
London Mathematical Society ISSN 1461–1570

THE RELATIVE CONSISTENCY OF THE AXIOM OF CHOICE
MECHANIZED USING ISABELLE/ZF

LAWRENCE C. PAULSON

Abstract

The proof of the relative consistency of the axiom of choice has been
mechanized using Isabelle/ZF, building on a previous mechaniza-
tion of the reflection theorem. The heavy reliance on metatheory in
the original proof makes the formalization unusually long, and not
entirely satisfactory: two parts of the proof do not fit together. It
seems impossible to solve these problems without formalizing the
metatheory. However, the present development follows a standard
textbook, Kenneth Kunen’s Set theory: an introduction to indepen-
dence proofs, and could support the formalization of further material
from that book. It also serves as an example of what to expect when
deep mathematics is formalized.

1. Introduction

In 1940, Gödel [5] published his famous monograph proving that the axiom of choice
(AC) and the generalized continuum hypothesis (GCH) are consistent with respect to the
other axioms of set theory. This theorem addresses the first of Hilbert’s celebrated list of
mathematical problems. I have attempted to reproduce this work in Isabelle/ZF.

When so much mathematics has already been checked mechanically, what is the point
of checking any more? Obviously, the theorem’s significance makes it a challenge, as do
its size and complexity, but the real challenge comes from its reliance on metamathematics.
As I have previously noted [18], some theorems seem difficult to formalize even in their
statements, let alone in their proofs. Gödel’s work is not a single formal theorem. It consists
of several different theorems which, taken collectively, can be seen as expressing the relative
consistency of the axiom of choice. At the end of [5, Chapter VII], Gödel remarks that
given a contradiction from the axioms of set theory augmented with the axiom of choice,
a contradiction in basic set theory ‘could actually be constructed’ [5, p. 87]. This claim is
crucial: logicians prefer consistency proofs to be constructive.

Gödel’s idea [4, 6] is to define a very lean model, called L, of set theory. L contains just
the sets that must exist because they can be defined by formulae. Then, prove that L satisfies
the ZF axioms and the additional axiom that ‘every set belongs to L’, which is abbreviated
to V = L. We now know that V = L is consistent with Zermelo–Fraenkel (ZF) set theory,
and can assume that this axiom holds. (The conjunction of ZF and V = L is abbreviated as
ZFL.) We conclude by proving that AC and GCH are theorems of ZFL, and therefore are
also consistent with ZF.

A complication in Gödel’s proof is its use of classes. Intuitively speaking, a class is a
collection of sets that is defined by comprehension, {x | φ(x)}. Every set A is trivially

Received 7 January 2003, revised 4 September 2003; published 13th October 2003.
2000 Mathematics Subject Classification 03E35, 03B35, 68T15
© 2003, Lawrence C. Paulson

LMS J. Comput. Math. 6 (2003) 198–248https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/6
https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

a class, namely {x | x ∈ A}, but a proper class is too big to be a set. Formal set theories
restrict the use of classes in order to eliminate the danger of paradoxes. Modern set theorists
use Zermelo–Fraenkel (ZF) set theory, where classes exist only in the metalanguage. That is,
the class {x | φ(x)} is just an alternative notation for the formula φ(x), and a ∈ {x | φ(x)}
is just an alternative notation for φ(a). The universal class, V, corresponds to the formula
True. An ‘equation’ like V = ⋃

α∈ON Vα stands for ∀x. ∃α.ON(α) ∧ x ∈ Vα . (Here, ON
denotes the class of ordinal numbers.) Gödel’s monograph [5] uses von Neumann–Bernays–
Gödel (NBG) set theory, which allows quantification over classes but restricts their use in
other ways. With either axiom system, classes immensely complicate the reasoning, making
it highly syntactic.

Why did Gödel use classes? Working entirely with sets, he could have used essentially
the same techniques to prove that if M is a model of ZF, then there exists a model L(M)
of ZFC. (ZFC refers to the ZF axioms plus AC.) Therefore, if ZFC has no models, then
neither does ZF. But with this approach, he can no longer claim that if he had a contradiction
in ZFC, then a contradiction in ZF ‘could actually be constructed’.1 For the sake of this
remark, which is not part of any theorem statement, Gödel chose a more difficult route.
Classes create more difficulties for formal proof checkers (which have to face foundational
issues squarely) than they do for mathematicians writing in English.

The proof uses metatheoretic reasoning extensively. Gödel writes [5, p. 34]:
However, the only purpose of these general metamathematical considerations
is to show how the proofs for theorems of a certain kind can be accomplished by
a general method. And, since applications to only a finite number of instances
are necessary . . . , the general metamathematical considerations could be left
out entirely, if one took the trouble to carry out the proofs separately for any
instance.

I decided to take the trouble, not using metatheory, but relying instead on a mechanical
theorem prover.

This paper describes the Isabelle/ZF proofs. It indicates the underlying mathematical
ideas, and sometimes discusses practical issues such as proof length or the machine resources
used. It necessarily omits much material that would be too long or too repetitious. The paper
concerns how existing mathematics is formalized; it contains no original mathematics.

Overview. The paper begins by outlining Gödel’s relative consistency proof (Section 2).
After a brief overview of Isabelle/ZF, the paper describes the strategy guiding the formal-
ization (Section 3) and presents some elementary absoluteness proofs (Section 4). It then
discusses relativization issues involving well-founded recursion (Section 5). Turning away
from absoluteness, the paper proceeds to describe the formalization of the constructible
universe and the proof that L satisfies the ZF axioms (Section 6); then it describes how
the reflection theorem is used to prove that L satisfies the separation axiom (Section 7).
Absoluteness again takes centre stage as the paper presents the relativization of two es-
sential datatypes (Section 8) and finally presents the absoluteness of L itself (Section 9).
Finally, the paper presents the Isabelle proof that AC holds in L (Section 10), and offers
some conclusions (Section 11). Appendix A, which was generated by Isabelle/ZF, presents
the full mechanical development.

1Consistency proofs using sets in ZF can be constructive, provided that we take care to keep track of the number
of instances of the separation axiom that are required. We can prove in ZF – using the reflection theorem – that
every finite conjunction of the ZF axioms has a model. Therefore, the absence of a model yields a contradiction in
ZF. Proofs using forcing are often formalized using this technique. I am indebted to Kunen for this observation.

199https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Figure 1: The constructible universe, L.

2. Proof outline

Recall that Gödel’s idea is to define a lean model of set theory, the class L of the
constructible sets. Figure 1 shows L (shaded) as a subclass of the universe, V. The vertical
line represents the class ON of the ordinals.

Gödel’s proof involves four main tasks:

1. defining the class L within ZF;

2. proving that L satisfies the ZF axioms;

3. proving that L satisfies V = L;

4. proving that V = L implies the axiom of choice.

As we shall see, Isabelle is well suited to completing the first and last parts. Both the definition
of L and the proof of the axiom of choice are straightforward exercises in mechanized set
theory. The second task cannot quite be completed: all of the ZF axioms can be verified,
apart from separation – it is an axiom scheme, and each instance requires its own proof.
As for the third task, the Isabelle proof that L satisfies V = L is much longer than I would
like because the metamathematical techniques that are used to abbreviate textbook proofs
are not available.

Once we have completed the first three tasks, we should be able to conclude that if
ZF is consistent, then so is ZFL. (Also, from the fourth task, if ZF is consistent, then so
is ZFC.) This inference requires reasoning in the metatheory, which is not possible using
Isabelle/ZF, so the machine formalization omits it. Standard treatments also gloss over this
step, regarding it as obvious. Section 2.4 below expands on this issue.

2.1. The problem with class models

Because L is a proper class, we cannot adopt the usual notion of satisfaction. To formalize
the standard Tarski definition of truth [10, p. 60] requires first defining, in set theory, a set F
to represent the syntax of first-order formulae. F is easily defined, either using Gödel-
numbering or as a recursive data structure. If: (i)M is a set, (ii) p ∈ F represents a formula
with k free variables, and (iii) m1, . . . , mk ∈ M , then M |= p(m1, . . . , mk) can be defined
by recursion on the structure of p. If M is a proper class, then the obvious definition of
M |= p(�m) cannot be formalized in set theory; the environments that hold the bindings of
free variables would have to belong to a function space whose range was all of M.

Tarski’s theorem on non-definability of truth [9, p. 41] asserts that no formula χ(p)
expresses V |= p. If, for each formula φ, we write �φ� for the corresponding element of F ,

200https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

then ψ ↔ ¬χ(�ψ�) is a theorem for some sentence ψ . Satisfaction cannot be defined, at
least if M = V.

2.2. Relativization

Gödel instead expressed satisfaction for class models syntactically. This approach aban-
dons the set F of formula representatives in favour of real formulae. Set theory uses a
first-order language with no constant symbols, no function symbols, and no relation sym-
bols other than ∈ and =. Variables are the only terms.

Gödel’s key concept is relativization; see [5, p. 76] or, for a modern treatment, [9, p. 112].
If M is a class and φ is a formula, define φM recursively as follows:

(x = y)M abbreviates x = y;
(x ∈ y)M abbreviates x ∈ y;
(φ ∧ ψ)M abbreviates φM ∧ ψM;
(¬φ)M abbreviates ¬(φM);

(∃x. φ)M abbreviates ∃x. x ∈M ∧ φM.

Dually, (∀x. φ)M abbreviates ∀x. x ∈ M → φM, if universal quantifiers are defined as
usual. (When working in ZF, we should write M(x) instead of x ∈M above.) Relativization
bounds all quantifiers in φ by M. It is intuitively clear that φM expresses that φ is true in M.
However, while the satisfaction relation (|=) can be defined within set theory, relativization
can only be defined in the metalanguage: it combines two arguments, φ and M, which lie
outside ZF.

2.3. The formal treatment of terms

Despite the lack of terms in their formal language, set theorists use elaborate notational
conventions. In other branches of mathematics, an expression like f (x)g(y) − h(x, y)
means what it says: functions f , g and h are applied, and the results are combined by
multiplication and subtraction. In set theory, however, each expression E(x) abbreviates a
formula φ(x, y), which reduces the meaning of y = E(x) to a combination of ∈ and =.
For example, we can express the meaning of Y = A∪B by the predicate union (A,B, Y),
defined by

∀z . z ∈ Y ↔ z ∈ A ∨ z ∈ B.
We can similarly defineinter (A,B, Y) to expressY = A∩B. Combining these predicates
gives meaning to more complex terms; for example, Y = (A ∪ B) ∩ C abbreviates to

∃X. union (A,B,X) ∧ inter (X,C, Y).
Variable binding notation, ubiquitous in set theory, causes further complications. In⋃
x∈A B(x), what is B? Syntactically, B(x) is a term with parameter x, so we can take it as

an abbreviation for some formula φ(x, y). But then
⋃

becomes an operation on formulae,
rather than one on sets. An equally legitimate alternative [7, p. 34] is to regard B as a
function in set theory – formally, the set of pairs {〈x, B(x)〉 | x ∈ A}.

Set theorists generally say little about these notational conventions, and act as if terms
were meaningful in themselves. Relativization, however, forces us to make the translation
from terms to formulae explicit. In the Isabelle formalization, I have defined relational

201https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

equivalents of dozens of term-formers. I have included a class argument in each one to
perform relativization at the same time; we can express the relativized term ((A∪B)∩C)M
as follows.

∃X ∈M. union (M, A, B,X) ∧ inter (M, X,C, Y)

The hardest tasks were: (i) to define relational equivalents of the complicated expressions
generated by Isabelle/ZF for recursively defined sets and functions, and (ii) to cope with
the sheer bulk of the definitions.

2.4. Gödel’s claim viewed proof-theoretically

The purpose of relativization is to express claims of the form ‘φ is true in M’. To prove
that L satisfies the ZF axioms and that V = L, we must prove that φL for each ZF axiom φ,
and we must prove (V = L)L. Now we can consider Gödel’s claim that from a contradiction
in ZFL, a contradiction in ZF ‘could actually be constructed’. His claim is proof-theoretic.
A contradiction in ZFL is a proof, �, of ⊥ from finitely many ZF axioms and V = L.

φ1 . . . φn V = L
�

⊥
Once we have proved that L satisfies the axioms of ZFL, we have the n+ 1 proofs

ZF � φL
1 . . . ZF � φL

n (V = L)L.

Verifying Gödel’s claim reduces to showing that we can always construct a proof�L of⊥L

from the following relativized premises.

φL
1 . . . φL

n (V = L)L

�L

⊥L

Then we get a proof of ZF � ⊥L, which is just ZF � ⊥.
So how do we obtain �L from �? To be concrete, suppose that we are working with

a natural deduction formalization of first-order logic. By the normal form theorem [20],
since the conclusion of the proof is atomic, we can assume that � applies only elimination
rules. We must modify� so that it accepts relativized versions of its premises and delivers
a relativized version of its conclusion. The only hard cases involve quantifiers. Where �
applies the existential elimination rule to ∃x. φ(x), it delivers the formula φ(x) to the rest
of the proof. (Assume that x has already been renamed, if necessary.) At the corresponding
position, �L should apply the existential and conjunction elimination rules to ∃x. x ∈
L ∧ φ(x), delivering the formulae x ∈ L and φ(x) to the rest of the proof.

Universal quantifiers require a bit more work. First, recall that the language of set theory
has no terms other than variables.Where� applies the universal elimination rule to∀x. φ(x),
it delivers the formulaφ(y) to the rest of the proof, wherey is a variable.At the corresponding
position,�L should apply the existential and conjunction elimination rules to ∀x. x ∈ L→
φ(x). But before it can deliver the formula φ(y), it requires a proof that y ∈ L. We will
indeed have y ∈ L if the variable y is obtained by a previous existential elimination,
but what if y was chosen arbitrarily? We can handle such cases by inserting at this point
an application of the empty set axiom, which will yield a new variable (say z) and the
assumption that z ∈ L. Intuitively, we are replacing all free variables in � by 0.

202https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

The sketchy argument above cannot be called a rigorous proof of Gödel’s claim, but it
is more detailed than standard expositions of Gödel’s proof. Kunen relegates the relevant
lemma to an appendix, and for the proof he merely remarks ‘Similar to the easy direction
of the Gödel completeness theorem’ [9, p. 141]. To Gödel, it was all presumably trivial. I
have not formalized the argument in Isabelle/ZF because that would require formalizing
the metatheory.

2.5. Defining the class L

The equation V =⋃
α∈ON Vα expresses the universe of sets as the union of the cumulative

hierarchy {Vα}α∈ON, which is recursively defined by V0 = 0, Vα+1 = P (Vα) and Vα =⋃
ξ<α Vξ when α is a limit ordinal. We obtain L by a similar construction, replacing the

powerset operator P by the definable powerset operator, D . Essentially, D(A) yields the
set of all subsets of A that can be defined by a formula taking parameters over A. If we
define the set F of formulae and the satisfaction relation A |= p as outlined above, then we
can make the definition

D(A) = {X ∈ P (A) | ∃p ∈ F. ∃a1 . . . ak ∈ A. X = {x ∈ A | A |= p(x, a1, . . . , al)}}.
(The ellipsis can be eliminated in favour of lists overA.) Finally, we define the constructible
universe: L = ⋃

α∈ON Lα , where L0 = 0, Lα+1 = D(Lα) and Lα = ⋃
ξ<α Lξ when α is

a limit.
Kunen proves that L satisfies the ZF axioms, remarking: ‘only the ComprehensionAxiom

required any work’ [9, p. 170]. His remark applies to the Isabelle/ZF proofs. L inherits most
of the necessary properties from V. Even the axiom scheme of replacement can be proved
as the theorem replacement(L,P); the proof is independent of the formula P. However,
the proof of comprehension for the formula φ requires an instance of the reflection theorem
for φ, which requires recursion over the structure of φ. Each instance of comprehension
therefore has a different proof from the ZF axioms. At the metalevel, of course, all these
proofs are instances of a single algorithm. For Isabelle/ZF, this means that each instance of
comprehension must be proved separately, although the proof scripts are nearly identical.

2.6. Absoluteness: proving (V = L)L

Proving that L satisfies V = L is a key part of the proof, and despite first appearances,
it is far from trivial. It amounts to saying that the construction of L is idempotent: LL = L.
The underlying concept is called absoluteness, which expresses that a given operator or
formula behaves the same in a class model M as it does in V, the universe. A class M is
transitive if x ∈ M implies that x ⊆ M, and we shall be concerned only with transitive
models below.

Most constructions are absolute. The empty set can only be a set having no elements, and
A ⊆ B can only mean that every element of A belongs to B. If A and B are sets, then their
union can only be the set containing precisely the elements of those sets. Many complicated
notions are also absolute: domains and ranges of relations, bijections, well-orderings, order-
isomorphisms, and ordinals. With some effort, we can show the absoluteness of recursively
defined data structures and functions.

Powersets, except in trivial cases, are not absolute. For example, P (ω) might contain
subsets of the natural numbers that cannot be shown to exist. The function space A→ B

is not absolute because of the obvious connection between P (A) and A → {0, 1}. More
subtly, cardinality is not absolute: if M is a countable model of set theory, and α is an

203https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

uncountable cardinal according to M , then obviously α must really be countable, with the
bijections between α and ω lying outside M . This situation is called Skolem’s paradox
[9, p. 141].

Metamathematical arguments are an efficient means of proving absoluteness. For exam-
ple, any concept that is provably equivalent (in ZF) to a formula involving only bounded
quantifiers is absolute [9, p. 119]. This is the class of�ZF

0 formulae. The larger class of�ZF
1

formulae can also be shown to be absolute. Unfortunately, all such arguments are beyond
our reach unless we formalize the metatheory.

