side of the pointed finger tip, thus the finger
propagation is asymmetric about the centreline of the channel. These periodic indentations
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Figure 8. (a) Time evolution of experiments performed at a fixed Ai = 0.53 and constant flow rate that
increases from 5 ml min−1 in experiment 1 up to 330 ml min−1 in experiment 10. The time intervals between
the interfaces are, from 1 to 10: 1.17, 0.67, 0.40, 0.17, 0.17, 0.17, 0.10, 0.17, 0.13 and 0.10 s, respectively. The third
to last interface in experiment 6 is missing due to a camera fault. See also supplementary movies available at
https://doi.org/10.1017/jfm.2024.210. (b) Time evolution of our time-dependent simulations at a fixed Ai = 0.53
and constant flow rate that increases from 3 ml min−1 in simulation 1 up to 160.3 ml min−1 in simulation 10.
The time interval between the interfaces is 0.08 in the non-dimensional scale, which results in 1.486, 0.205,
0.134, 0.078, 0.062, 0.052, 0.043, 0.038, 0.037, 0.028 s from 1 to 10, respectively. The initial steady solution
in blue and the perturbed profile at tp in red are the first two finger profiles in each time sequence. See also the
supplementary movies. Complete domains of the time simulations from panels 8 and 9 are depicted in (c) and
(d), respectively.

grow into clefts in panel 7. By panel 8, the interface dimples form on both sides of the
finger tip in alternation, and the pattern of finger propagation appears mildly disordered.
As discussed in § 4.2, the finger width increases with increasing Ca, thus reducing the
curvature of the finger tip. This leads to feathered modes of propagation in panels 9
and 10 because the weakly curved front of the finger tip promotes the appearance of
small stubby fingers that form a regular corrugation (Ducloué et al. 2017a). Variation of
the characteristic width of these interfacial protrusions along the ROI could be due to
imperfections in the channel, but comparison between panels 9 and 10 suggests that their
width decreases overall with increasing Ca. The finger propagation is unsteady because
the weakly curved finger tip advects the small finger-like protrusions sideways from the
centreline, thus broadening the central protrusions, which in turn undergo tip-splitting.
This results in a delicate cycle of small-scale stubby finger generation on the weakly
curved front, where the length scale of the fingering decreases continuously as the finger
propagates (panels 9 and 10). Remarkably, the interface in these experiments is not prone to
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Peeling fingers in an elastic Hele-Shaw channel

self-intersection despite its fine indentation, as discussed in § 3.2.2. This was also the case
with the previously mentioned clefts in panels 7 and 8, which always remained sufficiently
short and broad.

Figure 8(b) shows time simulations performed for the same values of mean capillary
numbers as in the experiments in figure 8(a), except for panels 9 and 10, where Ca is
smaller than in the corresponding panels in figure 8(a). We made the choice of taking
smaller steps in Ca for the simulations, so we could capture the change in the transient
behaviours that precedes the onset of the feathered mode. Time simulations were initialised
with steady solutions (blue contours) that were similar to the finger envelopes observed
experimentally: round-tipped symmetric fingers (panels 1–3), flat-tipped asymmetric
fingers (panel 4) and pointed fingers (panels 5–10); see § 4.3.2. The distorted finger shapes
after perturbation of the steady solution using (3.18) are shown with red contours at
t = tp = 0.04. In panels 1–7, steady modes of finger propagation are recovered over a
distance of the order of a channel width. The transitions from symmetric round-tipped
(panels 1 and 2) to asymmetric flat-tipped (panels 3 and 4) fingers, and to symmetric
pointed fingers (panels 5–7), occur for similar values of Ca as in the experiment. The
absence of finger indentations in the simulations in panels 1–5 means that the disjoining
pressure did not affect the evolution of these fingers. In the simulations in panels 6 and
7, the initial perturbation evolved into an indentation, but interface self-intersection at
this indentation was prevented by the disjoining pressure, thus allowing the simulations to
proceed.

The first instance of unsteady finger propagation occurs at Ca = 0.31 (panel 8) in the
simulations and at Ca = 0.24 (panel 6) in the experiments. For larger respective values of
Ca, both experiments and time simulations support only unsteady finger propagation. For
sufficiently large values of Ca, regardless of initial transient, the finger develops into the
feathered mode.

