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Abstract

Let S denote the set of all univalent analytic functions f of the form f (z) = z +
∑∞

n=2 anzn on the
unit disk |z| < 1. In 1946, Friedman [‘Two theorems on Schlicht functions’, Duke Math. J. 13 (1946),
171–177] found that the setSZ of those functions inSwhich have integer coefficients consists of only nine
functions. In a recent paper, Hiranuma and Sugawa [‘Univalent functions with half-integer coefficients’,
Comput. Methods Funct. Theory 13(1) (2013), 133–151] proved that the similar set obtained for functions
with half-integer coefficients consists of only 21 functions; that is, 12 more functions in addition to these
nine functions of Friedman from the set SZ. In this paper, we determine the class of all normalized sense-
preserving univalent harmonic mappings f on the unit disk with half-integer coefficients for the analytic
and co-analytic parts of f . It is surprising to see that there are only 27 functions out of which only six
functions in this class are not conformal. This settles the recent conjecture of the authors. We also prove
a general result, which leads to a new conjecture.
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1. Introduction and main results

Let D = {z : |z| < 1} be the open unit disk in the complex plane C and S the class of all
normalized analytic and univalent mappings f on D with the form

f (z) = z +

∞∑
n=2

anzn.
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258 S. Ponnusamy and J. Qiao [2]

In 1946, Friedman [9] proved that if f ∈ S has integer coefficients, then f is one of the
nine functions from SZ, where

SZ =

{
z,

z
1 ± z

,
z

1 ± z2 ,
z

(1 ± z)2 ,
z

1 ± z + z2

}
. (1.1)

We refer to [18] (see also [25]) for a simpler proof of this result. Observe that each
f ∈ SZ maps D onto a domain starlike with respect to the origin and, hence, functions
in SZ are starlike in D. In [15], Jenkins presented a different proof of this result and
extended it also to functions with coefficients in an imaginary quadratic extension of
the rational numbers; see also [27, 29]. In order to deal with the harmonic analog of
this result, we consider the classSH of all complex-valued, harmonic, sense-preserving
univalent mappings f = h + g in D, with the normalization f (0) = 0 = h(0) = fz(0) − 1.
Thus, h and g are analytic in D, so that

h(z) = z +

∞∑
n=2

anzn and g(z) =

∞∑
n=1

bnzn, (1.2)

where we write for convenience a0 = 0 and a1 = 1. Often h and g are referred to as the
analytic and co-analytic parts of f , respectively. Also, let

S0
H = { f ∈ SH : fz(0) = 0},

so that S0
H ⊂ SH and S = { f = h + g ∈ S0

H : g(z) ≡ 0}. The important facts about SH
and S0

H are that both are normal whereas only the latter one is compact with respect to
the topology of local uniform convergence; see [2, 7].

Just as the class S has been a central object in the study of univalent function
theory, S0

H plays a vital role in the study of harmonic univalent mappings (see [2, 7]).
We recall that (see [17]) a necessary and sufficient condition for a complex-valued
harmonic function f = h + g to be locally univalent and sense-preserving in D is that
the Jacobian J f (z) is positive in D, where

J f (z) = | fz(z)|2 − | fz(z)|2 = |h′(z)|2 − |g′(z)|2.

If f is sense-preserving, then the complex dilatation ω := g′/h′ is analytic in D and
maps D into D. The Bieberbach conjecture had been a driving force to develop the
theory of univalent functions for a long time [6, 10, 20] and was finally solved in
the affirmative by Louis de Branges in 1985. On the other hand, the corresponding
coefficient conjecture for the class S0

H has not been solved even for the second
coefficient of the analytic part h of f [2, 7], although the analog coefficient inequalities
have been proved, for example, for the classes of harmonic convex functions, harmonic
starlike functions, harmonic close-to-convex functions, and typically real-harmonic
functions, respectively.

We say that a harmonic function f = h + g belongs to SH( 1
2Z), that is, f ∈ SH and

has half-integer coefficients, if all the Taylor coefficients an of h and bn of g are half-
integers. Here and hereafter, a half-integer will mean half of an integer. Clearly, an
integer is a half-integer in our context. In a recent paper, the present authors in [21]
obtained the following surprising result as an analog of the result of Friedman.

https://doi.org/10.1017/S1446788714000548 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000548


[3] Classification of univalent harmonic mappings 259

Theorem A. If f = h + g ∈ SH have integer coefficients, then f is one of the nine
functions from SZ, where SZ is given by (1.1).