2.7. The consequences of V = L

Once we have proved that L is absolute, we obtain ZF � (V = L)L. We can then
investigate the consequences of assuming that V = L. To prove the axiom of choice, it
suffices to prove that every set can be well-ordered. The key step, given a well-ordering of
A, is to construct a well-ordering of D(A). It comes from the lexicographic ordering on
tuples 〈p, a1, . . . , ak〉 for p ∈ F and a1, . . . , ak ∈ A. So if Lα is well-ordered, so is Lα+1.
By transfinite induction, each level of the construction of L is well-ordered.

The axiom V = L is very strong. Gödel proved that it implies the generalized continuum
hypothesis. Jensen later proved that it implies the combinatorial principle known as ♦, and
it has many additional consequences. It is important to note, however, that such proofs are
entirely separate from that of ZF � (V = L)L. We prove ZFL � AC, ZFL � GCH and
ZFL � ♦, but we do not prove ZF � ACL, ZF � GCHL and ZF � ♦L. Those results, if we
want them, are most easily obtained in the metatheory, using the general fact that if φ � ψ ,
then φL � ψL.

3. Introduction to the Isabelle/ZF formalization

Isabelle [11, 14] is an interactive theorem prover that supports a variety of logics, includ-
ing set theory and higher-order logic. Isabelle provides automatic tools for simplification
and logical reasoning. They can be combined with single-step inferences using a traditional
tactical style or as structured proof texts. The Proof General user interface provides an ef-
fective interactive environment. Isabelle has been applied to a huge number of verification
tasks, including the semantics of the Java language [21] and the correctness of cryptographic
protocols [16]. Most of these proofs use Isabelle/HOL, the version of Isabelle for higher-
order logic. Isabelle/HOL’s polymorphic type system is ideal for modelling problems in
computer science.

Isabelle also supports Zermelo–Fraenkel set theory. Formalized material includes the tra-
ditional concepts of functions, ordinals, order types and cardinals. Isabelle/ZF also accepts
definitions of recursive functions and data structures; in this it resembles other computa-
tional logics, with the important difference of being typeless. Some problems do call for a
typeless logic. Isabelle/ZF is also good for investigating foundational issues, and, of course,
for formalizing proofs in axiomatic set theory.

Previously published work on Isabelle/ZF describes its basic development [13] and its
treatment of recursive functions [13] and inductive definitions [17].Another paper describes
proofs drawn from set theory textbooks [19]. Particularly noteworthy are the proofs of
equivalence between various formulations of the axiom of choice. Those proofs, formalized
by Gra̧bczewski, are highly technical, demonstrating that advanced set theory proofs can
be replicated in Isabelle/ZF, given enough time and effort. That is precisely why we should

204https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

http://isabelle.in.tum.de/
http://www.proofgeneral.org/
https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

investigate Gödel’s proof of the relative consistency of AC: much of the reasoning takes
place outside set theory.

The previous section has presented many reasons why we should formalize Gödel’s proof
directly in the metatheory. That strategy does not require a set-theory prover. We could use
any system that lets us define the first-order formulae, the set-theory axioms, and the set of
theorems derivable from any given axioms. We would enjoy a number of advantages.

• Relativization could easily be defined by recursion on the structure of formulae.

• Metatheorems about absoluteness (for example, that all �ZF
0 formulae are absolute)

could be proved and used to obtain simple proofs of many absoluteness results.

• The constructiveness of the consistency result could be stated and proved.

However, the metatheoretical strategy also presents difficulties. We would have to work in
the pure language of set theory, which reduces all concepts to membership and equality, and
is unreadable; an alternative would be to formalize the familiar term language. We would
constantly be reasoning about an explicitly formalized inference system for ZF, rather than
using our prover’s built-in reasoning tools. I believe that this strategy would involve as much
work as the strategy I have adopted, although the work would be distributed differently.

The choice resembles the standard one that we face when we model a formal language:
shall we adopt a deep or a shallow embedding? A shallow embedding maps phrases in
the language to corresponding phrases in the prover’s logic. It works well for reasoning
about specific examples, but does not allow metareasoning (proofs about the language). A
deep embedding involves formalizing the language’s syntax and semantics in the prover’s
logic. The extra mechanism allows metareasoning, but complicates reasoning about spe-
cific examples. Compared with a shallow embedding, the strengths and weaknesses are
exchanged.

I have chosen to formalize Gödel’s theorem in set theory, minimizing any excursions
into the metatheory. This strategy still requires the definition of relational equivalents for
each element of set theory’s term language, while limiting my exposure to unreadable
relational formulae. After all, the critical proofs involve showing that various concepts are
absolute, which means that they do not vary from one model of set theory to another. Each
absoluteness proof justifies the replacement of some primitive of the relational language
by its counterpart in the term language. Thus Isabelle’s simplifier can transform relational
formulae into ones using terms, exploiting the existing formalization of set theory.

This plan worked well for basic concepts such as union, intersection, relation, function,
domain, range, image, inverse image and even ordinal. The absoluteness proofs for well-
orderings, recursive functions and recursive data types were, however, harder.

• If a concept is defined in terms of non-absolute primitives, such as powerset, it must
be proved equivalent to a suitable alternative definition.

• Much of the theory of well-founded recursion must be formalized from scratch in the
relational language.

• Higher-order functions complicate the relational language.

• Recursive functions generate complicated fixedpoint definitions that must be manu-
ally converted into relational form.

205https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

4. Relativization and absoluteness: the basics

The first step is to define the relational language, introducing predicates for all the
basic concepts of set theory. Each predicate takes a class as an argument, so that it can
express relativization. This relational language will later allow appeals to the reflection
theorem. Space permits only a few of the predicates to appear below. Note that the class
quantifications∀x ∈M and ∃x ∈M are written ∀x[M] and ∃x[M] in Isabelle. For example,
∀x[M]. P(x) is definitionally equivalent to ∀x. M(x) −→P(x).

All Isabelle definitions in this paper are indicated by a vertical line, as shown below.

4.1. From the empty set to functions

We begin with definitions of trivial concepts such as the empty set and the subset relation.
A set z is empty if it has no elements.

"empty(M,z) == ∀x[M]. x /∈ z"
"subset(M,A,B) == ∀x[M]. x ∈ A −→ x ∈ B"

A set z is the unordered pair of a and b if it contains those two sets and no others. The
Kuratowski definition of ordered pairs 〈a, b〉 = {{a, a}, {a, b}} is then expressed using the
predicate upair.

"upair(M,a,b,z) == a ∈ z & b ∈ z & (∀x[M]. x∈z −→ x=a | x=b)"
"pair(M,a,b,z) == ∃x[M]. upair(M,a,a,x) &

(∃y[M]. upair(M,a,b,y) & upair(M,x,y,z))"

A set z is the union of a and b if it contains their elements and no others. The general union⋃
(A), also written as

⋃{X | X ∈ A}, has an analogous definition.

"union(M,a,b,z) == ∀x[M]. x ∈ z ←→ x ∈ a | x ∈ b"
"big_union(M,A,z) == ∀x[M]. x ∈ z ←→ (∃y[M]. y∈A & x ∈ y)"

A set z is the domain of the relation r if it consists of each element x such that 〈x,y 〉 ∈ r

for some y.

"is_domain(M,r,z) == ∀x[M]. x ∈ z ←→
(∃w[M]. w∈r & (∃y[M]. pair(M,x,y,w)))"

4.2. Relativizing the ordinals

Now we can define relational versions of ordinals and related concepts. The formalization
is straightforward.

An ordinal is a transitive set of transitive sets.

"transitive_set(M,a) == ∀x[M]. x∈a −→ subset(M,x,a)"
"ordinal(M,a) ==

transitive_set(M,a) & (∀x[M]. x∈a −→ transitive_set(M,x))"

A limit ordinal is a non-empty, successor-closed ordinal.

"limit_ordinal(M,a) ==
ordinal(M,a) & ˜ empty(M,a) &
(∀x[M]. x∈a −→ (∃y[M]. y∈a & successor(M,x,y)))"

A successor ordinal is any ordinal that is neither empty nor a limit.

206https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

"successor_ordinal(M,a) ==
ordinal(M,a) & ˜ empty(M,a) & ˜ limit_ordinal(M,a)"

The set of natural numbers, ω, is a limit ordinal that contains no limit ordinals.

"omega(M,a) ==
limit_ordinal(M,a) & (∀x[M]. x∈a −→ ˜ limit_ordinal(M,x))"

4.3. Defining the Zermelo–Fraenkel axioms

Formally defining the ZF axioms relative to a class M lets us express the information
that M satisfies those axioms. Each axiom is relativized so that all quantified variables range
over M .

We begin with extensionality.

"extensionality(M) ==
∀x[M]. ∀y[M]. (∀z[M]. z ∈ x ←→ z ∈ y) −→ x=y"

The separation axiom is also known as comprehension.

"separation(M,P) ==
∀z[M]. ∃y[M]. ∀x[M]. x ∈ y ←→ x ∈ z & P(x)"

This yields a valid instance of separation only if the formula P obeys certain syntactic
restrictions. All quantifiers in P must be relativized to M, and the free variables in P must
range over elements of M . These restrictions prevent us from assuming separation as a
scheme by leaving P as a free variable. We must separately note every instance of separation
that we need. If it meets the syntactic restrictions, then later we shall be able to prove that
L satisfies it.

That looks bad when we recall that the native separation axiom in Isabelle/ZF, and
the theorems using it, are schematic in P. However, if we formalize Bernays–Gödel set
theory as a new Isabelle logic (creating the system Isabelle/BG), then the same problem
occurs elsewhere. The analogue of separation in BG set theory is the general existence
theorem, which is a metatheorem: proving each instance requires a separate construction.
To compensate, at least BG has no axiom schemes.

The axioms of unordered pairs, unions and powersets all state that M is closed under the
given operation, as follows.

"upair_ax(M) == ∀x[M]. ∀y[M]. ∃z[M]. upair(M,x,y,z)"
"Union_ax(M) == ∀x[M]. ∃z[M]. big_union(M,x,z)"
"power_ax(M) == ∀x[M]. ∃z[M]. powerset(M,x,z)"

The foundation axiom states that every non-empty set has a ∈-minimal element.

"foundation_ax(M) ==
∀x[M]. (∃y[M]. y∈x) −→ (∃y[M]. y∈x & ˜(∃z[M]. z∈x & z∈y))"

We call a formula univalent over a set if it describes a class function on that set. The
replacement axiom holds for univalent formulae as follows.

"univalent(M,A,P) ==
∀x[M]. x∈A −→ (∀y[M]. ∀z[M]. P(x,y) & P(x,z) −→ y=z)"

"replacement(M,P) ==
∀A[M]. univalent(M,A,P) −→

(∃Y[M]. ∀b[M]. (∃x[M]. x∈A & P(x,b)) −→ b ∈ Y)"

207https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Intuitively, if F is a class function and and A is a set, then replacement says that F “A
(the image of A under F) is a set. However, the axiom formalized above is weaker: it
merely asserts (relative to the class M) that F “A ⊆ B for some set B. To get the set
that we really want, namely F “A, we must apply the axiom of separation to B. The weak
form of replacement can be proved schematically for L. The strong form cannot be proved
schematically, because of its reliance on separation.

"strong_replacement(M,P) ==
∀A[M]. univalent(M,A,P) −→
(∃Y[M]. ∀b[M]. b ∈ Y ←→ (∃x[M]. x∈A & P(x,b)))"

4.4. Introducing a transitive class model

The absoluteness proofs are carried out with respect to an arbitrary class model M,
although they are only needed for L. Generalizing the proofs over other models has two
advantages: it separates the absoluteness proofs from reasoning about L, and it allows the
proofs to be used with other class models.

Isabelle’s locale mechanism [8] makes the generalization possible. A locale packages the
many properties required of M, creating a context in which they are implicitly available. A
proof within a locale may refer to those properties, and also to other theorems proved in the
same locale. A locale can extend an older one, creating a context that includes everything
available in the ancestor locales.

locale M_trivial =
fixes M
assumes transM: "[[y∈x; M(x)]] =⇒ M(y)"

and upair_ax: "upair_ax(M)"
and Union_ax: "Union_ax(M)"
and power_ax: "power_ax(M)"
and replacement: "replacement(M,P)"
and M_nat [iff]: "M(nat)"

The class M is assumed to be transitive (transM), and to satisfy some relativized ZF
axioms, such as unordered pairing (upair_ax) and replacement. It contains the set of
natural numbers,nat (which is also the ordinalω). This locale does not assume any instances
of separation.

4.5. Easy absoluteness proofs

Here is a canonical example of an absoluteness result. The phrase in M_trivial in-
cludes the lemma in the locale.

lemma (in M_trivial) empty_abs [simp]:
"M(z) =⇒ empty(M,z) ←→ z=0"

apply (simp add: empty_def)
apply (blast intro: transM)
done

The proof refers to the definition of empty set (empty_def), and to the transitivity of M
(the locale assumption transM); it uses blast, an automatic prover. The attribute [simp]
declares empty_abs as a simplification rule: the simplifier will replace any occurrence
of empty(M,z) by z=0, provided that it can prove M(z). From now on, usually just the
statements of theorems will be shown, not header lines and proofs.

Here are some similar absoluteness results, also proved in locale M_trivial and de-
clared to the simplifier. Most have trivial proofs like the one shown above.

208https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

"M(A) =⇒ subset(M,A,B) ←→ A ⊆ B"
"M(z) =⇒ upair(M,a,b,z) ←→ z={a,b}"
"M(z) =⇒ pair(M,a,b,z) ←→ z=〈a,b〉"
"[[M(r); M(A); M(z)]] =⇒ image(M,r,A,z) ←→ z = r‘‘A"
"[[M(A); M(B); M(z)]] =⇒ cartprod(M,A,B,z) ←→ z = A×B"
"[[M(a); M(b); M(z)]] =⇒ union(M,a,b,z) ←→ z = a ∪ b"
"[[M(A); M(z)]] =⇒ big_union(M,A,z) ←→ z = Union(A)"

These theorems express absoluteness because the class M disappears from the right-hand
side: the meanings of terms such as subset, image, and so on, are the same as their meanings
in V. Each theorem also expresses the correctness of an element of the relational language,
for example that big_union captures the meaning of Union.

Absoluteness results involving ordinals are also easily proved, as follows.

"M(a) =⇒ ordinal(M,a) ←→ Ord(a)"
"M(a) =⇒ limit_ordinal(M,a) ←→ Limit(a)"
"M(a) =⇒ successor_ordinal(M,a) ←→

Ord(a) & (∃b[M]. a = succ(b))"

Thus we see that the simplifier can rewrite relational formulae into term notation, provided
that we are able to prove that they refer to elements of M . For this purpose, there are many
results showing that M is closed under the usual set-theoretic constructions. In particular,
we can use the separation axiom for a specific formula P, as shown here.

"M(A) =⇒ M(Union(A))"
"[[M(A); M(B)]] =⇒ M(A ∪ B)"
"[[separation(M,P); M(A)]] =⇒ M({x∈A. P(x)})"

Also useful are logical equivalences to simplify assertions involving M .

"M({a,b}) ←→ M(a) & M(b)"
"M(〈a,b〉) ←→ M(a) & M(b)"

4.6. Absoluteness proofs assuming instances of separation

All the theorems shown above are proved without recourse to the axiom of separation.
Obviously many set-theoretic operators are defined using separation – possibly in the guise
of strong replacement – so we now extend locale M_trivial accordingly.

locale M_basic = M_trivial +
assumes Inter_separation:

"M(A) =⇒ separation(M, λx. ∀y[M]. y∈A −→ x∈y)"
and Diff_separation:

"M(B) =⇒ separation(M, λx. x /∈ B)"
and cartprod_separation:

"[[M(A); M(B)]]
=⇒ separation(M, λz. ∃x[M]. x∈A &

(∃y[M]. y∈B & pair(M,x,y,z)))"
and image_separation:

"[[M(A); M(r)]]
=⇒ separation(M, λy. ∃p[M]. p∈r &

(∃x[M]. x∈A & pair(M,x,y,p)))"
and converse_separation:

"M(r) =⇒ separation(M, λz. ∃p[M]. p∈r &
(∃x[M]. ∃y[M]. pair(M,x,y,p) &
pair(M,y,x,z)))"

209https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Only a few of the eleven instances of separation appear above. Omitted are the more com-
plicated ones, for example those concerned with well-founded recursion.

By Inter_separation it follows that M is closed under intersections.

lemma (in M_basic) Inter_closed:
"M(A) =⇒ M(Inter(A))"

From the lemma declaration, you can see that the proof takes place in locale M_basic. All
results proved in locale M_trivial remain available.

By cartprod_separation, it follows that the class M is closed under Cartesian prod-
ucts. The proof is complicated because the powerset operator (which is not absolute) occurs
in the definition. A trivial corollary is that M is closed under disjoint sums.

"[[M(A); M(B)]] =⇒ M(A×B)"
"[[M(A); M(B)]] =⇒ M(A+B)"

I have devoted some effort to minimizing the number of instances of separation required.
For example, the inverse image operator is expressed in terms of the image and converse
operators. Then the domain and range operators can be expressed in terms of inverse image
and image. We obtain five closure theorems from the two assumptions image_separation
and converse_separation, as follows.

