## Radio-Optical Analysis of Extended Radio Sources in the First Look Survey Field

C. M. Paulo<sup>1</sup>, I. Prandoni<sup>2</sup>, R. Morganti<sup>3</sup>, and C. M. Cress<sup>1</sup>

<sup>1</sup>University of the Western Cape, Department of Physics, Bellvile, 7535, South Africa <sup>2</sup>INAF-Instituto di Radioastronomia, Via Gobetti 101, I-40129 Bologna, Italy <sup>3</sup>ASTRON, Postbus 2, 7990 AA, Dwingwloo, The Netherlands

We combine 610 MHz GMRT data, 1.4 GHz VLA data, and 1.4 GHz WSRT observations, encompassing a ~4 square degree field centered on the verification strip of the *Spitzer* First Look Survey field, to study radio sources down to fluxes of about 0.1 mJy. The spectral index (Figure 1) analysis shows that the majority of multi-component sources are steep-spectrum sources. Nevertheless the spread in the spectral distribution is wide, with a significant number of ultra-steep, flat or inverted sources, possibly indicating a wider range of accretion modes in fainter samples. By cross-correlating 107 multi-component radio sources with the optical catalogues of Marleau *et al.* (2007) and Papovich *et al.* (2006), 23 objects were identified. The measured redshifts span the range 0 < z < 1.8 and peak at  $z \sim 0.2$ . According to their radio power, six of the identified objects are in the range of FR II sources while 17 are in the range of FR I sources. Further optical follow-up will allow a more complete census of the sub-mJy population and more information on AGN feedback from such sources.

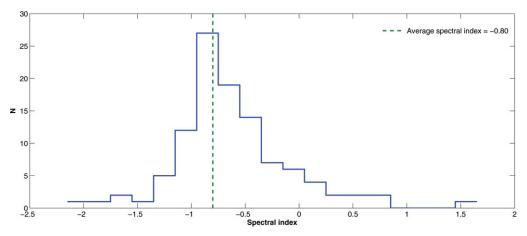



Figure 1. Spectral index distribution. The vertical dashed line indicates the average spectral index value of the sample.

## References

Papovich, C., Cool, R., Eisenstein, D., Le Floc'h, E., Fan, X., Kennicutt, R. C., Jr., Smith, J. T. D., Rieke, G. H., & Vestergaard, M. 2006, AJ, 132, 231

Marleau, F. R., Fadda, D., Appleton, P. N., Noriega-Crespo, A., Im, M., & Clancy, D. 2007, ApJ, 663, 218