The proof of Theorem A uses the subordination result due to Rogosinski [24]. We
now recall the recent result of Hiranuma and Sugawa [14, Theorem 1.2], which extends
the result of Friedman for functions in S that have half-integer coefficients.

Theorem B. Suppose that all the Taylor coefficients an of a function f in S are half-
integers. Then f is either one of the nine functions from SZ given by (1.1) or else one
of the 12 functions from F given by

F =

{
z ±

z2

2
,

z(2 ± z)
2(1 ± z)

,
z(2 ± z2)
2(1 ± z2)

,
z(2 ± z)

2(1 − z2)
,

z(2 ± z)
2(1 ± z)2 ,

z(2 ± z + z2)
2(1 ± z + z2)

}
. (1.3)

The proof of Theorem B involves a lot of technical details. In view of Theorem B, it
is natural to ask for an analog of Theorem B if we replace ‘integers’ by ‘half-integers’
in the assumption of Theorem A. This has led to investigation of functions in S0

H( 1
2Z)

that have half-integer coefficients and, as a consequence of it, the present authors
in [21, Conjecture 1] proposed a conjecture. One of the aims of this article is to prove
this conjecture. We now state the result here.

Theorem 1.1. Let f ∈ S0
H( 1

2Z). Then f is one of the following 27 functions from
SZ ∪ F ∪ F0, where SZ and F are given by (1.1) and (1.3), respectively, and F0 is
given by {

Re
( z
(1 ∓ z)2

)
+ i Im

( z
1 ∓ z

)
,Re

( z
1 ∓ z

)
+ i Im

( z
(1 ∓ z)2

)
, z ±

z2

2

}
.

We remark that, in the proof of Theorem 1.1, functions in F0 are represented by
f4(z),− f4(−z), f2(z),− f2(−z), f5(z),− f5(−z), respectively.

We emphasize that these are the only six functions inS0
H( 1

2Z) that are not conformal.
We see that these six functions play the role of extremal functions in different
subclasses of S0

H .
A harmonic function f in D is said to be convex (respectively starlike, close-to-

convex) if f is univalent and maps D onto a convex (respectively starlike with respect
to the origin, close-to-convex) domain (see [6, 7, 10, 20]).

In [19], the authors pointed out that each f ∈ SZ is not only starlike in D but also
belongs to the classU of normalized analytic functions in D satisfying the condition∣∣∣∣∣ f ′(z)

( z
f (z)

)2
− 1

∣∣∣∣∣ < 1

for |z| < 1. It is proved in [14] that functions in F \{(z(2 + z + z2)/2(1 + z + z2)),
(z(2 − z + z2)/2(1 − z + z2))} are close-to-convex. On the other hand, it is easy to see
that the two univalent functions (z(2 + z + z2)/2(1 + z + z2)) and (z(2 − z + z2)/
2(1 − z + z2)) are neither close-to-convex nor belong toU.
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We denote by CV(1) (respectively CV(i)) the class of univalent harmonic functions
convex in the direction of the real axis (respectively in the direction of the imaginary
axis). Functions in these classes are referred to as convex in real direction and convex
in imaginary direction, respectively. These classes are obtained by taking, respectively,
α = 0 and α = π/2, in Definition 2.1 (see Section 2). Moreover, the classes CV(1)
and CV(i) have special roles in geometric function theory and each function in these
geometric classes is characterized by its analytic and co-analytic parts (see Lemma C
with α = 0, π/2). In [21, Theorems 3 and 4], the present authors proved that the number
of univalent harmonic mappings with half-integer coefficients that are either convex in
real direction or convex in imaginary direction is finite. Indeed, the finiteness result is
true even in a more general situation. For a subset E of the set R of real numbers, let
H(E) denote the set of all normalized harmonic functions on D of the form

f (z) = h(z) + g(z) = z +

∞∑
n=2

anzn +

∞∑
n=1

bnzn

such that an, bn ∈ E for all n ≥ 1. Set S0
H(E) = S0

H ∩ H(E). Denote by U(a, r) the
interval (a − r, a + r). If E ∩ U(a, r0) = {a} for every a ∈ E for some constant r0 > 0
which is independent of the point a, then we will say that E is uniformly discrete (with
bound r0). We denote

S0
H,CV(E) = S0

H(E) ∩ (CV(i) ∪ CV(1)).