"[[M(A); M(r)]] =⇒ M(r‘‘A)"
"[[M(A); M(r)]] =⇒ M(r-‘‘A)"
"M(r) =⇒ M(converse(r))"
"M(r) =⇒ M(domain(r))"
"M(r) =⇒ M(range(r))"

These five operators are also absolute. Here is the result for domain.

"[[M(r); M(z)]] =⇒ is_domain(M,r,z) ←→ z = domain(r)"

Although we assume that M satisfies the powerset axiom, we cannot hope to prove that
M(A) =⇒ M(Pow(A)). The powerset of A relative to M is smaller than the true powerset,
containing only those subsets of A that belong to M . Similarly, we cannot show that M
contains all functions from A to B. However, it holds for a finite case, essentially the set Bn

of n-tuples, as shown here.

"[[n∈nat; M(B)]] =⇒ M(n->B)"

This lemma will be needed later to prove the absoluteness of transitive closure.

4.7. Some remarks about functions

In set theory, a function is a single-valued relation, and thus is a set of ordered pairs.
Operators such as powerset and union, which apply to all sets, are not functions. (Strictly
speaking, there are no operators in the formal language of set theory, since the only terms
are variables.) Isabelle/ZF distinguishes functions from operators syntactically.

• The application of the function f to the argument x is written f‘x. On the other hand,
application of an operator to its operand is written using parentheses, as in Pow(X), or by
using infix notation.

• Function abstraction over a set A is indicated by λx∈A, and yields a set of pairs. For
instance, λx∈A. x denotes the identity function on A. Operators are essentially abstractions
over the universe, as in λx. Pow(Pow(x)). Abstraction can also express predicates; for
instance, λx. P(x) & Q(x) is the conjunction of the two predicates P and Q.

210https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Kunen [9, p. 14] defines function application in the usual way: f ‘x is ‘the unique y
such that 〈x, y〉 ∈ f ’. Isabelle/ZF originally adopted a formal version of this definition,
using a description operator [13, Section 7.5]. The relational version of the operator, namely
fun_apply(M,f,x,y), held if the pair 〈x,y 〉 belongs tof for that unique y.

My original definitions of function application, in its infix and relational forms, both
followed Kunen’s definition. However, the absoluteness theorem relating them was con-
ditional on the function application’s being well-defined. That made it harder to simplify
fun_apply(M,f,x,y) to f‘x = y, and often forced proofs to include what was essen-
tially type information.

Redefining function application by f ‘x = ⋃
(f “{a}) solved these problems by elimi-

nating the definite description. The new definition looks peculiar, but it agrees with the old
one when the latter is defined. Its relational version is straightforward.

"fun_apply(M,f,x,y) ==
(∃xs[M]. ∃fxs[M].
upair(M,x,x,xs) & image(M,f,xs,fxs) & big_union(M,fxs,y))"

Thus it follows that M is closed under function application, which is also absolute.

"[[M(f); M(a)]] =⇒ M(f‘a)"
"[[M(f); M(x); M(y)]] =⇒ fun_apply(M,f,x,y) ←→ f‘x = y"

5. Well-founded recursion

The hardest absoluteness proofs concern recursion. Well-founded recursion is the most
general form of recursive function definition. The proof that well-founded relations are
absolute consists of several steps. Well-orderings, which are well-founded linear orderings,
are somewhat easier to prove absolute.

5.1. Absoluteness of well-orderings

The concept of well-ordering is the first that we encounter of those whose absoluteness
proof is hard. One direction is easy: if relation r well-orders A, then it also well-orders A
relative to M. For if every nonempty subset of A has an r-minimal element, then trivially
so does every nonempty subset of A that belongs to M; this is Kunen’s [9, Lemma IV 3.14,
p. 123]. For proving the converse direction, Kunen reasons in [9, Theorem IV 5.4, p. 127]
that ‘every well-ordering is isomorphic to an ordinal’. We can obtain this result by showing
that order types exist in M and are absolute. The proof requires some instances of separation
and replacement for M.

The theory defines various properties of relations, relative to a class M . Transitivity,
linearity, and other simple properties have the obvious definitions and are easily demon-
strated to be absolute. The definition of ‘well-founded’ refers to the existence of r-minimal
elements, as discussed above.

"wellfounded_on(M,A,r) ==
∀x[M]. x �=0 −→ x ⊆ A

−→ (∃y[M]. y∈x & ˜(∃z[M]. z∈x & 〈z,y 〉 ∈ r))"

A well-ordering is a well-founded relation that is also linear and transitive.

"wellordered(M,A,r) ==
transitive_rel(M,A,r) & linear_rel(M,A,r) &
wellfounded_on(M,A,r)"

211https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Kunen’s [9, Lemma IV 3.14] takes the following form.

"well_ord(A,r) =⇒ wellordered(M,A,r)"

The definition of order types is standard; see [9, Theorem I 7.6, p. 17].We use replacement
to construct a function that maps elements of A to ordinals, proving that its domain is the
whole of A, and that each element of its range is an ordinal. Its range is the desired order type.
But the construction must be done relative to M . In particular, when we need well-founded
induction on r, we must apply a relativized induction rule, as follows.

"[[a∈A; wellfounded_on(M,A,r); M(A);
separation(M, λx. x∈A −→ ˜P(x));
∀x∈A. M(x) & (∀y∈A. 〈y,x〉 ∈ r −→ P(y)) −→ P(x)]]

=⇒ P(a)"

One premise is an instance of the separation axiom involving the negation of the induction
formula. Each time that we apply induction, we must assume another instance of separation.

After about 250 lines of proof script, we arrive at [9, Theorem IV 5.4]. The notion of
well-ordering is absolute.

"[[M(A); M(r)]] =⇒ wellordered(M,A,r) ←→ well_ord(A,r)"

Order types are absolute. That is, if f is an order-isomorphism from between (A,r) and
some ordinal i, then i is the order type of (A,r).

"[[wellordered(M,A,r); f ∈ ord_iso(A, r, i, Memrel(i));
M(A); M(r); M(f); M(i); Ord(i)]] =⇒ i = ordertype(A,r)"

These results are not required in the sequel, but I found their proofs a useful preparation for
tackling the more general problem of well-founded recursion.

5.2. Functions defined by well-founded recursion are absolute

It is essential to show that functions can be defined by well-founded recursion in M, and
that such functions are absolute. This is Kunen’s [9, Theorem IV 5.6, p. 129].

Let r be a well-founded relation. If f is recursively defined over r , then f (a) is derived
from a and from various f (y), where y ranges over the set of r-predecessors of a. This
set is just r−1“{a}, the inverse image of {a} under r or, more explicitly, {y | 〈y, a〉 ∈ r}.
Writing the body of f asH(x, g), with free variables x and g, we get the recursion equation

f (a) = H(a, f � (r−1“{a})). (1)

Note that f � (r−1“{a}) denotes the function obtained by restricting f to r-predecessors
of a.

If r andH are given, then the existence of a suitable function f follows by well-founded
induction over r , as I have described in previous work [15]. I have had to repeat some
of these proofs relative to M . The theorems may assume only the relativized assumption
wellfounded(M,r), which for the moment is weaker than wf(r). About 200 lines of
proof script are necessary, but fortunately much of this material is based on earlier proofs.
We reach the following key result concerning the existence of recursive functions.

"[[wellfounded(M,r); trans(r);
separation(M, λx. ˜ (∃f[M]. is_recfun(r,x,H,f)));
strong_replacement(M, λx z.
∃y[M]. ∃g[M]. z=〈x,y 〉 & is_recfun(r,x,H,g) & y = H(x,g));

M(r); M(a);
∀x[M]. ∀g[M]. function(g) −→ M(H(x,g))]]

=⇒ ∃f[M]. is_recfun(r,a,H,f)"

212https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

The predicate is_recfun(r,a,H,f) expresses the fact that f satisfies the recursion equa-
tion (1) for the given relation r and body H for all r-predecessors of a. So the theorem
states that if r is well-founded and transitive, then there exists f in M satisfying the recursion
equation below a. Obviously, r and a must belong to the class M, which moreover must
be closed under H . Two additional premises list instances of separation and replacement,
which depend upon r and H . Before we can assume such instances, we must express them
relative to M . That in turn requires a relativized version of is_recfun.

"M_is_recfun(M,MH,r,a,f) ==
∀z[M]. z ∈ f ←→

(∃x[M]. ∃y[M]. ∃xa[M]. ∃sx[M]. ∃r_sx[M]. ∃f_r_sx[M].
pair(M,x,y,z) & pair(M,x,a,xa) & upair(M,x,x,sx) &
pre_image(M,r,sx,r_sx) & restriction(M,f,r_sx,f_r_sx) &
xa ∈ r & MH(x, f_r_sx, y))"

This definition is the translation of equation (1) into relational language. (Observe how
quickly this language becomes unreadable.) In particular, the binary operator H becomes
the ternary relation MH . The argument H makes is_recfun a higher-order function, which
complicates subsequent work. We cannot relativize is_recfun once and for all, but if MH
is expressed in relational language, then so is M_is_recfun.

The predicate relation2 expresses that is_f is the relational form of f over M.

"relation2(M,is_f,f) ==
∀x[M]. ∀y[M]. ∀z[M]. is_f(x,y,z) ←→ z = f(x,y)"

The predicate is_wfrec expresses that z is computed from a and MH by well-founded
recursion over r. The body of the definition expresses the existence of a function f satisfying
equation (1), with z = H(a,f).

"is_wfrec(M,MH,r,a,z) ==
∃f[M]. M_is_recfun(M,MH,r,a,f) & MH(a,f,z)"

We now reach two lemmas, stating that M_is_recfun and is_wfrec behave as in-
tended. The first result is the absoluteness of is_recfun. Among the premises are that M
is closed under H, and that MH is the relational form of H.

"[[∀x[M]. ∀g[M]. function(g) −→ M(H(x,g)); M(r); M(a); M(f);
relation2(M,MH,H)]]
=⇒ M_is_recfun(M,MH,r,a,f) ←→ is_recfun(r,a,H,f)"

Under identical premises, we get the following corollary.

"is_wfrec(M,MH,r,a,z) ←→ (∃g[M]. is_recfun(r,a,H,g) & z=H(a,g))"

5.3. Making well-founded recursion available

Mathematically speaking, we have already proved the absoluteness of well-founded
recursion. Pragmatically speaking, unfortunately, more work must be done to package the
results so that they can be used in formal proofs. In particular, we need a theorem relating
the predicate is_wfrec, defined above, with the function wfrec provided by Isabelle/ZF
[15, Section 3.1]; wfrec(r,a,H) denotes the result of f(a), where f is the function with
body H defined by recursion over r.

The development of well-founded recursion assumes r to be transitive. To apply well-
founded recursion to other relations requires a theory of transitive closure. Isabelle/ZF

213https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

defines the transitive closure of a relation inductively [15, Section 2.5]. Inductive definitions
are abstract and elegant, but they do not lend themselves to absoluteness proofs because
they use the powerset operator. We must find an alternative definition, and an obvious one
is based on the intuition that

x ≺∗ y ⇐⇒ x = s0 ≺ s1 ≺ · · · ≺ sn = y.
The sequence s0, s1, . . . , sn can be modelled as a finite function: as noted in Section 4.6,
finite functions are absolute. From x ≺∗ y it is trivial to define the transitive closure, x ≺+ y.
In the definition below, f is the sequence and A is intended to represent the field of r.

"rtrancl_alt(A,r) ==
{p ∈ A*A. ∃n∈nat. ∃f ∈ succ(n) -> A.

(∃x y. p = 〈x,y 〉 & f‘0 = x & f‘n = y) &
(∀i∈n. 〈f‘i, f‘succ(i)〉 ∈ r)}"

It is easy to prove that this definition coincides with Isabelle/ZF’s inductive one, which
reads as follows.

"rtrancl_alt(field(r),r) = rˆ*"

Since every concept used in the new definition is absolute, we merely have to relativize this
definition to M, defining rtran_closure_mem(M,A,r,p) to hold when p is an element of
rtrancl_alt(A,r). I omit the definition because the relational language is unreadable.
We cannot even use the constant 0, but must introduce a variable zero and constrain it by
empty(M,zero).

The next two predicates relativize the reflexive-transitive and transitive closure of a
relation.

"rtran_closure(M,r,s) ==
∀A[M]. is_field(M,r,A) −→
(∀p[M]. p ∈ s ←→ rtran_closure_mem(M,A,r,p))"

"tran_closure(M,r,t) ==
∃s[M]. rtran_closure(M,r,s) & composition(M,r,s,t)"

Once we assume an instance of separation involving rtran_closure_mem, the closure
and absoluteness results follow directly.

"M(r) =⇒ M(rtrancl(r))"
"[[M(r); M(z)]] =⇒ rtran_closure(M,r,z) ←→ z = rtrancl(r)"
"M(r) =⇒ M(trancl(r))"
"[[M(r); M(z)]] =⇒ tran_closure(M,r,z) ←→ z = trancl(r)"

If a relation is well-founded, then so is its transitive closure. The following lemma is
useful because at this point we do not know that wellfounded(M,r) is equivalent to
wf(M,r).

"[[wellfounded(M,r); M(r)]] =⇒ wellfounded(M,rˆ+)"

After about 130 lines of proof script, we arrive at some important theorems. One asserts
absoluteness, relating the predicate is_wfrec with the operator wfrec.

"[[wf(r); trans(r); relation(r); M(r); M(a); M(z);
wfrec_replacement(M,MH,r); relation2(M,MH,H);
∀x[M]. ∀g[M]. function(g) −→ M(H(x,g))]]
=⇒ is_wfrec(M,MH,r,a,z) ←→ z=wfrec(r,a,H)"

Another states that the class M is closed under well-founded recursion.

214https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

"[[wf(r); trans(r); relation(r); M(r); M(a);
wfrec_replacement(M,MH,r); relation2(M,MH,H);
∀x[M]. ∀g[M]. function(g) −→ M(H(x,g))]]
=⇒ M(wfrec(r,a,H))"

The theorems fortunately require identical instances of replacement. Both theorems assume
that trans(r) holds; omitted here are more general theorems that relax the assumption of
transitivity.

Both theorems use the predicate wfrec_replacement to express a necessary instance
of replacement. Its arguments are the ternary predicate MH, which represents the body of
the recursive function, and the well-founded relation r.

"wfrec_replacement(M,MH,r) ==
strong_replacement(M,

λx z. ∃y[M]. pair(M,x,y,z) & is_wfrec(M,MH,r,x,y))"

6. Defining first-order formulae and the class L

We pause from proving absoluteness results in order to consider our main objective,
namely the class L and its properties. The most logical order of presentation might have
been to develop L first, and then to prove that constructibility is absolute. The order of
presentation adopted here better represents how I actually carried out the proofs. Kunen
similarly presents general absoluteness results before he introduces L.

6.1. Internalized first-order formulae

The idea of L is to introduce, at each stage, the sets that can be defined from existing ones
by a first-order formula with parameters. Neither Gödel [5] nor Kunen actually uses first-
order formulae, preferring more abstract constructions that achieve the goal more easily.
However, Isabelle/ZF’s recursive datatype package automates the task of defining the set
of first-order formulae and the satisfaction relation on them. Gödel’s earlier proof [6] also
uses first-order formulae.

The obvious representation of first-order formulae is de Bruijn’s [1], where there are
no variable names. Instead, each variable reference is a non-negative integer, where zero
refers to the innermost quantifier, and larger numbers refer to enclosing quantifiers. If the
integer is greater than the number of enclosing quantifiers, then it is a free variable. This
representation eliminates the danger of name confusion. It is particularly useful for formulae
with parameters, since their order is determined numerically, rather than by name.

datatype "formula" = Member ("x ∈ nat", "y ∈ nat")
| Equal ("x ∈ nat", "y ∈ nat")
| Nand ("p ∈ formula", "q ∈ formula")
| Forall ("p ∈ formula")

Having only four cases simplifies the relativization of functions on formulae. All proposi-
tional connectives are expressed in terms of Nand.

"Neg(p) == Nand(p,p)"
"And(p,q) == Neg(Nand(p,q))"
"Or(p,q) == Nand(Neg(p),Neg(q))"
"Implies(p,q) == Nand(p,Neg(q))"
"Iff(p,q) == And(Implies(p,q), Implies(q,p))"
"Exists(p) == Neg(Forall(Neg(p)))"

215https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

6.2. The satisfaction relation

Satisfaction is a primitive recursive function on formulae. Thanks to the nameless rep-
resentation, interpretations are simply lists rather than functions from variable names to
values. The familiar list function nth, defined below, looks up variables in interpretations.

"nth(0, Cons(a, l)) = a"
"nth(succ(n), Cons(a,l)) = nth(n,l)"
"nth(n, Nil) = 0"

The second of these equations is subject to the condition n ∈ nat. Note that element zero
is the head of the list. Another useful function is bool_of_o, which converts a truth value
to an integer, as follows.

"bool_of_o(P) == (if P then 1 else 0)"

This conversion is necessary because Isabelle/ZF is based on first-order logic. Formulae
are not values, so we encode them using integers. We thus define a recursive predicate as
a recursive integer-valued function. We are now able to define the function satisfies,
which takes a set (the domain of discourse), a formula and an interpretation (written env

for environment). It returns 1 or 0, depending upon whether or not the formula evaluates to
true or false.