Due to long transients, simulations in panels 8 and 9 show only the early and later
stages of the finger propagation. Figures 8(c,d) show the full length of the numerical
domain for these two panels. They indicate that the numerical model captures the
unsteady dynamics observed in the experiment, where the pointed finger develops periodic
perturbations (figure 8a, panels 6 and 7). In figure 8(c), asymmetric oscillations destabilise
the symmetric pointed finger after a long transient. The perturbation develops a cleft close
to the fingertip, which is advected and undergoes tip-splitting at approximately the same
time. This process is repeated, resulting in the feathered pattern. In figure 8(d), we observe
a similar transition from pointed finger to feathered mode, but the transient oscillatory
perturbation is symmetric instead. This transition from asymmetric to symmetric
perturbations is seen in the experiments (figure 8a, panels 7 and 8) with similar values
of Ca. However, the finite length of the experimental channel means that we cannot say
for certain if the patterns seen in panels 7 and 8 are long-term transients or periodic states.

Finally, at Ca = 0.40 (figure 8b, panel 10), the simulation depicts a finger that evolves
from the symmetric pointed to the feathered state after a very brief transient. The
time-dependent simulations of the feathered modes are interrupted when the width of
the small-scale finger becomes comparable to the channel height b∗

0. At this point, the
depth-averaged model is no longer reliable. As in the experiments, the typical length scale
of the small-scale fingering seen in the simulations decreases as Ca increases. However,
the simulations feature small-scale indentations that are consistently deeper than in the
experiments. Given that the typical indentation width is comparable to the unperturbed
channel height b∗

0, there will be three-dimensional effects in the experiments that cannot
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Figure 9. Time evolution of the x2 coordinate of a point on the interface at a fixed axial distance dx = 0.5
behind the finger tip, for (a) Ca = 0.24, (b) Ca = 0.28, (c) Ca = 0.31, and (d) Ca = 0.32. These values are
extracted from the simulations depicted in figure 8(b).

be captured by our model. At this stage, regardless of the calibration or the choice of
functional form for the disjoining pressure, three-dimensional Stokes simulations are
necessary to capture correctly the interfacial interaction between the small-scale fingers.

The propagation of the experimental feathered modes gives no indication that a periodic
state is being reached; instead, we can see that the length scale of the fingering pattern
reduces along the channel. Similarly, the simulations of the feathered mode stop once the
length scale of the fingering pattern reaches the length scale of the channel height. In
figure 9, we gauge the apparent periodicity of the feathered modes by tracking the time
evolution of the x2 component of a point Π = (x1,tip − dx, x2(t)) on the finger interface
at a fixed axial distance dx = 0.5 behind the finger tip Πtip = (x1,tip, x2,tip). For both
Ca = 0.24 and Ca = 0.28, after a transient due to the advected perturbations, the x2
component of Π eventually reaches a steady value. For the feathered modes, figures 9(c,d),
the oscillations persist throughout the simulations, but they do not appear to tend towards
a periodic state, thus supporting the experimental findings.

4.3.2. Pressure–Ca relations and bifurcation structure
As reported previously by Fontana et al. (2021), the model system exhibits a complex
solution structure, with multiple co-existing steadily propagating states and numerous
bifurcations. Figure 10(a) compares bubble pressure p∗

b in the experiments and steady
numerical simulations as a function of the mean capillary number Ca for Ai = 0.53. As
for weakly collapsed channels in § 4.2, p∗

b increases with Ca, indicating peeling fingers.
The turning point in the pressure that signifies a transition to pushing in the numerical
simulations is at the lower end of the capillary number range investigated (Ca ≈ 0.03). The
symbols of different colours distinguish the different finger types observed experimentally.
As shown in figure 8, the steadily propagating round-tipped symmetric finger (solid green
circle), flat-tipped asymmetric finger (solid red square) and pointed symmetric finger (solid
blue triangle) occur in succession as Ca increases. The steady numerical simulations
capture their bubble pressures and Ca ranges quantitatively. The insets show examples
of experimental fingers overlaid with a steady numerical solution at the same Ca. In
insets 1, 2, and 3, where the finger propagation is steady, there is excellent agreement
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Peeling fingers in an elastic Hele-Shaw channel