Theorem 1.2. Suppose that E ⊂ R is uniformly discrete. Then S0
H,CV(E) consists

of only finitely many functions.

Theorem B depends heavily on the area theorem due to Gronwall [12] and
the characterization of univalence of a normalized analytic function in terms of
the Grunsky matrix. Unfortunately, there is no corresponding area theorem for the
harmonic case along the lines of the proof of Theorem B and, so, it becomes necessary
to consider a suitable method to obtain a proof of Theorem 1.1.

We briefly describe the organization of the paper. In Section 2, we will recall
necessary lemmas that are required for the proofs of Theorems 1.1 and 1.2. In
Section 3, we present a proof of Theorem 1.1; the proof uses coefficient estimates
of typically real analytic functions and a result of Rogosinski on subordination. In
Section 4, we present the proof of Theorem 1.2.

We end the section with a conjecture.

Conjecture 1.3. Suppose that E ⊂ R is uniformly discrete. Then S0
H(E) consists of

finitely many functions.

2. Lemmas

We will first need some background information. We begin with the following
definition.
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Definition 2.1. A domain D ⊂ C is called convex in the direction α (0 ≤ α < π) if
every line parallel to the line through 0 and eiα has a connected intersection with D.
A univalent harmonic function f in D is said to be convex in the direction α if f (D) is
convex in the direction α.

Obviously, every function that is convex in the direction α (0 ≤ α < π) is necessarily
close-to-convex, but the converse is not true. Clearly, a convex function is convex in
every direction. The class of functions convex in one direction has been studied by
many mathematicians (see for example [3, 4, 13, 16, 26]) as a subclass of functions
introduced by Robertson [22].

In proving our main theorems, we will need a number of known lemmas. The first
lemma is popularly known as Clunie and Sheil-Small’s shear construction theorem
[2, Theorem 5.3], which, in particular, produces a univalent harmonic function that
maps D onto a domain that is convex in the direction α.

Lemma C (Method of shearing). A harmonic function f = h + g locally univalent in D
is a univalent mapping of D onto a domain convex in the direction α (0 ≤ α < π) if and
only if h − e2iαg is a conformal univalent mapping of D onto a domain convex in the
direction α.

In particular, a locally univalent harmonic mapping f = h + g is convex in the
direction of the real axis (respectively imaginary axis) if and only if h − g (respectively
h + g) is convex in the direction of the real axis (respectively imaginary axis).
Greiner [11] has constructed numerous examples using the method of shearing.

The next lemma is about the coefficient estimates for univalent harmonic mappings.
The coefficient conjecture for functions in S0

H proposed by Clunie and Sheil-Small [2]
(see also [7]) is unsolved, although the same has been verified for a number of
subclasses, for example mappings that are close-to-convex, starlike, and convex in one
direction. In the full class S0

H , however, only the sharp elementary inequality |b2| ≤
1
2

has been verified.

LemmaD [7, page 87, Theorem]. For all functions f ∈ S0
H , the sharp inequality |b2| ≤

1
2

holds, with equality if and only if ω(z) = eiαz for some real α.

The notion of subordination is an important property in analytic function theory;
see [6]. For analytic functions f and g in D, we say that f is subordinate to g, written
f (z) ≺ g(z) or simply f ≺ g, if there exists a Schwarz function ϕ (that is, ϕ is analytic
in D with ϕ(0) = 0 and |ϕ(z)| < 1 for z ∈ D) such that f (z) = g(ϕ(z)). The condition
implies that f (0) = g(0) and | f ′(0)| ≤ |g′(0)|. If, in addition, g is univalent, then f ≺ g
if and only if f (D) ⊂ g(D) and f (0) = g(0).

A number of results of Rogosinski are crucial in the proof of Theorem 1.1. We
begin with the following result due to Rogosinski [24] (see also Duren [6, page 195,
Theorem 6.4]).