"satisfies(A,Member(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) ∈ nth(y,env)))"

"satisfies(A,Equal(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
(λenv ∈ list(A). not ((satisfies(A,p)‘env) and

(satisfies(A,q)‘env)))"
"satisfies(A,Forall(p)) =

(λenv ∈ list(A). bool_of_o
(∀x∈A. satisfies(A,p)‘(Cons(x,env)) = 1))"

The abstraction and explicit function applications involving environments are necessary
because the environments can vary in the recursive calls. The last line of satisfies

deserves attention. The universal formula Forall(p) evaluates to 1 just if p evaluates to 1
in every environment obtainable from env by adding an element of A. Such environments
have the form Cons(x,env) for x∈A.

The satisfaction predicate, sats, is a macro that refers to the function satisfies.

translations "sats(A,p,env)" == "satisfies(A,p)‘env = 1"

The satisfaction predicate enjoys a number of properties that relate the internalized
formulae to real formulae. All the equivalences are subject to the typing condition env ∈
list(A). For example, the membership and equality relations behave as they should.

"sats(A, Member(x,y), env) ←→ nth(x,env) ∈ nth(y,env)"
"sats(A, Equal(x,y), env) ←→ nth(x,env) = nth(y,env)"

The propositional connectives also work.

"sats(A, Neg(p), env) ←→ ˜ sats(A,p,env)"
"(sats(A, And(p,q), env)) ←→ sats(A,p,env) & sats(A,q,env)"
"(sats(A, Or(p,q), env)) ←→ sats(A,p,env) | sats(A,q,env)"

Quantifiers work too. Notice how the environment is extended.

"sats(A, Exists(p), env) ←→ (∃x∈A. sats(A, p, Cons(x,env)))"

216https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

6.3. The arity of a formula

The arity of a formula is, intuitively, its set of free variables. In sats(A,p,env), if the
arity of p does not exceed the length of env, then the environment supplies values to all of
p’s free variables.

Take each de Bruijn reference, adjusted for the depth of quantifier nesting at that point;
the arity is the maximum of the resulting values. The recursive definition of function arity
is simpler than this description.

"arity(Member(x,y)) = succ(x) ∪ succ(y)"
"arity(Equal(x,y)) = succ(x) ∪ succ(y)"
"arity(Nand(p,q)) = arity(p) ∪ arity(q)"
"arity(Forall(p)) = Arith.pred(arity(p))"

Note thatm∪ n = max{m, n} in set theory, and that Arith.pred denotes the predecessor
function. Trivial corollaries of this definition tell us how to compute the arities of other
connectives as follows.

"arity(Neg(p)) = arity(p)"
"arity(And(p,q)) = arity(p) ∪ arity(q)"

The following result is more interesting. Extra items in the environment (exceeding
the arity) are ignored. Here ‘@’ is the list ‘append’ operator, so env@extra is env with
additional items added.

"[[arity(p) � length(env); p ∈ formula;
env ∈ list(A); extra ∈ list(A)]]
=⇒ sats(A, p, env@extra) ←→ sats(A, p, env)"

6.4. Renaming (renumbering) free variables

If A is a set, then the subset

{x ∈ A | φ(x, a1, . . . , am)}
is determined by the choice of φ and of the parameters a1, . . . , am, which are elements ofA.
These are the definable subsets of A.

Now, consider the problem of showing that the definable sets are closed under in-
tersection. Suppose that another subset of A is defined by a formula ψ and parameters
am+1, . . . , am+n.

{x ∈ A | ψ(x, am+1, . . . , am+n)}
Then their intersection can presumably be defined by

{x ∈ A | φ(x, a1, . . . , am) ∧ ψ(x, am+1, . . . , am+n)}.
Our aim is to regard the conjunction φ ∧ ψ as having the free variables x, a1, . . . , an. The
occurrences of x in both formulae must be identified, while the parameter lists of the two
formulae must be kept disjoint. To achieve our aim, we may need to rename one of the
formula’s free variables.

The de Bruijn representation refers to variables by number rather than by name. The
variables shown as x above always have the de Bruijn index zero, so they will be identified
automatically. We keep the parameter lists disjoint by renumbering the free variables in one
of the formulae. Since x must be left alone, we renumber only the variables having an index
greater than zero.

217https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Renumbering functions are often necessary with the de Bruijn approach, though nor-
mally they rename variables during substitution. When efficiency matters, the renumbering
functions take an argument specifying what number should be added to the variables. Here,
the definitions are used for reasoning about, rather than for execution, so for us renaming
means adding one; repeating this allows renaming by larger integers. In the following def-
initions, nq refers to the number of quantifiers enclosing the current point. Any de Bruijn
index smaller than nq must not be renamed.

6.4.1. The renaming function
First, we need a one-line function that renames a de Bruijn variable.

"incr_var(x,nq) == if x<nq then x else succ(x)"

Now we can define the main renaming function. As with satisfies above, abstraction and
explicit function applications are necessary: the argumentnq (‘nesting of quantifiers’) varies
in the recursive calls. In the Member and Equal cases, the variables are simply renamed.
The Nand case recursively renames the subformulae using the same nesting depth, while
the Forall case renames its subformula using an increased nesting depth.

"incr_bv(Member(x,y)) =
(λnq ∈ nat. Member (incr_var(x,nq), incr_var(y,nq)))"

"incr_bv(Equal(x,y)) =
(λnq ∈ nat. Equal (incr_var(x,nq), incr_var(y,nq)))"

"incr_bv(Nand(p,q)) =
(λnq ∈ nat. Nand (incr_bv(p)‘nq, incr_bv(q)‘nq))"

"incr_bv(Forall(p)) =
(λnq ∈ nat. Forall (incr_bv(p) ‘ succ(nq)))"

Recall the example at the start of this section, concerning a set defined by the conjunction
φ ∧ ψ . If we are to conjoin the formulae φ and ψ and combine their sets of parameters,
then we need to ensure that some of the parameters are visible only to φ, while the rest are
visible only to ψ . The following lemma makes this possible.

"[[p ∈ formula; bvs ∈ list(A); env ∈ list(A); x ∈ A]]
=⇒ sats(A, incr_bv(p) ‘ length(bvs), bvs @ Cons(x,env)) ←→

sats(A, p, bvs@env)"

For the intuition, suppose that bvs is the list [x0, . . . , xm−1] (and therefore has length m).
Then the conclusion essentially says that

sats(A, incr_bv(p) ‘ m, [x0, . . . , xm−1, x, xm, . . . , xn]) ←→
sats(A, p, [x0, . . . , xm−1, xm, . . . , xn])"

and thus the renaming allows an additional value to be put into the environment at position m.
The renamed formula will ignore the new value. By repeated renaming, we can construct a
formula that will ignore a section of the parameter list that is intended for another formula.

The next result describes the obvious relationship between arity and renaming. Re-
naming increases a formula’s arity by one, unless the variable being renamed does not exist,
when renaming has no effect.

"[[p ∈ formula; n ∈ nat]]
=⇒ arity (incr_bv(p) ‘ n) =

(if n < arity(p) then succ(arity(p)) else arity(p))"

218https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Considering how trivial the notion of arity is, many proofs about it (including this one)
are complicated by innumerable case splits. Getting the simplifier to prove most of them
automatically requires some ingenuity. Many other tiresome proofs about arities are omitted
here.

6.4.2. Renaming all but the first bound variable
One more thing is needed before we can define sets using conjunctions. As discussed at the
beginning of Section 6.4, when a formula φ defines a set, the variable with de Bruijn index
zero gives the extension of that set, while the remaining free variables serve as parameters.
Therefore, our basic renaming operator must only rename variables having a de Bruijn index
of one or more.

"incr_bv1(p) == incr_bv(p)‘1"

Finally, we reach a lemma justifying our intended use of renaming.

"[[p ∈ formula; bvs ∈ list(A); x ∈ A; env ∈ list(A);
length(bvs) = n]]
=⇒ sats(A, iterates(incr_bv1, n, p), Cons(x, bvs@env)) ←→

sats(A, p, Cons(x,env))"

If the environment has an initial segment bvs of length n, and if we apply the incr_bv1 n
times, then the modified formula ignores the bvs part. However, the renamed and original
formulae agree on the first element of the environment, shown above as x.

6.5. The definable powerset operation

The definable powerset operator is called DPow.

"DPow(A) == {X ∈ Pow(A).
∃env ∈ list(A). ∃p ∈ formula.

arity(p) � succ(length(env)) &
X = {x∈A. sats(A, p, Cons(x,env))}}"

A set X belongs to DPow(A), provided that there is an environment env (a list of values
drawn from A) and a formula p. The constraint arity(p) � succ(length(env)) in-
dicates that the environment should interpret all but one of p’s free variables. The variable
whose de Bruijn index is zero determines the extension of X via the satisfaction relation:
sats(A, p, Cons(x,env)).You may want to compare this with the informal discussion
in the previous section, or with of Kunen’s [9, Definition VI 1.1, p. 165].

Some consequences of this definition are easy to prove. The empty set is defined by the
predicate λx.x �= x, and singleton sets by λx. x = a.

"0 ∈ DPow(A)"
"a ∈ A =⇒ {a} ∈ DPow(A)"

The complement of a set X is defined by negating the formula used to define X . Intersec-
tion is done by conjoining the defining formulae, using the renaming techniques developed
in the previous section. Union is then trivial by de Morgan’s laws.

"X ∈ DPow(A) =⇒ (A-X) ∈ DPow(A)"
"[[X ∈ DPow(A); Y ∈ DPow(A)]] =⇒ X Int Y ∈ DPow(A)"
"[[X ∈ DPow(A); Y ∈ DPow(A)]] =⇒ X Un Y ∈ DPow(A)"

Thus DPow coincides with Pow (the real powerset operator) for finite sets.

"Finite(A) =⇒ DPow(A) = Pow(A)"

219https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

6.6. Proving that the ordinals are definable

In order to show that DPow is closed under other operations, we must be able to code
their defining formulae as elements of the set formula. The treatment of the subset relation
is typical. We begin by encoding the formula ∀z. z ∈ x → z ∈ y. Below, x and y are
de Bruijn indices, which are incremented to succ(x) and succ(y) because the quantifier
introduces a new variable binding.

"subset_fm(x,y) ==
Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"

The arguments are just de Bruijn indices because internalized formulae have no terms other
than variables. It is trivial to prove that subset_fm maps a pair of de Bruijn indices to a
formula as follows.

"[[x ∈ nat; y ∈ nat]] =⇒ subset_fm(x,y) ∈ formula"

The arity of the formula is the maximum of those of its operands.

"[[x ∈ nat; y ∈ nat]] =⇒ arity(subset_fm(x,y)) = succ(x) ∪ succ(y)"

The following equivalence involves absoluteness, since it relates subset_fm to the real
subset relation,⊆.To reach this conclusion requires the additional assumptionTransset(A),
saying that A is a transitive set. The premise x < length(env) puts a bound on x (which
is a de Bruijn index), ensuring that nth(x,env) belongs to A.

"[[x < length(env); y ∈ nat; env ∈ list(A); Transset(A)]]
=⇒ sats(A, subset_fm(x,y), env) ←→ nth(x,env) ⊆ nth(y,env)"

We must repeat this exercise (the details are omitted here) for the concepts of ‘transitive
set’ and ‘ordinal’. This lets us prove that ordinals are definable, leading to a result involving
ordinals and DPow.

"Transset(A) =⇒ {x ∈ A. Ord(x)} ∈ DPow(A)"

This lemma ultimately leads to a proof that L contains all the ordinals.

6.7. Defining L, the constructible universe

The constant Lset formalizes the family of sets {Lα}α∈ON. Its definition in Isabelle/ZF
uses a standard operator for transfinite recursion. We also define L =⋃

α∈ON Lα .

"Lset(i) == transrec(i, %x f.
⋃
y∈x. DPow(f‘y))"

"L(x) == ∃i. Ord(i) & x ∈ Lset(i)"

Some effort is required before we can transform the cryptic definition of Lset into the usual
recursion equations. First, we prove Kunen’s [9, Lemma VI 1.6, p. 167], which states the
transitivity and monotonicity of the Lα .

"Transset(A) =⇒ Transset(DPow(A))"
"Transset(Lset(i))"
"i�j −→ Lset(i) ⊆ Lset(j)"

Then we reach the 0, successor and limit equations for the Lα .

"Lset(0) = 0"
"Lset(succ(i)) = DPow(Lset(i))"
"Limit(i) =⇒ Lset(i) = (

⋃
y∈i. Lset(y))"

220https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

The basic properties of L, as presented in Kunen’s [9, IV, Section 1], are not hard to prove.
For example, L contains the ordinals.

"Ord(i) =⇒ i ∈ Lset(succ(i))"
"Ord(i) =⇒ L(i)"

6.8. Eliminating the arity function

The function arity can be surprisingly hard to reason about, particularly when we try
to encode higher-order operators. Once we have established the basic properties of L, we
can prove its equivalence to a new definition that does not involve arities. Here is another
form of definable powerset.

"DPow’(A) == {X ∈ Pow(A).
∃env ∈ list(A). ∃p ∈ formula.

X = {x∈A. sats(A, p, Cons(x,env))}}"

This version omits the constraint arity(p) � succ(length(env)), but is otherwise
identical toDPow. The point is that if the environment is too short, attempted variable lookups
will yield zero; recall the properties of nth from Section 6.2. If the set A is transitive, then
it contains zero as an element. So the too-short environment can be padded to the right with
zeroes.

"Transset(A) =⇒ DPow(A) = DPow’(A)"

Each Lset(i) is a transitive set, so they can be expressed using DPow’ rather than DPow,
as follows.

"Lset(i) = transrec(i, %x f.
⋃
y∈x. DPow’ (f ‘ y))"

The equation above, proved by transfinite induction, lets us relativize Lset without having
to formalize the functions arity and length. That eliminates a lot of work.

The following lemma is helpful for proving instances of separation. The first, quantified,
premise asks for an equivalence between the real formula P and the internalized formula p.
Often we can derive p from P automatically by supplying a set of suitable inference rules.

"[[∀x∈Lset(i). P(x) ←→ sats(Lset(i), p, Cons(x,env));
env ∈ list(Lset(i)); p ∈ formula]]
=⇒ {x∈Lset(i). P(x)} ∈ DPow(Lset(i))"

Also, the lemma makes no reference to arity, thanks to the equivalence between DPow’

and DPow.

6.9. The Zermelo–Fraenkel axioms hold in L

Following [9, VI, Section 2], it is possible to prove that L satisfies the Zermelo–Fraenkel
axioms. Separation is the most difficult case, and is considered later.

6.9.1. Basic properties of L
We begin with simple closure properties. Many of them involve exhibiting an element of
formula describing the required set. We typically begin by starting inLset(i) and proving
that the required set belongs to Lset(succ(i)).

221https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

L is closed under unions.

"X ∈ Lset(i) =⇒ Union(X) ∈ Lset(succ(i))"
"L(X) =⇒ L(Union(X))"

L is closed under unordered pairs. More work is necessary because the sets a and b may
be introduced at different ordinals.

"a ∈ Lset(i) =⇒ {a} ∈ Lset(succ(i))"
"[[a ∈ Lset(i); b ∈ Lset(i)]] =⇒ {a,b} ∈ Lset(succ(i))"
"[[a ∈ Lset(i); b ∈ Lset(i); Limit(i)]] =⇒ {a,b} ∈ Lset(i)"
"[[L(a); L(b)]] =⇒ L({a, b})"

Also, Lα is closed under ordered pairs, provided that α is a limit ordinal. This result is
needed in order to apply the reflection theorem to L. Specifically, it is needed because my
version of the reflection theorem [18] uses ordered pairs to cope with the possibility of a
formula having any number of free variables.

"[[a ∈ Lset(i); b ∈ Lset(i); Ord(i)]]
=⇒ 〈a,b〉 ∈ Lset(succ(succ(i)))"
"[[a ∈ Lset(i); b ∈ Lset(i); Limit(i)]] =⇒ 〈a,b〉 ∈ Lset(i)"

6.9.2. A rank function for L
Some proofs require the L-rank operator. Kunen [9, VI, 1.7] defines ρ(x) to denote the least
α such that x ∈ Lα+1.

"lrank(x) == µi. x ∈ Lset(succ(i))"

Here is one consequence of this definition.

"Ord(i) =⇒ x ∈ Lset(i) ←→ L(x) & lrank(x) < i"

A more important result, whose proof involves lrank, states that every set of constructible
sets is included in some Lset.

"(∀x∈A. L(x)) =⇒ ∃i. Ord(i) & A ⊆ Lset(i)"

This theorem is useful in proving that L satisfies the separation axiom. However, note that
A ⊆ L does not imply that A ∈ L, not even if A is a set of natural numbers.

The lrank operator is useful for proving that L satisfies the powerset axiom.

"L(X) =⇒ L({y ∈ Pow(X). L(y)})"

Note that the powerset of X in L comprises all subsets of X that belong to L. It is potentially
a superset of DPow(X).

The lrank operator also assists in the proof that L satisfies the replacement axiom. The
idea is to use replacement on the ranks of the members of L.

"[[L(X); univalent(L,X,Q)]]
=⇒ ∃Y. L(Y) & Replace(X, %x y. Q(x,y) & L(y)) ⊆ Y"

The proof of replacement is schematic, and therefore independent of the formulaQ. However,
it is the weak form of replacement. It concludes that the range of Q (viewed as a class
function) is included in some constructible set Y . Strong replacement, which is the version
that we really want, asserts that the range itself is constructible. Each instance of strong
replacement requires proving an instance of the axiom of separation.