between simulations and experiments for finger width and morphology. The unsteady
experimental fingers discussed in § 4.3.1, which occur in the vicinity of transitions between
modes and for Ca > 0.27, are shown with open symbols. In the numerical simulations,
the solution branches for flat-tipped fingers (red), which include both symmetric and
asymmetric solutions, and pointed symmetric fingers (blue), continue to values of the
capillary number where only feathered fingers are observed in the experiment (Ca > 0.27).
For Ca up to 0.5, the bubble pressure of the experimental feathered modes lies between the
red and blue curves, but closer to the latter. As Ca increases further, the shape and bubble
pressure of the flat-tipped finger in the simulations approach those of pointed fingers, with
pressure below the experimental data. The insets indicate that the overall finger shape
upon which instabilities develop in the experiment is the pointed finger (blue) rather than
the flat-tipped finger (red); see inset 4. As Ca increases, it becomes progressively more
difficult to distinguish these two modes; see inset 5.

In figure 10(b), we highlight the symmetry and stability of the steady solutions, which
were computed by imposing fixed Q∗ and Ai to mimic the experiments. The different
regimes are highlighted with shaded regions that are defined by the pushing/peeling
transition, where the Pb versus Ca slope changes sign, and the viscous/elastic transition,
estimated from figure 4(c). The solution structure is complex, consistent with that reported
previously by Fontana et al. (2021), but does not always have a direct connection to the
observed time-dependent behaviour. Consequently, we have not pursued a detailed study
of this bifurcation diagram, other than to confirm that all bifurcations and changes of
stability are consistent with standard theory. There are, however, connections that can be
made between the bifurcation diagram and experimental observations.

The round-tipped symmetric finger observed at low Ca loses stability to a pair of
emerging asymmetric fingers at a supercritical pitchfork bifurcation P1, which is consistent
with the experimental transition to a flat-tipped asymmetric finger at Ca = 0.1. The
asymmetric fingers are superposed in this projection because they have the same bubble
pressure. The unstable symmetric branch emanating from P1 is double-tipped, which
provides a mechanism for intermittent tip-splitting near Ca = 0.1, as seen in figure 8, panel
3. The finger may visit the vicinity of this unstable branch in the experiment intermittently
due to background perturbations (figure 8a, panel 3) or once following initial perturbation
in the numerical system (figure 8b, panel 3).

The pitchfork bifurcation P2 occurs at Ca = 0.18, and the bifurcation scenario in
its vicinity is consistent with the experimental transition from asymmetric flat-tipped
fingers to pointed fingers, which accompanies the abrupt saturation of CaRW in § 4.1.
This signals elastic reopening, where p∗

b is proportional to Ca, and thus suggests that
finger morphologies such as pointed and feathered modes are a feature of elastic vessel
reopening (Heap & Juel 2008; Ducloué et al. 2017b; Cuttle et al. 2020). In the numerical
model, the feathered modes emerge beyond the Hopf bifurcation H4. Between H4 and
a subsequent Hopf bifurcation H5, the pointed finger has one pair of unstable complex
conjugate eigenvalues, while after H5 it has two pairs. However, in both regions, the
frequencies of the eigenmodes do not match the typical oscillatory time scales of the
feathered modes; see figure 9. This suggests that these complex modes of propagation,
discussed in § 4.3.1, correspond to fully nonlinear dynamics. It is worth pointing that
there are likely to be other solutions, in addition to those presented here. For instance,
Fontana et al. (2021) have found multi-tipped Romero–Vanden-Broek solutions (Romero
1982; Vanden-Broeck 1983; Gardiner et al. 2015; Green, Lustri & McCue 2017), calculated
originally for the rigid channel. These solutions were not stabilised by the presence of the
elastic sheet.
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Figure 10. Plot of the bubble pressure p∗
b as a function of the mean capillary number Ca at the fixed level