Lemma E. If g(z) =
∑∞

n=1 bnzn is analytic in D and g ≺ f for some convex function from
f ∈ S, then |bn| ≤ 1 for n ≥ 1.
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A function f harmonic in D is said to be typically real on D if it assumes real
values on the real axis and nonreal values elsewhere. Let T denote the class of all
typically real functions f analytic in D such that f (0) = 0 = f ′(0) − 1. It is easy to
see that if f ∈ T , then Im{ f (z)} > 0 when Im{z} > 0 and Im{ f (z)} < 0 when Im{z} < 0.
Moreover, functions in T are not necessarily univalent in D. In [1], Bshouty et al.
discussed typically real harmonic mappings (see also [2] and [7, Section 6.6]). The
analog of T for the harmonic case is the class TH of sense-preserving typically real
harmonic functions f = h + g such that h(0) = g(0) = 0, h′(0) = 1, and f (r) > 0 for
0 < r < 1. As in the analytic case, a typically real harmonic function need not be
univalent. Moreover, every f ∈ SH with real coefficients is typically real and belongs
to TH . See [7, Section 6.6] for further details on this class. The subclass of TH for
which g′(0) = 0 is denoted by T 0

H . A family of typically real harmonic polynomials
that has some interesting geometric properties has been discussed for example in [28]
(see also [5]).

The following inequality is due to Rogosinski [23] (see also [6, page 57,
Theorem 2.21]).

Lemma F. If f ∈ T and f (z) =
∑∞

n=0 anzn, then |an+2 − an| ≤ 2 for n = 0, 1, 2, . . . .

A closer examination of the proof of Lemma F gives the following result (see
also [6, page 58, Corollary]).

Lemma G. If f ∈ T and f (z) = z +
∑∞

n=2 anzn, then |an| ≤ n for n = 2, 3, . . . . Strict
inequality occurs for all even n unless f is the Koebe function k(z) = z/(1 − z)2 or
its real rotation −k(−z). Strict inequality occurs for all odd n unless f is a convex
combination of these two functions.

The final lemma due to FitzGerald [8] gives another necessary condition for the
coefficients for typically real analytic functions.

Lemma H. Suppose that f ∈ T and f (z) = z +
∑∞

n=2 anzn. Then the coefficients of f
satisfy the inequality a2

n ≤ 1 + a3 + · · · + a2n−1 for n = 2, 3, . . . .

3. The proof of Theorem 1.1

Let f = h + g ∈ S0
H , where h and g have the standard normalization given by (1.2),

and an, bn are half-integers. By Lemma D, |b2| ≤ 1/2. Since b2 is a half-integer, we
must have b2 = 0, b2 = 1/2, or b2 = −1/2.

Case 3.1. The case b2 = 0.

Now, we claim that g(z) ≡ 0 in D. Set ϕ = h − g. Then ϕ′(z) = h′(z) − g′(z) , 0,
since f is sense-preserving in D. Suppose on the contrary that g is not identically zero.
Because f is sense-preserving, we have |h′| = |g′ + ϕ′| > |g′| and, therefore,∣∣∣∣∣g′ϕ′ + 1

∣∣∣∣∣ > ∣∣∣∣∣g′ϕ′
∣∣∣∣∣, that is, Re

{g′(z)
ϕ′(z)

}
> −

1
2

for z ∈ D.
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In terms of subordination, we may rewrite the last inequality as

g′(z)
ϕ′(z)

≺
z

1 − z
for z ∈ D. (3.1)

Let n0 = min{n : bn , 0} and observe that

ϕ′(z) = 1 +

∞∑
n=2

n(an − bn)zn−1 , 0 in D,

so that 1/ϕ′ can be written in power series as

1
ϕ′(z)

= 1 +

∞∑
n=1

cnzn, z ∈ D.

Then bn0 , 0 for n0 > 2 and, therefore, we may write

g′(z)
ϕ′(z)

= n0bn0 zn0−1 +

∞∑
n=n0

dnzn for z ∈ D.

By Lemma E and (3.1), we deduce that |n0bn0 | ≤ 1. Since bn0 is a half-integer and
n0 > 2, it follows that bn0 = 0, which is a contradiction. Thus, we conclude that
g(z) ≡ 0. Hence, f reduces to an analytic function in S0

H( 1
2Z), and it follows from

Theorem B that f ∈ SZ ∪ F .

Case 3.2. The case b2 = 1
2 .