222https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

6.9.3. Instantiating the locale M_trivial
Now we are ready to show that L satisfies all the properties that we assumed of the class M,
which we used to develop the general theory of absoluteness. The class L is transitive.

"[[y∈x; L(x)]] =⇒ L(y)"

The facts about L proved above can be summarized using the following relativized forms
of the ZF axioms.

"Union_ax(L)"
"upair_ax(L)"
"power_ax(L)"
"replacement(L,P)"

We do not need L to satisfy the foundation axiom. However, this fact is a trivial consequence
of the foundation axiom.

"foundation_ax(L)"

The theorems above are all that we need to prove "PROP M_trivial(L)". This theorem
makes all the results proved in locale "M_trivial" available as theorems about L. In
particular, the absoluteness and closure results listed in Section 4.5 above apply to L.

7. Comprehension in L

It remains to show that L satisfies the axiom of separation. The proof requires the re-
flection theorem. As described elsewhere [18], my formalization of that theorem applies to
any class M = ⋃

α∈ONMα , where the family {Mα}α∈ON is increasing and continuous. An
additional condition is that if α is a limit ordinal, then Mα must be closed under ordered
pairing. Isabelle’s locale mechanism captures these requirements, and we can now instan-
tiate the locale with the class L = ⋃

α∈ON Lα . However, making it ready for practical use
requires additional work.

7.1. The reflection relation

The reflection theorem states that if φ(x1, . . . , xn) is a formula in n variables, then there
exists a closed and unbounded class C such that for all α ∈ C and x1, . . . , xn ∈ Mα we
have

φM(x1, . . . , xn) ⇐⇒ φMα(x1, . . . , xn).

In fact, we need only the weaker conclusion that C is unbounded, which enables us to find
a suitable α > β, given any ordinal β.

Applying the reflection theorem yields an Isabelle formula describing the class C. These
formulae may be interesting in the case of small examples [18], but in typical applications
they are huge. The trivial proofs, which merely refer to other instances of reflection, take
minutes of computer time; the resulting theorems amount to pages of text. The obvious
solution is to express the reflection theorem using an existential quantifier, but classes
cannot be quantified over: they are formulae.

Fortunately, Isabelle makes a distinction between the object-logic (here first-order logic)
and the metalogic (a fragment of higher-order logic) [12]. I was able to formalize a meta-
existential quantifier. It lies outside of first-order logic – in particular, Isabelle will reject
any attempt to use it in comprehensions. However, it can be used in top-level assertions,
which is all that we need.

223https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

We can now define the reflection relation between two formulae P and Q.

"REFLECTS[P,Q] ==
(??C. Closed_Unbounded(C) &

(∀a. C(a) −→ (∀x ∈ Lset(a). P(x) ←→ Q(a,x))))"

It relates the formulae just if there exists a class C satisfying the conclusion of the reflection
theorem [18]. That is, C is a closed, unbounded class of ordinals α such that P and Q agree
on Lα . The existential quantifier, ??C, hides the prohibitively large formula describing
this class. The following lemma illustrates the use of the reflection relation. Note that the
quantification over classes has disappeared.

"[[REFLECTS[P,Q]; Ord(i)]]
=⇒ ∃j. i<j & (∀x ∈ Lset(j). P(x) ←→ Q(j,x))"

If REFLECTS[P,Q] holds, and i is an ordinal, then there exists a larger ordinal j for which
P and Q agree. Our choice of i can make j arbitrarily large.

The general form of the reflection theorem uses the relativization operator, which cannot
be expressed in Isabelle/ZF. However, given a specific formula φ, we can generate an
instance of the reflection theorem relatingφL andφLα . Here is the base case, where normally
P should have the form x ∈ y or x = y.

"REFLECTS[P, λa x. P(x)]"

Reflection relationships can be formed over the propositional connectives: here negation,
conjunction and biconditionals.

"REFLECTS[P,Q] =⇒ REFLECTS[λx. ˜P(x), λa x. ˜Q(a,x)]"

"[[REFLECTS[P,Q]; REFLECTS[P’,Q’]]]
=⇒ REFLECTS[λx. P(x) ∧ P’(x), λa x. Q(a,x) ∧ Q’(a,x)]"

"[[REFLECTS[P,Q]; REFLECTS[P’,Q’]]]
=⇒ REFLECTS[λx. P(x) ←→ P’(x), λa x. Q(a,x) ←→ Q’(a,x)]"

Reflection relationships can be formed over the quantifiers.

"REFLECTS[λx. P(fst(x),snd(x)), λa x. Q(a,fst(x),snd(x))]
=⇒ REFLECTS[λx. ∃z[L]. P(x,z), λa x. ∃z∈Lset(a). Q(a,x,z)]"

In the conclusion, a quantification over L is related to one over Lα , as suggested by the
general form of the reflection theorem. The premise uses the projection operators for ordered
pairs to introduce the new variable, z; syntactically, λx. P(fst(x),snd(x)) is a unary
formula.

7.2. Internalized formulae for some set-theoretic concepts

Every operator or concept that is used in an instance of the axiom of separation must be
internalized. If the defining formula is complicated, then writing the corresponding element
of formula requires a manual (and error-prone) translation into de Bruijn notation. The
Isabelle/ZF development of constructibility theory contains about a hundred such encodings.
A typical example resembles that shown in Section 6.6 above for subset_fm. The first to
be internalized are elementary concepts such as the empty set, unordered and ordered pairs,
unions, intersections, domain and range.

224https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

The union predicate was defined in Section 4.1 as

∀z . z ∈ Y ↔ z ∈ A ∨ z ∈ B.
In the corresponding formula, the variables x, y and z range over de Bruijn indices.

"union_fm(x,y,z) ==
Forall(Iff(Member(0,succ(z)),

Or(Member(0,succ(x)), Member(0,succ(y)))))"

As for subset_fm above, we can prove that union_fm yields an element of the set
formula. The theorem about satisfaction now takes the following form.

"[[x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)]]
=⇒ sats(A, union_fm(x,y,z), env) ←→

union(**A, nth(x,env), nth(y,env), nth(z,env))"

Here, **A is Isabelle syntax for the class given by the set A; that is, {x | x ∈ A}. The
theorem above simply expresses the equivalence between the relational formula union and
union_fm, which is its translation into an element of the set formula. Such equivalences
are usually trivial: they simply relate two syntaxes for formulae. They do not express the
equivalence between union_fm and ∪, which would be an instance of absoluteness.

After internalizing a predicate such as union, it makes sense to prove its instance of
the reflection theorem too, since both results will be needed when proving instances of
separation.

"REFLECTS[λx. union(L,f(x),g(x),h(x)),
λi x. union(**Lset(i),f(x),g(x),h(x))]"

Most reflection proofs are trivial two-line scripts, as follows.

1. Unfold the concept’s definition (here, union).

2. Repeatedly apply existing reflection theorems.

Each predicate is internalized similarly. Parts of the declarations and proofs can be copied
from those of another predicate. However, getting the definition right requires careful at-
tention to the original first-order definition.

7.3. Higher-order syntax

Higher-order syntax is ubiquitous in naive set theory. In the union
⋃
x∈A B(x), the higher-

order variableB represents an indexed family of sets. In the function abstraction λx∈A b(x),
the higher-order variable b represents the function’s body. Isabelle/ZF additionally uses
higher-order syntax to express many forms of recursion, and so forth. Although this syntax
is indispensable, it is also illegitimate: formal set theory has no non-trivial terms, let alone
higher-order ones. We must formalize the conventions governing higher-order syntax into
the language of set theory.

Converting a higher-order operator such as λx∈A. b(x) into relational form yields a
higher-order predicate. Among its arguments is a predicate is_b that expresses the func-
tion body, b, in relational form. If is_b is purely relational, then so is the definiens of
is_lambda.

"is_lambda(M, A, is_b, z) ==
∀p[M]. p ∈ z ←→
(∃u[M]. ∃v[M]. u∈A & pair(M,u,v,p) & is_b(u,v))"

225https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

This definition states that z is a λ-abstraction, provided that: (i) its elements are ordered
pairs that satisfy is_b, and (ii) the first component of each pair belongs to A.

The following predicate expresses the information that is_f represents the relational
version of f for arguments ranging over A.

"Relation1(M,A,is_f,f) ==
∀x[M]. ∀y[M]. x∈A −→ is_f(x,y) ←→ y = f(x)"

This abbreviation, and similarly Relation2, and so on, are useful for expressing absolute-
ness results. If is_b is the relational equivalent of b, and if the class M contains each b(m)
for m∈A, then is_lambda(M,A,is_b,z) is the relational version of λx∈A. b(x). Thus
λ-abstraction is absolute.

"[[Relation1(M,A,is_b,b); M(A); ∀m[M]. m∈A −→ M(b(m)); M(z)]]
=⇒ is_lambda(M,A,is_b,z) ←→ (z = λx∈A. b(x))"

Showing that M is closed under λ-abstraction requires a separate instance of strong replace-
ment for each b.

"[[strong_replacement(M, λx y. x∈A & y = 〈x, b(x)〉);
M(A); ∀m[M]. m∈A −→ M(b(m))]]
=⇒ M(λx∈A. b(x))"

Internalizing is_lambda is not completely straightforward. The predicate argument,
is_b, becomes a variable ranging over the set formula.

"lambda_fm(p,A,z) ==
Forall(Iff(Member(0,succ(z)),

Exists(Exists(And(Member(1,A#+3),
And(pair_fm(1,0,2), p))))))"

Given a formula and two de Bruijn indices, lambda_fm yields another formula.

"[[p ∈ formula; x ∈ nat; y ∈ nat]] =⇒ lambda_fm(p,x,y) ∈ formula"

However, there is no binding mechanism for expressing predicates that take arguments or
refer to local variables. The formula p must refer to its first argument using the de Bruijn
index 1, and to its second using the index 0 (both to be increased in the usual way ifp contains
quantifiers). If we are lucky, then we can arrange matters such that the actual arguments have
the right indices, and otherwise we can force the indices to agree by introducing quantifiers
and equalities: in the internalization of ∀x. ∀y. x = a ∧ y = b → p, the variable with de
Bruijn index 1 will refer to a, and similarly the index 0 will refer to b. If p contains free
references to other variables, their de Bruijn indices must be increased by 3 because p is
inserted into a context enclosed by three quantifiers.

The satisfaction theorem for is_lambda formalizes the remarks above.

lemma sats_lambda_fm:
assumes is_b_iff_sats ∈

"!!a0 a1 a2.
[[a0∈A; a1∈A; a2∈A]]
=⇒ is_b(a1,a0) ←→ sats(A, p, Cons(a0,Cons(a1,Cons(a2,env))))"

shows
"[[x ∈ nat; y ∈ nat; env ∈ list(A)]]
=⇒ sats(A, lambda_fm(p,x,y), env) ←→

is_lambda(**A, nth(x,env), is_b, nth(y,env))"

226https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

The assumes-shows syntax eases the use of the complicated assumption which states that
is_b agrees with p for the fixed environment env extended with three additional elements
of A. I have not been able to simplify the form of this theorem while retaining its generality.

It gets more complicated when one higher-order operator refers to another. One such
operator has a quantifier nesting depth of 12. When an operator uses its higher-order argu-
ment more than once, we must ensure that the two contexts are similar, adding quantifiers
if necessary to make the nesting depths agree.

Instances of the reflection theorem for higher-order operators must take into account the
possibility of the higher-order argument’s referring to local variables.Although is_lambda
expects is_b to have only two arguments, below we formalize it with three arguments (plus
its class argument). The extra argument is bound by the REFLECTS operator, allowing direct
reference to elements of L or Lset(i).

theorem is_lambda_reflection:
assumes is_b_reflection:

"!!f g h. REFLECTS[λx. is_b(L, f(x), g(x), h(x)),
λi x. is_b(**Lset(i), f(x), g(x), h(x))]"

shows "REFLECTS[λx. is_lambda(L, A(x), is_b(L,x), f(x)),
λi x. is_lambda(**Lset(i), A(x), is_b(**Lset(i),x), f(x))]"

The arity of a higher-order function naturally depends upon that of its function argument.
I found the properties so unintuitive, and their proofs so vexing, that I undertook the work
described in Section 6.8, which eliminates the need for theorems concerning arities.

7.4. Proving instances of separation

The set comprehension {x ∈ A | φ(x)} comes from the separation axiom scheme
instantiated to the formula φ. The axiom of replacement yields a set that may be bigger
than we want, again requiring an appeal to separation. Because I have not formalized the
metatheory, the Isabelle/ZF development cannot express the proof that the separation scheme
holds for L. Each instance has to be proved individually. Fortunately, the proof scripts are
nearly identical. Given φ, the first step is to prove instance of the reflection theorem for that
formula. The next step is to run a proof script corresponding to the sketch in [9, p. 169]. The
formula φ will of course be expressed using the relational language, using predicates such
as union. Executing the proof script will automatically generate an internalized formula,
with union_fm in the corresponding place.

The lemmas outlined on the preceding pages suffice to prove many instances of sepa-
ration. Consider the instance that justifies the existence of the intersection Inter(A). We
must first prove the corresponding instance of the reflection theorem.

"REFLECTS[λx. ∀y[L]. y∈A −→ x ∈ y,
λi x. ∀y∈Lset(i). y∈A −→ x ∈ y]"

Such instances are written manually. A text editor can replace quantification over L by
quantification overLα in the second formula. The proof, almost always, is a one-line appeal
to previous reflection theorems.

The statement of each instance of separation comes from the corresponding locale as-
sumption. The locale refers to an arbitrary class M, so we must replace M by L. The proof
scripts are typically three lines long, and follow a regular pattern. Note that any parameters
used in the separation formula (here A) must be elements of L.

"L(A) =⇒ separation(L, λx. ∀y[L]. y∈A −→ x∈y)"

227https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

The following instance of separation justifies relational composition. I leave the corre-
sponding instance of reflection to the reader’s imagination.

"[[L(r); L(s)]]
=⇒ separation(L, λxz. ∃x[L]. ∃y[L]. ∃z[L]. ∃xy[L]. ∃yz[L].

pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) &
xy∈s & yz∈r)"

After proving ten or so instances of separation, we arrive at the following cryptic theorem.

"PROP M_basic(L)"

This asserts that L satisfies the conditions of the locale M_basic, namely all the instances
of separation needed to derive well-founded recursion. The absoluteness and closure results
proved in that locale (described in Section 4.6) now become applicable to L.

7.5. Automatic internalization of formulae

Isabelle’s ability to translate formulae written in the relational language into members
of formula simplifies the proofs of separation. Here is an example, from the proof of the
instance shown above (about relational composition).

The first proof step applies a lemma for proving instances of separations. It yields a
subgoal that has the assumptions r ∈ Lset(j) and s ∈ Lset(j), where j is arbitrary.
We have to prove that the comprehension belongs to the next level of the constructible
hierarchy, namely DPow(Lset(j)).

{xz ∈ Lset(j) . ∃x∈Lset(j). ∃y∈Lset(j). . . .} ∈DPow(Lset(j))

The second proof step applies a lemma for proving membership in DPow(Lset(j)). It
yields three subgoals (see Figure 2). The first is to show the equivalence between the real
formula

(∃xa∈Lset(j). ∃y∈Lset(j). . . .)

and sats(Lset(j), ?p3(j), [x,r,s]). This is the satisfaction relation applied to
?p3(j), a ‘logical variable’ that can be replaced by any expression, possibly involving
the bound variable j. The third subgoal in Figure 2, namely ?p3(j) ∈ formula, checks
that the chosen expression is an internalized formula. The second subgoal verifies that the
environment, [r,s], is well-typed – namely, that it belongs to list(Lset(j)).

The third proof step is as follows.

apply (rule sep_rules | simp)+

It applies some theorem ofsep_rules, then simplifies, then repeats if possible.This finishes
the proof. All separation proofs have this form, save only that sometimes sep_rules needs
to be augmented with additional theorems.

Formula synthesis works in a way familiar to all Prolog programmers. Essentially, the
theorems in sep_rules comprise a Prolog program for generating internalized formulae.
Most of the ‘program clauses’ relate real formulae to internal ones, and are derived from the
basic properties of the satisfaction relation. For example, this one relates the real conjunction
P&Q with the term And(p,q). The first two subgoals concern the synthesis of p and q. The
third subgoal expresses a type constraint on env.

"[[P ←→ sats(A,p,env); Q ←→ sats(A,q,env); env ∈ list(A)]]
=⇒ (P & Q) ←→ sats(A, And(p,q), env)"

228https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

1.
∧
j x. [[L(r); L(s); r ∈ Lset(j); s ∈ Lset(j); x ∈ Lset(j)]]

=⇒ (∃xa∈Lset(j).
∃y∈Lset(j).
∃z∈Lset(j).

pair(**Lset(j), xa, z, x) ∧
(∃xy∈Lset(j).

pair(**Lset(j), xa, y, xy) ∧
(∃yz∈Lset(j).

pair(**Lset(j), y, z, yz) ∧
xy ∈ s ∧ yz ∈ r))) ←→

sats(Lset(j), ?p3(j), [x, r, s])
2.

∧
j. [[L(r); L(s); r ∈ Lset(j); s ∈ Lset(j)]]
=⇒ [r, s] ∈ list(Lset(j))

3.
∧
j. [[L(r); L(s); r ∈ Lset(j); s ∈ Lset(j)]]
=⇒ ?p3(j) ∈ formula

Figure 2: Subgoals ready for automatic synthesis of a formula.