of collapse Ai = 0.53. (a) Experimental fingers are plotted as symbols. Green circles represent round-tipped,
red squares represent flat-tipped (symmetric or asymmetric), blue triangles represent pointed-tipped and purple
diamonds represent feathered fingers. Filled symbols represent steadily propagating experimental fingers, while
empty symbols represent unsteady ones. Error bars indicate standard deviations of the capillary number within
the ROI. Steady numerical solutions are presented as solid lines, following the same colour code from the
experiments. Insets are experimental images with steady numerical interfaces at the same Ca superposed.
They correspond to the numbered points in the graph. (b) Bifurcation diagram of the steady numerical
solutions. Solid (dashed) lines represent stable (unstable) solutions. Black (blue) lines represent symmetric
(asymmetric) solutions. The number of positive real eigenvalues m and complex eigenvalues with positive real
part n, corresponding to instabilities, are indicated in parentheses (m, n) for each solution branch. The relevant
bifurcations are marked with red dots: P1 and P2 are pitchfork bifurcations, H1–H5 are Hopf bifurcations, L1 is
a limit point, and B1 and B2 indicate more complex transitions. The bifurcation structure around P2 could not
be detailed fully, but findings are consistent with the picture provided in the inset.

5. Conclusion

We have explored the transition to complex pattern formation associated with two-phase
flows in a Hele-Shaw channel, where the upper rigid boundary is replaced by an elastic
sheet. This elastic upper boundary enables the collapse of the channel so that it adopts
a prescribed non-uniform cross-sectional depth distribution and its cross-sectional area is
reduced relative to the undeformed rectangular channel. Injection of air at constant flow
rate into this initially collapsed, liquid-filled channel leads to the propagation of an air
finger, which reopens the channel by redistributing resident fluid ahead of its tip. We find
experimentally that these propagating fingers exhibit unsteady dynamics for a sufficiently
large level of initial channel collapse (small Ai) or large finger capillary number (Ca), and
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that the characteristic feathered modes first identified by Cuttle et al. (2020) are supported
across a wide range of Ai and Ca.

To capture these complex finger patterns with numerical simulations, we extend the
depth-averaged model developed by Fontana et al. (2021) to include an artificial disjoining
pressure term. This term is added to circumvent self-intersection of the air finger
interface that prematurely terminates the simulations, and occurs when the applied local
interface perturbation grows into a cleft that is sufficiently deep and narrow. The fact that
self-intersection of the air-finger interface is not observed in the experiments suggests that
its presence in simulations is likely a result of the approximations made when simplifying
the three-dimensional liquid-film dynamics.

Although the inclusion of fluid film effects in the depth-averaged model is fundamental
for both qualitative and quantitative agreement with experiments (Fontana et al. 2021), we
find that the results from numerical simulations are unaffected by our precise choice of
film model, i.e. whether the film thickness is set at the finger tip and thus has a uniform
thickness (Peng et al. 2015), or varies with the local height of the finger (Fontana et al.
2021). This is because the choice of fluid film model affects the system only via mass
conservation, so our results are unchanged provided that we present them as a function of
the capillary number rather than the imposed flow rate.

We started by quantifying the relative importance of viscous and elastic effects on the
flow in the reopening region ahead of the finger tip. For this we compared the elastic system
with the propagation of a finger into a rigid wedge (Peng & Lister 2019; Juel et al. 2018). A
rigid-wedge capillary number (CaRW ) was estimated by converting the pressure gradient
ahead of the finger tip, using the depth-averaged theory, into a dimensionless finger speed
set by viscous and capillary forces. We used this metric to establish the fidelity of the
simulations across the range of Ai and Ca studied, by demonstrating notable quantitative
agreement between numerical and experimental values of CaRW . Comparing CaRW to Ca,
which is measured based on the finger speed, we find an abrupt saturation of CaRW at
a threshold value of Ca for sufficiently large initial collapse. This saturation of viscous
dissipation signals a transition from reopening dominated by viscous and capillary forces
to dominant elastic and capillary effects. We refer to these distinct reopening regimes as
‘viscous’ and ‘elastic’, respectively. We find that the exotic finger morphologies observed
experimentally, such as pointed fingers and the feathered mode, are associated with an
elastic regime of reopening.

A combination of experiments and numerical simulations was next used to explore the
modes of finger propagation associated with the viscous and elastic regimes. In the viscous
regime, which corresponds to modest channel collapse and/or moderate values of Ca,
we recover the non-monotonic variation of bubble pressure (and width) with Ca, which
is characteristic of benchtop models of pulmonary airway reopening (Gaver et al. 1996;
Jensen et al. 2002), and fundamentally distinguishes elastic-channel finger propagation
from two-phase displacement flows in rigid Hele-Shaw channels (Saffman & Taylor 1958).