Since b2 = 1/2, by Lemma D, we deduce that ω(z) = eiαz. By the condition
g′(z) = ω(z)h′(z), we must have eiα = 1 and, hence, ω(z) = z. As a consequence, h
and g are related by g′(z) = zh′(z), which gives the Taylor coefficients of g, in terms of
the coefficients of h, as

bn =
(n − 1)an−1

n
(n ≥ 2), (3.2)

which is a half-integer.
Since f = h + g ∈ S0

H( 1
2Z), it follows from [2, page 22, 6.2] and [2, page 22, 6.3]

that f and h − g are typically real functions with half-integer coefficients. But then,
by [2, page 23, Theorem 6.4],

|an| ≤
1
6 (n + 1)(2n + 1) (3.3)

for n = 2, 3, . . . . Since h − g is typically real, by using Lemma F, we obtain

|(an+2 − bn+2) − (an − bn)| ≤ 2 (3.4)

for n = 0, 1, 2, . . . , where we assume that a0 = b0 = b1 = 0 and a1 = 1. Also, by
Lemma H,

(an − bn)2 ≤ 1 + (a3 − b3) + · · · + (a2n−1 − b2n−1) (3.5)
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for n = 2, 3, . . . . Equations (3.2)–(3.5) will be used frequently in the proof of
Subcase 3.4.

By Lemma G, we observe that h(z) − g(z) is a function in the set A of the one-
parameter family of functions given by

A := {kt(z) = tk(z) − (1 − t)k(−z) with t ∈ [0, 1]},

so that k0(z) = −k(−z) and k1(z) = k(z), or the Taylor coefficients of h(z) − g(z) satisfy
the strict inequality

|an − bn| < n for n = 2, 3, . . . .

Here k(z) = z/(1 − z)2. In the following, we divide this case into two subcases.

Subcase 3.3. Let h(z) − g(z) belong to A.

Solving g′(z) = zh′(z) together with ϕ(z) = h(z) − g(z) gives us the harmonic
function f (z) in a convenient form (since h′(z) = ϕ′(z)/(1 − z)):

f (z) = h(z) + g(z) = 2 Re h(z) − ϕ(z) with h(z) =

∫ z

0

ϕ′(t)
1 − t

dt. (3.6)

Evaluating the integral in (3.6) with ϕ(z) = k1(z) = k(z) := z/(1 − z)2 yields the
harmonic function

f1(z) =
z − 1

2 z2 + 1
6 z3

(1 − z)3 +

1
2 z2 + 1

6 z3

(1 − z)3 ,

which is indeed the well-known harmonic Koebe function (with the dilatation
ω(z) = z). The function f1(z) is convex in the real direction but has no half-integer
coefficients.

As in the previous case, it follows easily that for ϕ(z) = k0(z) = −k(−z),

f2(z) =
z(2 + z)

2(1 + z)2 +
z2

2(1 + z)2 = Re
( z
1 + z

)
+ i Im

( z
(1 + z)2

)
.

Applying Lemma C with α = π/2, it can be easily seen that the function f2(z) is convex
in the real direction and has half-integer coefficients.

When ϕ(z) = tk(z) − (1 − t)k(−z), t ∈ (0, 1), the analytic part h(z) in (3.6) takes the
form

h(z) = t
z − 1

2 z2 + 1
6 z3

(1 − z)3 + (1 − t)
z(2 + z)

2(1 + z)2

and a computation quickly gives the Taylor coefficients of h as

an(t) =
t
6

(n + 1)(2n + 1) + (1 − t)(−1)n+1 n + 1
2

.

Also,

g(z) = t
1
2 z2 + 1

6 z3

(1 − z)3 + (1 − t)
z2

2(1 + z)2
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with its coefficients

bn(t) =
t
6

(n − 1)(2n − 1) + (1 − t)(−1)n n − 1
2

.

Writing an(t) and bn(t) as

an(t) =
n + 1

2

[2t
3

(
n +

1 + 3(−1)n

2

)
+ (−1)n+1

]
and

bn(t) =
n − 1

2

[2t
3

(
n −

1 + 3(−1)n

2

)
+ (−1)n

]
,

it follows easily that the corresponding harmonic function f does not have half-integer
coefficients when t , 3

4 . Now, we need to deal with the case t = 3
4 . Thus, if t = 3

4 , then
we obtain the corresponding harmonic function f3 in the form

f3(z) = h3(z) + g3(z)