This ‘program clause’relates the real quantification ∀x∈A.P(x)with the term Forall(p).
The first subgoal concerns the synthesis of p in an environment augmented with an arbitrary
x∈A.

"[[!!x. x∈A =⇒ P(x) ←→ sats(A, p, Cons(x, env)); env ∈ list(A)]]
=⇒ (∀x∈A. P(x)) ←→ sats(A, Forall(p), env)"

The environment, which initially contains the parameters of the separation formula, gets
longer with each nested quantifier. Each higher-order operator can add several elements to
the environment, as mentioned above in Section 7.3.

A base case of synthesis relates the formula x∈y with the term Member(i,j). The first
two subgoals concern the synthesis of the de Bruijn indices i and j, as follows.

"[[nth(i,env) = x; nth(j,env) = y; env ∈ list(A)]]
=⇒ (x∈y) ←→ sats(A, Member(i,j), env)"

Other base cases concern predicates of the relational language. This theorem, which
relates the formula union(**A,x,y,z) with the term union_fm(i,j,k), is just a re-
working of a theorem shown in Section 7.2 above.

"[[nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)]]
=⇒ union(**A, x, y, z) ←→ sats(A, union_fm(i,j,k), env)"

Given the subgoal nth(?i,env) = x, Isabelle can synthesize ?i. This de Bruijn index
is determined by x, which comes from the original formula, and env, which is given in
advance. If x matches the head of the environment, then ?i should be zero.

"nth(0, Cons(a, l)) = a"

If it does not match, however, then we should discard the head and attempt to synthesize a
de Bruijn index using the tail.

"[[nth(n,l) = x; n ∈ nat]] =⇒ nth(succ(n), Cons(a,l)) = x"

The automatic synthesis of internalized formulae saves much work in proofs of separa-
tion. In principle, we could rewrite every relational formula into its primitive constituents
of membership and equality, removing the need for union_fm and a hundred similar con-
stants. However, if too few internalized primitives have been defined, formula synthesis
takes many minutes.

229https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

8. Absoluteness of recursive datatypes

The Isabelle/ZF proofs discussed up to now include the construction of the class L and
the proof that it is a model of the Zermelo–Fraenkel axioms. The next step is to show that
L satisfies V = L. That fact follows by the absoluteness of constructibility, which follows
by the absoluteness of satisfaction. Consulting the definition of satisfies reveals that
we must still prove the absoluteness of lists, formulae, the function nth, and several other
notions.

Isabelle/ZF defines the sets list(A) and formula automatically from their user-
supplied descriptions [17]. These fixedpoint definitions have advantages, but their use of
the powerset operator is an obstacle to proving absoluteness. For a start, Pow(D) must be
eliminated from the following definition.

"lfp(D,h) == Inter({X ∈ Pow(D). h(X) ⊆ X})"

We proceed by formalizing standard concepts from domain theory [2, pp. 51–56]. A set
is directed if it is non-empty and closed under least upper bounds. A function is continuous
if it preserves the unions of directed sets.

"directed(A) == A �=0 & (∀x∈A. ∀y∈A. x∪y ∈ A)"
"contin(h) == (∀A. directed(A) −→ h(

⋃
A) = (

⋃
X∈A. h(X)))"

We can prove that the least fixed point of a monotonic, continuous function h can be
expressed as the union of the finite iterations of h.

"[[bnd_mono(D,h); contin(h)]] =⇒ lfp(D,h) = (
⋃
n∈nat. hˆn(0))"

This equation eliminates not only Pow(D), but also every occurrence of D, which is the
‘bounding set’ [15, Section 2.2], and is itself typically defined using powersets.

In order to apply this equation, we must prove that standard datatype constructions
preserve continuity. The case bases are that the constant function and the identity function
are continuous.

"contin(λX. A)"
"contin(λX. X)"

Sums and products preserve continuity.

"[[contin(F); contin(G)]] =⇒ contin(λX. F(X) + G(X))"
"[[contin(F); contin(G)]] =⇒ contin(λX. F(X) × G(X))"

These four lemmas cover all finitely branching datatypes, including lists and formulae.

8.1. Absoluteness for function iteration

In the equation given above for least fixed points, the term hˆn(0) abbreviates
iterates(h,n,0). Isabelle/ZF defines iterates(F,n,x) by the obvious primitive re-
cursion on n∈nat. The absoluteness of datatype definitions will follow from the absolute-
ness of iterates.

Recall that a well-founded function definition consists of a relation r and function
body H ; recall equation (1) of Section 5.2. Relativizing such a function definition requires
relativizing H by an Isabelle/ZF relation, say MH . So to relativize iterates, we declare
is_iterates in terms of another predicate iterates_MH, representing the body of the
recursion.

230https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

"iterates_MH(M,isF,v,n,g,z) ==
is_nat_case(M, v,

λm u. ∃gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
n, z)"

"is_iterates(M,isF,v,n,Z) ==
∃sn[M]. ∃msn[M]. successor(M,n,sn) & membership(M,sn,msn) &

is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"

Incidentally, is_nat_case(M,a,isb,n,z) expresses case analysis on the natural num-
bern. Note that we again work in the general setting of a classM satisfying certain conditions.
Later, we shall prove that L meets those conditions.

The absoluteness theorem for well-founded recursion requires an instance of strong re-
placement for each function being defined. However, iterates is a higher-order function,
and so technically iterates(F,n,x) involves a separate instance of well-founded recur-
sion for each F . The function iterates_replacement can express each required instance
of replacement; its argument isF is the relational form of F .

"iterates_replacement(M,isF,v) ==
∀n[M]. n∈nat −→

wfrec_replacement(M, iterates_MH(M,isF,v), Memrel(succ(n)))"

Assuming such an instance of replacement, and given that isF is the relational version
of F, the absoluteness of iterates is a corollary of the general theorem about well-founded
recursion.

"[[iterates_replacement(M,isF,v); relation1(M,isF,F);
n ∈ nat; M(v); M(z); ∀x[M]. M(F(x))]]
=⇒ is_iterates(M,isF,v,n,z) ←→ z = iterates(F,n,v)"

We similarly find that M is closed under function iteration.

"[[iterates_replacement(M,isF,v); relation1(M,isF,F);
n ∈ nat; M(v); ∀x[M]. M(F(x))]]
=⇒ M(iterates(F,n,v))"

8.2. Absoluteness for lists and formulae

The formal treatment of continuity and iterates enables us to prove that lists and
formulae are absolute.

The definition of lists generated by the Isabelle/ZF datatype [17] is too complicated
to relativize easily. Instead, we prove its equivalence to a more abstract (and familiar)
definition.

"list(A) = lfp(univ(A), λX. {0} + A*X)"

The function given to lfp is continuous by construction, which lets us replace the least
fixed point by iteration and eliminate the non-absolute set univ(A).

"contin(λX. {0} + A*X)"
"list(A) = (

⋃
n∈nat. (λX. {0} + A*X)ˆn (0))"

Now the absoluteness of list(A) is obvious. However, each element of this equation must
be formalized in order to prove absoluteness. We begin by introducing an abbreviation for
finite iterations of λX. {0} + A*X – that is, for finite stages of the list construction.

"list_N(A,n) == (λX. {0} + A*X)ˆn (0)"

231https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Next, we relativize the function λX. {0} + A*X. The predicate number1 recognizes the
number 1, which equals the set {0}.
"is_list_functor(M,A,X,Z) ==

∃n1[M]. ∃AX[M].
number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)"

Next, we relativize the function list_N, the finite iterations.

"is_list_N(M,A,n,Z) ==
∃zero[M]. empty(M,zero) &

is_iterates(M, is_list_functor(M,A), zero, n, Z)"

We relativize membership in list(A) as membership in list_N(A,n) for some n. The
predicate finite_ordinal recognizes the natural numbers.

"mem_list(M,A,l) ==
∃n[M]. ∃listn[M].
finite_ordinal(M,n) & is_list_N(M,A,n,listn) & l ∈ listn"

Finally, we can relativize the set of lists itself.

"is_list(M,A,Z) == ∀l[M]. l ∈ Z ←→ mem_list(M,A,l)"

After proving the absoluteness oflist_N(A,n), we obtain the absoluteness oflist(A),
and we prove that M is closed under list formation.

"M(A) =⇒ M(list(A))"
"[[M(A); M(Z)]] =⇒ is_list(M,A,Z) ←→ Z = list(A)"

Formulae are proved absolute in just the same way. We express the set formula as an
abstract least fixed point of a suitable function, prove that function to be continuous, and
eliminate the lfp operator.

"formula = lfp(univ(0), λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
"contin(λX. ((nat*nat) + (nat*nat)) + (X*X + X))"
"formula =

(
⋃
n∈nat. (λX. ((nat*nat) + (nat*nat)) + (X*X + X)) ˆ n (0))"

Proceeding as for lists, we define the predicates is_formula_functor, is_formula_N,
mem_formula and finally is_formula. We obtain the desired theorems, as follows.

"M(formula)"
"M(Z) =⇒ is_formula(M,Z) ←→ Z = formula"

8.3. Recursion over lists and formulae

We have already seen (in Section 5) that functions defined by well-founded recursion are
absolute. For mathematicians, that is enough to justify the absoluteness of functions defined
recursively on lists or formulae. Proof tool users, however, must work through the details for
each instance. Usually, automation makes it easy to apply general results to particular cir-
cumstances. However, the Isabelle/ZF translation of recursive function definitions is rather
complicated (see [15, Sections 3.4 and 4.3.1].) There are good reasons for this complexity,
such as support for a form of polymorphism. However, it makes the absoluteness proofs
more difficult: the complications have to be taken apart and relativized, one by one.

At least there is no need to treat recursion over lists. Defining the class L involves only
one list function, namely nth. Given a natural number n and a list l, this function returns

232https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

the nth element of l, counting from 0. Obviously, this amounts to taking the tail of the list n
times and returning the head of the result. The recursion in nth is an instance of iterates.

Isabelle/ZF defines the head and tail functions hd and tl. The absoluteness proofs use
modified versions called hd’ and tl’, which extend hd and tl to return 0 if their argu-
ment is ill-formed (the details are unimportant). Relativization is simpler when a function’s
behaviour is fully specified. Now we can prove an equivalence for nth, as follows.

"[[xs ∈ list(A); n ∈ nat]] =⇒ nth(n,xs) = hd’ (tl’ ˆ n (xs))"

Its relational equivalent, is_nth, has an obvious definition in terms of the relational equiv-
alents of iterates, tl and hd.

"is_nth(M,n,l,Z) ==
∃X[M]. is_iterates(M, is_tl(M), l, n, X) & is_hd(M,X,Z)"

Absoluteness is proved with no effort.

"[[M(A); n ∈ nat; l ∈ list(A); M(Z)]]
=⇒ is_nth(M,n,l,Z) ←→ Z = nth(n,l)"

Recursion over lists is absolute in general. Proving this claim would require much work,
and is unnecessary for proving that V = L is absolute. The function satisfies involves
recursion over the datatype of formulae, and its absoluteness proof consists of several stages.
Isabelle/ZF expresses recursion on datatypes in terms of ∈-recursion, which is recursion
on a set’s rank [15, Section 3.4]. Absoluteness for ∈-recursion will follow from that of
well-founded recursion once we have established the absoluteness of ∈-closure. Then we
shall be in a position to consider recursion over formulae.

Five instances of strong replacement are necessary for the proofs sketched above. There
are two each for the absoluteness of list(A) and formula, and one for the absolute-
ness of nth(n,l). The locale M_datatypes encapsulates these additional constraints on
the class M . It is one of several locales used to keep track of instances of separation and
replacement in this development.

8.4. Absoluteness for ∈-closure

If A is a set, then its ∈-closure is the smallest transitive set that includes A. Formally,
the ∈-closure of A is

⋃
n∈ω

⋃n
(A). Here,

⋃n
(A) denotes the n-fold union of A, defined

by
⋃0
(A) = A and

⋃m+1
(A) = ⋃

(
⋃m

(A)). This is just another instance of iterates,
which we can prove as follows.

"eclose(A) = (
⋃
n∈nat. Unionˆn (A))"

Relativization proceeds as it did for lists. The details are omitted here, but they culminate
in the definition of a relational version of eclose(A).

"is_eclose(M,A,Z) == ∀u[M]. u ∈ Z ←→ mem_eclose(M,A,u)"

The standard membership and absoluteness results follow.

"M(A) =⇒ M(eclose(A))"
"[[M(A); M(Z)]] =⇒ is_eclose(M,A,Z) ←→ Z = eclose(A)"

233https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

8.5. Absoluteness for transrec

The Isabelle/ZF operator transrec expresses ∈-recursion, which includes transfinite
recursion as a special case.

transrec (a,H) = H(a, λx∈a.transrec (x,H)).
Its definition is a straightforward combination of the operators eclose, wfrec (which
expresses well-founded recursion), and Memrel (which encodes the membership relation
as a set). Thus the definition of the relational version, is_transrec, is also straightforward.
Our previous results lead directly to a proof of absoluteness.

"[[transrec_replacement(M,MH,i); relativize2(M,MH,H);
Ord(i); M(i); M(z);
∀x[M]. ∀g[M]. function(g) −→ M(H(x,g))]]
=⇒ is_transrec(M,MH,i,z) ←→ z = transrec(i,H)"

We similarly find that M is closed under ∈-recursion.

"[[transrec_replacement(M,MH,i); relativize2(M,MH,H);
Ord(i); M(i);
∀x[M]. ∀g[M]. function(g) −→ M(H(x,g))]]
=⇒ M(transrec(i,H))"

In these theorems, transrec_replacement abbreviates a specific use of
wfrec_replacement, which justifies this particular recursive definition (recall Section 5.3).

8.6. Recursion over formulae

The Isabelle/ZF treatment of recursive functions on datatypes involves non-absolute
concepts, namely the cumulative hierarchy {Vα}α∈ON and the rank function [15, Section 3.6].
For proving absoluteness, I proved an equation stating that recursion over formulae could
be expressed differently. The new formulation refers to the depth of a formula, defined as
follows.

"depth(Member(x,y)) = 0"
"depth(Equal(x,y)) = 0"
"depth(Nand(p,q)) = succ(depth(p) ∪ depth(q))"
"depth(Forall(p)) = succ(depth(p))"

Introducing depth seems to be a step backwards, since it requires relativizing another re-
cursive function on formulae. However, we can express the depth of a formula in terms
of is_formula_N, which we need anyway (Section 8.2); is_formula_N(M,n,F) holds
just if F is the set of formulae generated by n unfoldings of the datatype definition –
which is all formulae of depth less than n. A formula p has depth n if it satisfies
is_formula_N(M,succ(n),F) and not is_formula_N(M,n,F).

"is_depth(M,p,n) ==
∃sn[M]. ∃formula_n[M]. ∃formula_sn[M].
is_formula_N(M,n,formula_n) & p /∈ formula_n &
successor(M,n,sn) &
is_formula_N(M,sn,formula_sn) & p ∈ formula_sn"

Working from this definition, we find that the depth of a formula is absolute.

"[[p ∈ formula; n ∈ nat]] =⇒ is_depth(M,p,n) ←→ n = depth(p)"

234https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

For relativization, I modified the standard Isabelle/ZF treatment of recursion over for-
mulae, replacing the set Vα by formula and the rank of a set by the depth of a formula. If
f is a recursive function on formulae, then the evaluation of f(p) begins by determining
the depth of p, say n. Then the recursion equation for f is unfolded n + 1 times, using
transfinite recursion. The resulting nonrecursive function is finally applied to p. This ap-
proach unfortunately needs an explicit λ-abstraction over formulae and another instance
of the replacement axiom. With the benefit of hindsight, I might have saved much work
by seeking simpler ways of expressing recursion over formulae, such as by well-founded
recursion on the subformula relation.

The recursive definition of a function f is specified by four parameters a, b, c and d,
corresponding to the four desired recursion equations.

f(Member(x,y)) = a(x,y)
f(Equal(x,y)) = b(x,y)
f(Nand(p,q)) = c(p,f(p),q,f(q))
f(Forall(p)) = d(p,f(p))

Given the datatype definition of formula, Isabelle/ZF automatically defines the operator
formula_rec for expressing recursive functions. The term formula_rec(a,b,c,d,p)

denotes the value of the function f above applied to the argument p. More concisely,
formula_rec(a,b,c,d) denotes the function f itself. The details of the definitions are
illustrated elsewhere, using the example of lists [15, Section 4.3].

In order to express the recursion theorem, it helps to have first defined an abbreviation
for its case analysis on formulae.

"formula_rec_case(a,b,c,d,h) ==
formula_case (a, b,

λu v. c(u, v, h ‘ succ(depth(u)) ‘ u,
h ‘ succ(depth(v)) ‘ v),

λu. d(u, h ‘ succ(depth(u)) ‘ u))"

Now we can express recursion on formulae in terms of absolute concepts.

"p ∈ formula =⇒
formula_rec(a,b,c,d,p) =
transrec (succ(depth(p)),

λx h. Lambda(formula, formula_rec_case(a,b,c,d,h))) ‘ p"

The proof is by structural induction on p. Note that the argument h of formula_rec_case
is a partially unfolded recursive function of two arguments. It is a curried function: given its
first argument, a natural number, the result is another function that can accept a second argu-
ment, a formula. In formula_rec_case, the second argument is some formula u (which in
practice will be a subformula of p), and the first is succ(depth(u)). The intuition behind
this theorem may be obscure, but that is no obstacle to proving absoluteness. Many rou-
tine details must be taken care of, including relativization and absoluteness for the formula
constructors Member, Equal, Nand and Forall, and for the operator formula_case.