The introduction of a disjoining pressure into the numerical model enables the study
of the elastic regime, which occurs for increased channel collapse and/or Ca. This is
because the disjoining pressure prevents the self-intersection of the interface when the
imposed perturbation evolves into a cleft, e.g. for Ca ≥ 0.24 when Ai = 0.53. Remarkably,
the extended numerical model captures the destabilisation of the finger into feathered
modes of propagation, and this process helps to shed light on the rich variety of
pattern formation observed experimentally. The feathered modes of propagation emerge
following long asymmetric (Ca = 0.31) or symmetric (Ca = 0.32) oscillatory transients,
which are associated with patterns reminiscent of the oscillatory fingers observed in the
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experiment for Ca = 0.24 and 0.28, respectively. Furthermore, both experiments and
simulations indicate that the feathered modes themselves may be transient. Increasingly
fine indentation of the finger tip as it propagates indicates that the time scale for
tip-splitting at the interface is shorter than the time scale for advection of the interface
perturbation, and thus leads to ever refining fingering. These findings suggest that the
unsteady patterns observed experimentally, characteristic of the elastic regime, may be
continually evolving, with no evidence that these disordered modes converge to steady or
periodic states.

Finally, we find excellent quantitative agreement between experiments and stable steady
numerical solutions. Steady solutions also match the bounding envelopes of unsteady
fingers obtained in the experiments and time simulations. This means that the steady
bifurcation structure calculated numerically is sufficient to predict the bubble pressure.
However, the steady bifurcation diagram does not inform unsteady finger propagation
prevalent in the elastic regime, in that time-dependent modes which bifurcate from
the steady solutions have different characteristic time scales from the feathered modes
observed in the experiments and time simulations. Hence, in spite of the apparent
simplicity of this system, the dynamics observed in the experiments and time simulations
reflects complex nonlinear dynamics that requires finite-amplitude perturbations of the
steady bifurcation structure to be attained.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.210.
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Appendix A. Estimation of the pre-stress

We followed the methodology developed by Fontana et al. (2021), and used the
pre-stress as a fitting parameter chosen to achieve the best quantitative agreement between
experimental and numerical channel law, i.e. the constitutive relation between transmural
pressure (difference between the pressure inside the channel and atmospheric pressure)
and the level of collapse, Ai, in a channel filled with fluid at rest. The channel law
was measured experimentally and modelled using the Föppl–von Kármán equation to
predict the shape of the elastic upper boundary of the channel under prescribed transmural
pressure. Results are shown in figure 11, where the red symbols show the experimental
data, and the solid black line is the best fit computed by our model. The resulting pre-stress
fitted by this procedure is σ

(0)∗
22 = 32 kPa, σ

(0)∗
11 = 0 and σ

(0)∗
12 = 0.

Appendix B. Uniform and non-uniform film thickness

In § 3, we describe the model of fluid films developed by Peng et al. (2015) in which
the thickness of the film between the finger and the channel boundary is a fraction
f1(Ca) of the channel height, and modifies its transverse curvature by a factor f2(Ca).
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Figure 11. Relationship between the transmural pressure and the level of collapse of the channel, Ai. The red
circles indicate the experimental data, and the solid black line corresponds to the numerical simulation for
σ

(0)∗
22 = 32 kPa.

The expressions for the functions f1(Ca) and f2(Ca) were derived assuming a rigid
channel, but Peng et al. (2015) and Fontana et al. (2021) showed that this fluid film model
yields excellent agreement with experiments when applied to a radial elastic cell and a
rectangular elasto-rigid channel, respectively.

Here, we follow Fontana et al. (2021) and assume that the non-uniform thickness of the
fluid film at any point (x1, x2) on the finger is given by f1(Ca) b(x1, x2). Alternatively, as
was done by Peng et al. (2015), we could assume that the fluid film is generated at the finger
tip, where the height of the channel is btip. This yields a uniform film thickness f1(Ca) btip
across the finger region. Both choices correspond to approximations of the actual fluid-film
distribution, which could be determined by a full three-dimensional Stokes simulation. We
also assume that the film model is a function of the global capillary number Ca based on
the averaged finger tip velocity, instead of a local capillary number based on the velocity
at each point on the interface. Global and local capillary numbers take the same values
in the case of steadily propagating fingers. For unsteady fingers, however, the velocity of
the interface can vary significantly across short length scales, particularly in the presence
of small-scale fingering, but panels 8, 9 and 10 of figure 8(b) suggest that our model is
able to capture the feathered mode, which is the most complex mode of finger propagation
observed in our system.