=
3
4

(z − 1
2 z2 + 1

6 z3

(1 − z)3

)
+

z(2 + z)
8(1 + z)2 +

3
4

( 1
2 z2 + 1

6 z3

(1 − z)3

)
+

z2

8(1 + z)2

or, equivalently, f3(z) = Re(h3(z) + g3(z)) + i Im(h3(z) − g3(z)), so that

h3(z) + g3(z) =
3
4

( z + 1
3 z3

(1 − z)3

)
+

1
4

( z
1 + z

)
and

h3(z) − g3(z) =
3
4

( z
(1 − z)2

)
+

1
4

( z
(1 + z)2

)
,

so that Re{((1 − z2)/z)(h3(z) − g3(z))} > 0 in D. Moreover, a computation gives the
Taylor coefficients of h3 and g3 as

an(3/4) =


(n + 1)2

4
when n is odd,

n(n + 1)
4

when n is even

and

bn(3/4) =


(n − 1)2

4
when n is odd,

n(n − 1)
4

when n is even,

showing that the function f3 has half-integer coefficients in the case t = 3
4 . We observe

that f3(z) = f3(z) for all z ∈ D and f3 = h3 + g3 belongs to the class T 0
H of the

normalized sense-preserving typically real harmonic functions introduced in Section 2.
We shall now prove that f3 is not univalent in D. Indeed, the analytic part h3 of f3 has
the derivative

h′3(z) =
N(z)

(1 − z)4(1 + z)3 , N(z) = 1 + 2z + 6z2 + 2z3 + z4.
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Figure 1. Images of the circle of radius 1/2 and the open disks of radii 1/2 and 1 under f3(z).

The numerator N(z) has two zeros in the unit disk, which are given by

z1 =
−1 + i

√
3

2
+

√
−3 − i

√
3

3

=
−1 + i

√
3

2
+

4√
3
( √6 −

√
2

4
− i

√
2 +
√

3
2

)
≈ −0.159375 − 0.405204i

and z2 = z1. Thus, by Lewy’s theorem, f3 cannot be univalent in D.
Images of the circle of radius 1/2 and the open disks of radii 1/2 and 1 under f3(z)

are shown in Figure 1(a)–(c).

Subcase 3.4. The case |an − bn| < n for n = 2, 3, . . . .

Claim 3.5. Either an = 0 or an = (n + 1)/2 for n = 2, 3, . . . .

We prove the claim by using the principle of induction. In view of the complexity
of the proof, it is required to prove this claim first for n = 2, 3, 4, 5 and then for n ≥ 6.

The case n = 2. We begin to prove the case n = 2. According to (3.3) and the
assumption, we must have |a2| ≤

5
2 and |a2 − b2| < 2. Since (2a2)/3 has to be a half

integer by (3.2),
a2 ∈ {0, 3/2,−3/2}.
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It follows from the inequality |a2 − b2| < 2 with b2 = 1
2 that either a2 = 0 or a2 = 3

2 ,
since a2 = −3/2 is not possible. From (3.2),

b3 =

{
0 when a2 = 0,
1 when a2 = 3/2. (3.7)

The case n = 3. Inequality (3.3) for n = 3 gives |a3| ≤
14
3 , and (3.2) for n = 4 implies

that (3a3)/2 is an integer. Also, |a3 − b3| < 3 with b3 = 0 or b3 = 1, from which we
obtain that either a3 = 0 or a3 = 2. Again from (3.2), a computation gives

b4 =

{
0 when (a3, b3) = (0, 0),
3/2 when (a3, b3) = (2, 0) or (a3, b3) = (2, 1)

and, moreover, b4 = −3/2 when (a3, b3) = (−2, 0), which is clearly not possible by the
condition (3.4) for n = 1.

The case n = 4. From the case n = 3, we see that there are only two choices for
b4, namely 0 or 3/2. Now, by (3.2) and (3.3), we have (4a4/5) ∈ 1

2Z and |a4| ≤
15
2 ,

respectively.
In the case b4 = 3

2 , the inequality |a4 − b4| < 4 is equivalent to a4 ∈ (−5/2, 11/2)
with 2a4 ∈ Z and (4a4/5) ∈ 1

2Z. This gives

a4 ∈ {0, 5/2, 5}.

But the inequality (3.4) with n = 2 yields that a4 = 5 is not possible.
In the case b4 = 0, the inequality |a4 − b4| < 4 reduces to a4 ∈ (−4, 4) with 2a4 ∈ Z.

This gives
a4 ∈ {0,±1/2,±1,±3/2,±2,±5/2,±3,±7/2}

and, because (4a4/5) ∈ 1
2Z, the choices of a4 reduce to

a4 ∈ {0,±5/2}.

Next, we will prove that a4 = − 5
2 is also not possible (with b4 = 0), so that

a4 ∈ {0, 5/2}

and thus, the claim for n = 4 holds. Thus, it suffices to show that a4 , −
5
2 . Suppose on

the contrary that a4 = − 5
2 . Then b5 = −2 (with b4 = 0), by (3.2) for n = 5.