Obviously, formula_rec is a higher-order function. Its absoluteness proof depends
upon absoluteness assumptions for the function arguments a, b, c and d. Its relational
version needs those arguments to be expressed in relational form as predicates is_a, is_b,
is_c and is_d. The absoluteness theorem depends upon ten assumptions in all: two each
for is_a, is_b, is_c and is_d, and two instances of replacement.

235https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

After many intricate but uninteresting details, we arrive at two key theorems. If the class M
is closed under the parameters a, b, c and d, then it is closed under the corresponding
recursion.

"p ∈ formula =⇒ M(formula_rec(a,b,c,d,p))"

Recursion over formulae is absolute.

"[[p ∈ formula; M(z)]]
=⇒ is_formula_rec(M,MH,p,z) ←→ z = formula_rec(a,b,c,d,p)"

In this theorem, MH abbreviates the relativization of the argument of transrec shown
above.

"MH(u::i,f,z) ==
∀fml[M]. is_formula(M,fml) −→

is_lambda
(M, fml, is_formula_case (M, is_a, is_b, is_c(f), is_d(f)), z)"

9. Absoluteness for L

In order to prove that V = L, we must prove the absoluteness of three main functions.

1. satisfies, the satisfaction function on formulae;

2. DPow, the definable powerset function;

3. Lset, which expresses the levels Lα of the constructible hierarchy.

Of these functions, Lset is defined by transfinite recursion from DPow, which in turn has a
straightforward definition in terms of satisfies. Proving the absoluteness of satisfies
is, however, very complicated.

Absoluteness of satisfies is merely an instance of the absoluteness of recursion over
formulae, and is therefore trivial. That does not relieve us of the task of formalizing the
details. The file containing the satisfies absoluteness proof is one of the largest in the
entire development. This file divides into two roughly equal parts.

The first half contains internalizations and reflection theorems for operators such as
depth andformula_case. It expresses the four cases ofsatisfies in both functional and
relational form, and proves absoluteness for each case. Six instances of strong replacement
are required: one for each case of the recursion (because each contains a λ-abstraction),
another to justify the use of transrec, and yet another to justify the λ-abstraction in
formula_rec. These axioms are assumed to hold for an arbitrary class model M . They are
used to show that the formalization satisfies the conditions of the absoluteness theorem for
formula_rec described in the previous section.

The second half of the file is devoted to proving that the six instances of replacement hold
in L. The four cases of the recursion (in their relational form) must each be internalized.
This tiresome task involves, as always, translating a definition involving real formulae into
one using internalized formulae. Then the six instances of replacement are justified. Finally,
the pieces are put together.

9.1. Proving that satisfies is absolute

Working in the class M, we assume additional instances of the replacement axiom and
apply them to the definition of satisfies, which is reproduced here.

236https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

"satisfies(A,Member(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) ∈ nth(y,env)))"

"satisfies(A,Equal(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) = nth(y,env)))"

"satisfies(A,Nand(p,q)) =
(λenv ∈ list(A). not ((satisfies(A,p)‘env) and

(satisfies(A,q)‘env)))"
"satisfies(A,Forall(p)) =

(λenv ∈ list(A). bool_of_o
(∀x∈A. satisfies(A,p)‘(Cons(x,env)) = 1))"

Many additional concepts must be internalized. Consider the predicate is_depth, which
formalizes the depth of a formula.

"depth_fm(p,n) ==
Exists(Exists(Exists(

And(formula_N_fm(n#+3,1),
And(Neg(Member(p#+3,1)),
And(succ_fm(n#+3,2),
And(formula_N_fm(2,0), Member(p#+3,0))))))))"

We prove the usual theorem relating the satisfaction of depth_fm to the truth of is_depth.

"[[x ∈ nat; y < length(env); env ∈ list(A)]]
=⇒ sats(A, depth_fm(x,y), env) ←→

is_depth(**A, nth(x,env), nth(y,env))"

Then we generate yet another instance of the reflection theorem.

"REFLECTS[λx. is_depth(L, f(x), g(x)),
λi x. is_depth(**Lset(i), f(x), g(x))]"

The internalization ofis_formula_case is omitted here, but its definition is fifteen lines
long and contains eleven quantifiers. The theorem statements relating is_formula_case

to formula_case are also long and complicated. They are of course also higher-order,
requiring the methods of Section 7.3.

In order to relativize satisfies, we must first define constants corresponding to
formula_rec’s parameters a, b, c and d. Here are the two base cases.

"satisfies_a(A) ==
λx y. λenv∈list(A). bool_of_o (nth(x,env) ∈ nth(y,env))"

"satisfies_b(A) ==
λx y. λenv∈list(A). bool_of_o (nth(x,env) = nth(y,env))"

In the two recursive cases, the variables rp and rq denote the values returned on the
recursive calls for p and q, respectively.

"satisfies_c(A) ==
λp q rp rq. λenv∈list(A). not(rp ‘ env and rq ‘ env)"

"satisfies_d(A) ==
λp rp. λenv∈list(A). bool_of_o (∀x∈A. rp ‘ (Cons(x,env)) = 1)"

Each of these functions is then re-expressed in relational form. Here is the first.

"satisfies_is_a(M,A) ==
λx y zz. ∀lA[M]. is_list(M,A,lA) −→

is_lambda(M, lA,
λenv z. is_bool_of_o(M,
∃nx[M]. ∃ny[M].

is_nth(M,x,env,nx) & is_nth(M,y,env,ny) & nx∈ny, z),
zz)"

237https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Once we have done the other three, we can define an instance of MH for satisfies,
expressing the body of the recursion as a predicate.

"satisfies_MH ==
λM A u f z.

∀fml[M]. is_formula(M,fml) −→
is_lambda (M, fml,

is_formula_case (M, satisfies_is_a(M,A),
satisfies_is_b(M,A),
satisfies_is_c(M,A,f),
satisfies_is_d(M,A,f)),

z)"

Finally, satisfies can itself be relativized.

"is_satisfies(M,A) == is_formula_rec (M, satisfies_MH(M,A))"

This lemma relates the fragments defined above to the original primitive recursion in
satisfies. Induction is not required: the definitions are directly equal!

"satisfies(A,p) =
formula_rec (satisfies_a(A), satisfies_b(A),

satisfies_c(A), satisfies_d(A), p)"

At this point we must assume (by declaring a locale) the six instances of replacement
mentioned above. That enables us to prove absoluteness for the parameters a, b, c and d

used to define satisfies. For example, the class M is closed under satisfies_a.

"[[M(A); x∈nat; y∈nat]] =⇒ M(satisfies_a(A,x,y))"

This theorem states that satisfies_is_a(M,A,x,y,zz) is the relational equivalent of
satisfies_a(A,x,y), provided that x and y belong to the set nat.

"M(A) =⇒
Relation2(M, nat, nat, satisfies_is_a(M,A), satisfies_a(A))"

It can be seen as an absoluteness result, subject to typing conditions on x and y. Proofs
are obviously easier if the absoluteness results are unconditional, but sometimes typing
conditions are difficult to avoid.

Analogous theorems are proved for satisfies_is_b, satisfies_is_c and
satisfies_is_d. Thus we use the first four instances of replacement. The last two in-
stances, which are specific to satisfies, allow us to discharge the more general instances
of replacement that are conditions of formula_rec’s absoluteness theorem. We ultimately
obtain absoluteness for satisfies as follows.

"[[M(A); M(z); p ∈ formula]]
=⇒ is_satisfies(M,A,p,z) ←→ z = satisfies(A,p)"

9.2. Proving the instances of replacement for L

Now we must justify those six instances of strong replacement by proving that they
hold in L. Recall that strong replacement is the conjunction of replacement (which holds
schematically in L, but may yield too big a set) and an appropriate instance of separation
(Section 4.3).

As always, proving instances of separation requires the internalization of many formulae.
Isabelle can do this automatically, but unless it is given enough internalized formulae to use

238https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

as building blocks, the translation requires much time and space. I internalized many con-
cepts manually, declaring their internal counterparts as constants, and proving their corre-
spondence with the original concepts. Here is the internal equivalent of satisfies_is_a.

"satisfies_is_a_fm(A,x,y,z) ==
Forall(

Implies(is_list_fm(succ(A),0),
lambda_fm(

bool_of_o_fm(Exists(
Exists(And(nth_fm(x#+6,3,1),

And(nth_fm(y#+6,3,0),
Member(1,0))))), 0),

0, succ(z))))"

Obviously, the same task must be undertaken for the other satisfies relations, and for
the concepts used in their definitions. Finally, we can internalize the body of satisfies
as follows.

"satisfies_MH_fm(A,u,f,zz) ==
Forall(

Implies(is_formula_fm(0),
lambda_fm(

formula_case_fm(satisfies_is_a_fm(A#+7,2,1,0),
satisfies_is_b_fm(A#+7,2,1,0),
satisfies_is_c_fm(A#+7,f#+7,2,1,0),
satisfies_is_d_fm(A#+6,f#+6,1,0),
1, 0),

0, succ(zz))))"

Now, we can prove the six instances of replacement. Here is the first one, for the Member
case of satisfies.

"[[L(A); x ∈ nat; y ∈ nat]]
=⇒ strong_replacement

(L, λenv z. ∃bo[L]. ∃nx[L]. ∃ny[L].
env ∈ list(A) & is_nth(L,x,env,nx) & is_nth(L,y,env,ny) &
is_bool_of_o(L, nx ∈ ny, bo) &
pair(L, env, bo, z))"

The theorem statement may look big, but the proof has only four commands. The corre-
sponding instance of the reflection theorem (not shown) is twice as big, but its proof has
only one command.

We proceed to prove the fifth instance of replacement.

"[[n ∈ nat; L(A)]] =⇒ transrec_replacement(L, satisfies_MH(L,A), n)"

Finally, we prove the sixth instance of replacement.

"[[L(g); L(A)]] =⇒
strong_replacement (L,

λx y. mem_formula(L,x) &
(∃c[L]. is_formula_case(L, satisfies_is_a(L,A),

satisfies_is_b(L,A),
satisfies_is_c(L,A,g),
satisfies_is_d(L,A,g), x, c) &

pair(L, x, c, y)))"

Our reward for this huge effort is that the absoluteness of satisfies now holds for L.

"[[L(A); L(z); p ∈ formula]]
=⇒ is_satisfies(L,A,p,z) ←→ z = satisfies(A,p)"

239https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

9.3. Absoluteness of the definable powerset

Conceptually, the absoluteness of DPow is trivial, since it is just a comprehension involv-
ing satisfies. The formal details require a modest effort. There are more internalizations,
such as that of is_formula_rec. Note that concepts have to be internalized only if they
appear in an instance of separation, which may happen only long after the concept is first
relativized. Unfortunately, formula_rec is a complex higher-order function; in its rela-
tional form, one argument gets enclosed within eleven quantifiers. Completing this task
enables us to internalize is_satisfies.

"satisfies_fm(x) == formula_rec_fm(satisfies_MH_fm(x#+5#+6,2,1,0))"

Recall that DPow is the definable powerset operator. It has a variant form, DPow’, that
does not involve the function arity. The two operators agree on transitive sets, so in
particular we can use DPow’ to construct L. Now we must relativize DPow’. Its definition
refers to the powerset operator, which is not absolute. It can equivalently be expressed using
a set comprehension, which here represents an appeal to the replacement axiom.

"DPow’(A) = {z . ep ∈ list(A) × formula,
∃env ∈ list(A). ∃p ∈ formula.

ep = 〈env,p〉 &
z = {x∈A. sats(A, p, Cons(x,env))}}"

Within the comprehension is another comprehension, which appeals to separation. The
formula sats(A, p, Cons(x,env)) needs to be relativized (as the predicate
is_DPow_sats) and internalized. Then we again extend the list of assumptions about
the class M to include these instances of replacement and separation. Using them, we can
prove that M is closed under definable powersets.

"M(A) =⇒ M(DPow’(A))"

We can also express the equation for DPow’ shown above in relational form, defining the
predicate is_DPow’, and prove absoluteness.

"[[M(A); M(Z)]] =⇒ is_DPow’(M,A,Z) ←→ Z = DPow’(A)"

To make these results available for L, we must first prove that L satisfies the new instances
of replacement and separation. Here is the latter.

"[[L(A); env ∈ list(A); p ∈ formula]]
=⇒ separation(L, λx. is_DPow_sats(L,A,env,p,x))"

9.4. Absoluteness of constructibility

The proof that L satisfies V = L is nearly finished. Only the operator Lset, which
denotes the levels of the constructible hierarchy, remains to be proved absolute. Recall that
it can be expressed using DPow’ as follows.

"Lset(i) = transrec(i, %x f.
⋃
y∈x. DPow’ (f ‘ y))"

So now we must internalize the predicate is_DPow’. First we must internalize the operators
used in its definition. Among those are the predicate is_Collect, which recognizes set
comprehensions. The equation for Lset above involves two further instances of replace-
ment: one for the use of transrec, and another for the indexed union. Adding them to our
list of constraints on M allows us to prove that that class is closed under the Lset operator.

240https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

"[[Ord(i); M(i)]] =⇒ M(Lset(i))"

We can also define its relational version as follows.

"is_Lset(M,a,z) ==
is_transrec(M, %x f u. u = (

⋃
y∈x. DPow’ (f ‘ y)), a, z)"

Notice that this definition is not purely relational. That is all right because is_Lset is not
used in any instance of separation, and thus need not be internalized. We can now prove
that the constructible hierarchy is absolute.

"[[Ord(i); M(i); M(z)]] =⇒ is_Lset(M,i,z) ←→ z = Lset(i)"

As remarked earlier, results such as this express absoluteness because the class model M
drops out of the right-hand side. The left-hand side refers to our formalization of Lα in M,
which by the theorem is equivalent to Lα itself. As always, making this result available to L
requires proving the new instances of replacement. I omit the details, which contain nothing
instructive.

We can finally formalize LM, the relativization of L.A set x is constructible (with respect
to any class M satisfying the specified ZF axioms) provided that there exists an ordinal i
and a level of the constructible hierarchy Li such that x ∈ Li.

"constructible(M,x) ==
∃i[M]. ∃Li[M]. ordinal(M,i) & is_Lset(M,i,Li) & x ∈ Li"

The following theorem is a trivial consequence of the absoluteness results and the defi-
nitions of constructible and L.

"L(x) =⇒ constructible(L,x)"

This theorem expresses our goal, namely that V = L holds in L or, more formally, (V = L)L,
for this statement is equivalent to (∀x.L(x))L and thus to ∀x.L(x) → LL(x). We can
drop the universal quantifier. The antecedent of the implication is formalized as L(x), and
the consequent as constructible(L,x). This proof ends the most difficult part of the
development.

10. The axiom of choice in L

The formalization confirms that V = L is consistent with the axioms of set theory.
Obviously any consequence of V = L, such as the axiom of choice, is consistent with
those axioms too. Proving consequences of V = L involves working in an entirely different
way, and a much pleasanter one. Dispensing with the relational language, relativization,
internalization and absoluteness, we can instead work in native set theory with the additional
axiom V = L.

Assuming that V = L, the proof of the axiom of choice is simple [9, p. 173]. It suffices
to prove that every set can be well-ordered. In fact, we can well-order the whole of L. The
set of internalized formulae is countable, and therefore well-ordered. The well-ordering
of L derives from its cumulative construction, and from the well-ordering of formulae. For
x, y ∈ L, say that x precedes y if

• x originates earlier than y in the constructible hierarchy – that is, there is some α such
that x ∈ Lα and y �∈ Lα; or

• x and y originate at the same level Lα , but the combination of defining formula and
parameters for x lexicographically precedes the corresponding combination for y.

241https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Each element of Lα+1 is a subset of Lα that can be defined by a formula, possibly
involving parameters from Lα . We can assume the induction hypothesis that Lα is well-
ordered. Before we can undertake this transfinite induction, we must complete several tasks.
We must

1. exhibit a well-ordering on lists, for the parameters of a definable subset;

2. exhibit a well-ordering on formulae;

3. combine these to obtain a well-ordering of the definable powerset;

4. show how to extend our well-ordering to the limit case of the transfinite induction.

10.1. A well-ordering for lists

First we inductively define a relation on lists: the lexicographic extension of a relation
on the list’s elements. Let r denote a relation over the set A. Then the relation rlist(A,r)
is the least set closed under the following rules.

"[[length(l’) < length(l); l’ ∈ list(A); l ∈ list(A)]]
=⇒ 〈l’, l〉 ∈ rlist(A,r)"

"[[〈l’,l〉 ∈ rlist(A,r); a ∈ A]]
=⇒ 〈Cons(a,l’), Cons(a,l)〉 ∈ rlist(A,r)"

"[[length(l’) = length(l); 〈a’,a〉 ∈ r;
l’ ∈ list(A); l ∈ list(A); a’ ∈ A; a ∈ A]]

=⇒ 〈Cons(a’,l’), Cons(a,l)〉 ∈ rlist(A,r)"

Informally, the list l’ precedes another list l if

1. l’ is shorter than l, or

2. the lists have the same head and the tail of l’ precedes that of l, or

3. the lists have the same length and the head of l’ precedes that of l under the ordering
on list elements.

If the element ordering is linear, then so is the list ordering. This theorem has a fourteen-line
proof script involving a double structural induction on lists.