The choice of either uniform or non-uniform films affects the finger cross-section and
influences the relation between flow rate and finger speed, because of mass conservation.
In figure 12, we compare the relationship between capillary number and flow rate in
experiments and models with uniform and non-uniform films. Although neither model
quite matches the experimental data, the closest agreement is obtained with a uniform film
thickness distribution. Figure 13 shows that the steady finger solutions obtained using the
two variations of the film model superimpose for the same capillary number. Steady results
from both models, such as finger shape, bubble pressure and transition between modes of
propagation, are in remarkable agreement when we use the capillary number as the control
parameter. Hence, throughout this paper, we present all experimental and numerical results
in terms of capillary number. However, since the capillary number is time-dependent, in
the unsteady propagation scenario, the non-uniform film thickness model is the natural
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Figure 12. Mean capillary number as a function of flow rate, for an initial level of collapse Ai = 0.53. The
blue and black lines represent the numerical model with uniform and non-uniform film thickness distributions,
respectively. The red symbols indicate the experimental data, where the error bars are the standard deviations
of Ca over the ROI.
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Figure 13. Interfaces of steady solutions computed using the uniform (non-uniform) approach of the fluid film
model plotted as the blue (black) solid line. The solutions are computed by fixing the value of capillary number:
(a) Ca = 0.06, (b) Ca = 0.15, (c) Ca = 0.23 and (d) Ca = 40.

choice for time-dependent simulations. Therefore, all numerical results presented in this
paper, apart from those in this appendix, are obtained with a choice of non-uniform film
thickness.

Appendix C. Experimental data at Ai = 0.82 and 0.60

Figures 14 and 15 show the results from experiments and steady simulations conducted at
fixed levels of collapse Ai = 0.82 and 0.60, respectively. Figures 14(a) and 15(a) show
the time evolution of the fingers for increasing values of Ca, and figures 14(b) and
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Figure 14. (a) Time evolution of experiments performed at a fixed Ai = 0.82 and constant flow rate Q∗. From
experiments 1 to 5, Q∗ increases from 5 to 500 ml min−1. The constant time intervals between the interfaces
in each experiment are, from 1 to 5, 2.0, 0.2, 0.1, 0.05, 0.05 s. (b) Plot of bubble pressure p∗

b as a function of
the mean capillary number Ca for experiments at Ai = 0.82. The stability and morphology of the fingers are
presented using the same colours/shapes of experimental data points as in figure 10(a). Steady simulations are
presented as solid black lines.
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Figure 15. (a) Time evolution of experiments performed at a fixed Ai = 0.60 and constant flow rate Q∗. From
experiments 1 to 8, Q∗ increases from 10 to 350 ml min−1. The constant time intervals between the interfaces
in each experiment are, from 1 to 8, 0.86, 0.25, 0.13, 0.13, 0.13 0.07, 0.05, 0.05 s. (b) Plot of bubble pressure
p∗

b as a function of the mean capillary number Ca for experiments at Ai = 0.60. The stability and morphology
of the fingers are presented using the same colours/shapes of experimental data points as in figure 10(a). Steady
simulations are presented as solid black lines.

15(b) show the bubble pressure as a function of Ca. Finger propagation at Ai = 0.82
is broadly similar to observations at Ai = 0.95 described in § 4.2, but here the fingers
transition from round-tipped symmetric (Ca = 0.51) to flat-tipped asymmetric (Ca =
0.90). Furthermore, propagation is unsteady for the largest value of the capillary number,
Ca = 1.08. For Ai = 0.60, this same transition between symmetric and asymmetric fingers
is displaced towards lower values of mean capillary number Ca = 0.16. In the vicinity of
this transition, unsteady fingers can be observed with the development of deep clefts, but
they become less pronounced as Ca increases. As we increase Ca even further (panel 6 in
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figure 15a), the finger starts to develop deep indentations again, but with regular frequency.
Finally, for even larger values of Ca, we see the emergence of feathered modes. By contrast
with Ai = 0.53, no steady pointed fingers have been observed in the experiments. The
overall trend in the experimental data is that as the initial collapse is increased, smaller
capillary numbers are required for the onset of complex unsteady behaviour.
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