"linear(A,r) =⇒ linear(list(A),rlist(A,r))"

If the element ordering is well-founded, then so is the list ordering. This theorem is proved
by induction on the length of the list followed by inductions over the element ordering and
the list ordering. The proof script is under twenty lines, but the argument is complicated.

"well_ord(A,r) =⇒ well_ord(list(A), rlist(A,r))"

10.2. A well-ordering on formulae

Gödel-numbering is the obvious way to well-order the set of formulae. An injection
from the set of formulae into the set of natural numbers is easily defined by recursion on
the structure of formulae. However, it requires an injection from pairs of natural numbers
to natural numbers. The enumeration function for formulae takes this injection as its first
argument, f, as follows.

"enum(f, Member(x,y)) = f ‘ 〈0, f ‘ 〈x,y 〉〉"
"enum(f, Equal(x,y)) = f ‘ 〈1, f ‘ 〈x,y 〉〉"
"enum(f, Nand(p,q)) = f ‘ 〈2, f ‘ 〈enum(f,p), enum(f,q)〉〉"
"enum(f, Forall(p)) = f ‘ 〈succ(2), enum(f,p)〉"

242https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

There are several well-known injections from ω×ω into ω, but defining one of them and
proving it to be injective would involve some effort. Instead we can appeal to a corollary of
κ ⊗ κ = κ , which is already available [19, Section 5] in Isabelle/ZF.

[[well_ord(A,r); InfCard(|A|)]] =⇒ A × A ≈ A

Thus we haveω×ω ≈ ω: there is a bijection, which is also an injection, betweenω×ω andω.
However, although an injection exists, we have no means of naming a specific bijection.
Therefore, we conduct the entire proof of the axiom of choice under the assumption that
some injection exists. The final theorem is existential, which will allow the assumption to
be discharged.

We declare a locale to express this new assumption, calling the injection fn. Recall that
nat is Isabelle/ZF’s name for the ordinal ω.

locale Nat_Times_Nat =
fixes fn
assumes fn_inj: "fn ∈ inj(nat*nat, nat)"

Proving that enum(fn,p) defines an injection from formulae into the naturals requires
a straightforward double induction over formulae.

"(λp ∈ formula. enum(fn,p)) ∈ inj(formula, nat)"

Using the enumeration as a measure function, we find that the set of formulae is well-ordered.

"well_ord(formula, measure(formula, enum(fn)))"

The functions defined below all have an argument f, which should range over injections
fromω×ω intoω. In proofs, this injection will always be fn from locale Nat_Times_Nat.
The definiens of a constant definition cannot refer to fn because it is a variable.

10.3. Defining the well-ordering on DPow(A)

The set DPow(A) consists of those subsets of A that can be defined by a formula, possibly
using elements of A as parameters (Section 6.5). We can define a well-ordering on DPow(A)
from one on A. We get a well-ordering on formulae from their injection into the natural
numbers. To handle the parameters, we define a well-ordering for environments – lists over A
– and combine it with the well-ordering of formulae.A subset ofAmight be definable in more
than one way; to make a unique choice, we map environment/formula pairs to ordinals. The
well-ordering on environment/formula pairs is the lexicographic product (given by rmult)
of the well-orderings on lists (rlist) and formulae (measure).

"env_form_r(f,r,A) ==
rmult(list(A), rlist(A, r),

formula, measure(formula, enum(f)))"

Using existing theorems, it is trivial to prove that this construction well-orders the set
list(A) × formula.

"well_ord(A,r) =⇒ well_ord(list(A) × formula, env_form_r(fn,r,A))"

The order type of the resulting well-ordering yields a map (given by ordermap) from
environment/formula pairs into the ordinals. For each member of DPow(A), the minimum
such ordinal will determine its place in the well-ordering.

243https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

"env_form_map(f,r,A,z) ==
ordermap(list(A) × formula, env_form_r(f,r,A)) ‘ z"

Ifr well-ordersA, andX is a definable subset ofA, then let us defineDPow_ord(f,r,A,X,k)
to hold if k corresponds to some definition of X ; that is, informally, k defines X.

"DPow_ord(f,r,A,X,k) ==
∃env ∈ list(A). ∃p ∈ formula.

arity(p) � succ(length(env)) &
X = {x∈A. sats(A, p, Cons(x,env))} &
env_form_map(f,r,A,〈env,p〉) = k"

Similarly, let us define DPow_least(f,r,A,X) to be the smallest ordinal defining X .

"DPow_least(f,r,A,X) == µk. DPow_ord(f,r,A,X,k)"

Since k determines env and p, we find that an ordinal can define at most one element of
DPow(A).

"[[DPow_ord(fn,r,A,X,k); DPow_ord(fn,r,A,Y,k); well_ord(A,r)]]
=⇒ X=Y"

We also find that every element ofDPow(A) is defined by some ordinal, given byDPow_least.

"[[X ∈ DPow(A); well_ord(A,r)]]
=⇒ DPow_ord(fn, r, A, X, DPow_least(fn,r,A,X))"

Now DPow_least can serve as a measure function to define the well-ordering on
DPow(A).

"DPow_r(f,r,A) == measure(DPow(A), DPow_least(f,r,A))"

Using general facts about relations defined by measure functions, we easily find that
DPow(A) is well-ordered.

"well_ord(A,r) =⇒ well_ord(DPow(A), DPow_r(fn,r,A))"

10.4. Well-ordering Lα in the limit case

The proof that Lα is well-ordered appeals to transfinite induction on the ordinal α. The
induction hypothesis is that Lξ is well-ordered if ξ < α. In the limit case, Lα =⋃

ξ<α Lξ .
Recall (see Section 6.9.2) that the L-rank ρ(x) of x is the least α such that x ∈ Lα+1. If α
is a limit ordinal then we order elements of Lα first by their L-ranks; if two elements have
the same L-rank, say ξ , then we order them using the existing well-ordering of Lξ+1.

In the Isabelle formalization, i is the limit ordinal and r(j) denotes the well-ordering
of Lset(j).

"rlimit(i,r) ==
if Limit(i) then

{z ∈ Lset(i) × Lset(i).
∃x’ x. z = 〈x’,x〉 &

(lrank(x’) < lrank(x) |
(lrank(x’) = lrank(x) & 〈x’,x〉 ∈ r(succ(lrank(x)))))}

else 0"

244https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

We can prove that the limit ordering is linear, provided that the orderings of previous
stages are also linear.

"[[Limit(i); ∀j<i. linear(Lset(j), r(j))]]
=⇒ linear(Lset(i), rlimit(i,r))"

Under analogous conditions, the rlimit(i,r) is a well-ordering of Lset(i). The proofs
are straightforward, and I have omitted many details.

"[[Limit(i); ∀j<i. well_ord(Lset(j), r(j))]]
=⇒ well_ord(Lset(i), rlimit(i,r))"

10.5. Transfinite definition of the well-ordering for L

The well-ordering on L is defined by transfinite recursion. The Isabelle definition refers to
the cryptic transrec operator, so let us pass directly to the three immediate consequences
of that definition. For the base case, the well-ordering is the empty relation.

"L_r(f,0) = 0"

For the successor case, the well-ordering is given by applying DPow_r to the previous level.

"L_r(f, succ(i)) = DPow_r(f, L_r(f,i), Lset(i))"

For the limit case, the well-ordering is given by rlimit.

"Limit(i) =⇒ L_r(f,i) = rlimit(i, L_r(f))"

Thanks to the results proved above, a simple transfinite induction proves that L_r(fn,i)
well-orders the constructible level Lset(i).

"Ord(i) =⇒ well_ord(Lset(i), L_r(fn,i))"

Note that this theorem refers to fn, an injection fromω×ω intoω. Recall (see Section 10.2)
that we know such that such functions exist, but we have not defined a specific one. We
have been able to prove our theorems by working in a locale that assumes the existence
of fn. Now we can eliminate the assumption. We use an existential quantifier to hide the
well-ordering in the previous theorem, so that fn no longer appears. Then, by the mere
existence of such an injection, it follows that every Lset(i) can be well-ordered.

"Ord(i) =⇒ ∃r. well_ord(Lset(i), r)"

To wrap things up, let us package the axiom V = L as a locale.

locale V_equals_L =
assumes VL: "L(x)"

The axiom of choice – in the guise of the well-ordering theorem – is a trivial consequence
of the previous results.

theorem (in V_equals_L) AC: "∃r. well_ord(x,r)"

245https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

11. Conclusions

What has been accomplished? I have mechanized the proof of the relative consistency of
the axiom of choice, largely following a standard textbook presentation. The formal proof
is much longer than the textbook version because it is complete in all details and uses no
metatheoretical reasoning.

As noted in Section 2, Gödel’s proof comprises four tasks, which we can now express
more precisely:

1. defining the class L within ZF;

2. proving, for every ZF axiom φ, that φL is a ZF theorem;

3. proving (V = L)L in ZF;

4. proving that ZF + V = L implies the axiom of choice.

The proof that L satisfies V = L is by far the largest and most difficult part of the develop-
ment. It involves proving L to be absolute, which requires converting every concept used in
its definition into relational form, and proving absoluteness. The sheer number of concepts
is an obstacle, and some of them are hard to express in relational form, especially those
involving recursion. Most of the relations have to be re-expressed using an internal datatype
of formulae.

My formalization has two limitations. First, I am not able to prove that L satisfies the
axiom scheme of comprehension. Although Isabelle/ZF handles schematic proofs easily,
the proof of comprehension for the formula φ requires an instance of the reflection theorem
for φ. Each instance of comprehension therefore has a different proof, and must be proved
separately. The reflection theorem is proved by induction (at the metalevel) on the structure
of φ; thus, all these proofs are instances of one algorithm, and they are generated by nearly
identical proof scripts [18]. The inability to prove the comprehension scheme makes the
absoluteness proofs harder: every necessary instance of comprehension is listed. Instanti-
ating these proofs to L has required proving that each of those instances holds in L. There
are about thirty-five such instances.

My formalization has another limitation. The proof that L satisfies V = L cannot be
combined with the proof that V = L implies the axiom of choice in order to conclude that L
satisfies the axiom of choice. The reason is that the two instances of V = L are formalized
differently: one is relativized, and the other is not. Here I have followed the textbook proofs,
which prove that V = L, declare that the axiom of constructibility can be assumed, and
proceed to derive the consequences of that axiom.

We could remedy both limitations by tackling the whole problem in a quite different
way, by formalizing set theory as a proof system and working entirely in the metatheory. I
leave this as a challenge for the theorem-proving community. A by-product of the work is
a general theory of absoluteness for arbitrary class models of ZF. It could be used for other
formal investigations of inner models. Future investigators might also try formalizing the
proof that L satisfies the generalized continuum hypothesis and the combinatorial principle.

Acknowledgements. Krzysztof Gra̧bczewski devoted much effort to an earlier, unsuccess-
ful, attempt to formalize this material. Work on Isabelle is supported by the U.K.’s Engineer-
ing and Physical Sciences Research Council, grant GR/M75440. Markus Wenzel greatly
improved Isabelle’s locale construct to support these proofs. Kenneth Kunen gave advice
that helped in my formalization of the reflection theorem, and the referee made a number
of valuable comments on this paper.

246https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

Appendix A.

The appendix to the paper was automatically generated by Isabelle/ZF, and presents the
full mechanical development. It is available at:

http://www.lms.ac.uk/jcm/6/lms2003-001/appendix-a/.

References

1. N. G. de Bruijn, ‘Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church–Rosser theorem’, Indag.
Math. 34 (1972) 381–392. 215

2. B. A. Davey and H. A. Priestley, Introduction to lattices and order (Cambridge
University Press, 1990). 230

3. S. Feferman, et al., eds, Kurt Gödel: collected works, vol. II. (Oxford University
Press, 1990). 247

4. Kurt Gödel, ‘The consistency of the axiom of choice and of the generalized con-
tinuum hypothesis’, [3] 26–27; first published in Proc. Nat. Acad. Sci. USA (1938)
556–557. 198

5. Kurt Gödel, ‘The consistency of the axiom of choice and of the generalized contin-
uum hypothesis with the axioms of set theory’, [3] 33–101; first published by Princeton
University Press, 1940. 198, 199, 201, 215

6. Kurt Gödel, ‘Consistency proof for the generalized continuum hypothesis’, [3] 27–
32; first published in Proc. Nat. Acad. Sci. USA (1939) 220–224. 198, 215

7. Paul R. Halmos, Naive set theory (Van Nostrand, 1960). 201

8. Florian Kammüller, Markus Wenzel and Lawrence C. Paulson ‘Locales: a
sectioning concept for Isabelle’, Theorem proving in higher order logics: TPHOLs
’99, Lecture Notes in Comput. Sci. 1690 (ed. Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin and Laurent Théry, Springer, 1999) 149–165. 208

9. Kenneth Kunen, Set theory: an introduction to independence proofs (North-
Holland, 1980). 200, 201, 203, 204, 211, 212, 219, 220, 221, 222, 227, 241

10. E. Mendelson, Introduction to mathematical logic, 4th edn (Chapman and Hall,
1997). 200

11. Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel, Isabelle/HOL: a
proof assistant for higher-order logic, Lecture Notes in Comput. Sci. Tutorial 2283
(Springer, 2002). 204

12. Lawrence C. Paulson, ‘The foundation of a generic theorem prover’, J. Automat.
Reasoning 5 (1989) 363–397. 223

13. Lawrence C. Paulson, ‘Set theory for verification: I. From foundations to functions’,
J. Automat. Reasoning 11 (1993) 353–389. 204, 211

14. Lawrence C. Paulson, Isabelle: a generic theorem prover, Lecture Notes in Comput.
Sci. 828 (Springer, 1994). 204

15. Lawrence C. Paulson, ‘Set theory for verification: II. Induction and recursion’J. Au-
tomat. Reasoning 15 (1995) 167–215. 212, 213, 214, 230, 232, 233, 234, 235

247https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm/6/lms2003-001/appendix-a/
https://doi.org/10.1112/S1461157000000449

The consistency of AC, mechanized

16. Lawrence C. Paulson, ‘Proving properties of security protocols by induction’, 10th
Computer Security Foundations Workshop (IEEE Computer Society Press, 1997) 70–
83. 204

17. Lawrence C. Paulson, ‘A fixedpoint approach to (co)inductive and (co)datatype
definitions’, Proof, language, and interaction: essays in honor of Robin Milner (ed.
Gordon Plotkin, Colin Stirling, and Mads Tofte, MIT Press, 2000) 187–211. 204, 230,
231

18. Lawrence C. Paulson, ‘The reflection theorem: a study in meta-theoretic reasoning’,
[22] 377–391. 198, 222, 223, 224, 246

19. Lawrence C. Paulson and Krzysztof Gra̧bczewski, ‘Mechanizing set theory:
cardinal arithmetic and the axiom of choice’, J. Automat. Reasoning 17 (1996) 291–
323. 204, 243

20. Dag Prawitz, ‘Ideas and results in proof theory’, Second Scandinavian Logic Sym-
posium (ed. J. E. Fenstad, North-Holland, 1971) 235–308. 202

21. Martin Strecker, ‘Formal verification of a java compiler in Isabelle, [22] 63–77.
204

22. Andrei Voronkov, ed. Automated deduction – CADE-18 International Conference,
Lecture Notes in Artificial Intelligence 2392 (Springer, 2002). 248

Lawrence C. Paulson lcp@cl.cam.ac.uk
http://www.cl.cam.ac.uk/users/lcp

Computer Laboratory
University of Cambridge
J J Thomson Avenue
Cambridge CB3 0FD
England

248https://doi.org/10.1112/S1461157000000449 Published online by Cambridge University Press

mailto:lcp@cl.cam.ac.uk
http://www.cl.cam.ac.uk/users/lcp
https://doi.org/10.1112/S1461157000000449

	Introduction
	Proof outline
	The problem with class models
	Relativization
	The formal treatment of terms
	G"{o}del's claim viewed proof-theoretically
	Defining the class L
	Absoluteness: proving (V=L)^L
	The consequences of V=L

	Introduction to the Isabelle/ZF formalization
	Relativization and absoluteness: the basics
	From the empty set to functions
	Relativizing the ordinals
	Defining the Zermelo-Fraenkel axioms
	Introducing a transitive class model
	Easy absoluteness proofs
	Absoluteness proofs assuming instances of separation
	Some remarks about functions

	Well-founded recursion
	Absoluteness of well-orderings
	Functions defined by well-founded recursion are absolute
	Making well-founded recursion available

	Defining first-order formulae and the class L
	Internalized first-order formulae
	The satisfaction relation
	The arity of a formula
	Renaming (renumbering) free variables
	The definable powerset operation
	Proving that the ordinals are definable
	Defining L, the constructible universe
	Eliminating the arity function
	The Zermelo-Fraenkel axioms hold in L

	Comprehension in L
	The reflection relation
	Internalized formulae for some set-theoretic concepts
	Higher-order syntax
	Proving instances of separation
	Automatic internalization of formulae

	Absoluteness of recursive datatypes
	Absoluteness for function iteration
	Absoluteness for lists and formulae
	Recursion over lists and formulae
	Absoluteness for transitive closure
	Absoluteness for transrec
	Recursion over formulae

	Absoluteness for L
	Proving that satisfies is absolute
	Proving the instances of replacement for L
	Absoluteness of the definable powerset
	Absoluteness of constructibility

	The axiom of choice in L
	A well-ordering for lists
	A well-ordering on formulae
	Defining the well-ordering on DPow(A)
	Well-ordering L_alpha in the limit case
	Transfinite definition of the well-ordering for L

	Conclusions
	Appendix