By using (3.2) for n = 4, we obtain a3 = 0. Consequently, (3.5) for n = 2 (with
b2 = 1/2 and a3 = 0) gives

(a2 − 1/2)2 ≤ 1 − b3,

which, because of (3.7), implies that a2 = 0 (observe that for a2 = 3/2 and b3 = 1
the last inequality does not hold) and, hence, b3 = 0. Further, it follows from the
inequality (3.4) for n = 3 that

|(a5 − b5) − (a3 − b3)| = |(a5 + 2) − (0 − 0)| = |a5 + 2| ≤ 2

and also the fact that 2b6 = (5a5/3) ∈ Z gives a5 = 0 or a5 = −3.
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We see that a5 = −3 is not possible. Indeed, if a5 = −3, then b6 = − 5
2 . Also (see (3.4)

with n = 4),

|(a6 − b6) − (a4 − b4)| = |a6 + (5/2) − (−5/2 − 0)| = |a6 + 5| ≤ 2

and (12a6/7) ∈ Z (since 2b7 ∈ Z), so we have a6 = − 7
2 or a6 = −7.

We shall now show that the function corresponding to the case a6 = − 7
2 is not

univalent in D, whereas the case a6 = −7 is not possible.
First we let a6 = − 7

2 . Our previous assumption is a5 = −3. Then, by using induction,
we will prove that an = −(n + 1)/2 and bn = −(n − 1)/2 with n = 6, 7, 8, . . . . Suppose
that am = −(m + 1)/2 for some m ≥ 6. Then

bm+1 =
mam

m + 1
= −

m
2
.

Using (3.4) with n = m + 1 gives

|(am+1 − bm+1) − (am−1 − bm−1)| = |am+1 + m/2 + 1| ≤ 2;

that is,
−m − 6 ≤ 2am+1 ≤ −m + 2.

Note that 2bm+2 = ((2(m + 1)am+1)/(m + 2)) ∈ Z. It follows that am+1 = −(m + 2)/2.
Hence, we obtain the following function (with a5 = −3, b6 = −5/2; a4 = −5/2,
b5 = −2; a3 = 0 = b4; a2 = 0 = b3):

f4,1(z) = h4,1(z) + g4,1(z)

= z −
∞∑

n=4

n + 1
2

zn +

(1
2

z2 −

∞∑
n=5

n − 1
2

zn
)

= 2z +
3
2

z2 + 2z3 −
1
2

( z
(1 − z)2 +

z
1 − z

)
+

(
z2 + z3 +

3
2

z4 −
1
2

( z
(1 − z)2 −

z
1 − z

))
. (3.8)

We next show that f4,1(z) is not univalent in D. In order to prove this, we first observe
that f4,1(z) = f4,1(z) for all z ∈ D and, therefore,

Re f4,1(reiθ) = Re f4,1(re−iθ) for each r ∈ (0, 1) and θ ∈ (0, 2π).

Thus, to show that f4,1(z) is not univalent in D, it suffices to show that there exist an
r1 ∈ (0, 1) and a θ1 ∈ (0, 2π) such that

Im f4,1(r1eiθ1 ) = 0 = − Im f4,1(r1e−iθ1 ).

Since
h4,1(z) − g4,1(z) = 2z +

1
2

z2 + z3 −
3
2

z4 −
z

1 − z
,
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Figure 2. The graph of f4.

from the definition of f4,1, it follows by setting z = reiθ ∈ D that

Im f4,1(reiθ) = Im(h4,1(reiθ) − g4,1(reiθ))

= 2r sin θ +
r2 sin 2θ

2
+ r3 sin 3θ −

3r4 sin 4θ
2

−
r sin θ

1 + r2 − 2r cos θ

and, thus, Im f4,1(reiπ/6) = rφ4,1(r), where

φ4,1(r) = 1 +

√
3

4
r + r2 −

3
√

3
4

r3 −
1

2(1 −
√

3 r + r2)
.

We see that r1 ≈ 0.500966 is the root of the equation φ4,1(r) = 0 in the interval (0, 1).
Thus,

Im f4,1(r1eiπ/6) = 0 = − Im f4,1(r1e−iπ/6),

showing that the function f4,1(z) is not univalent inD. As an alternate proof of this fact,
we refer to Remarks 3.7(a) below. The graph of f4,1 is also shown in Figure 2.

Now, we will prove that a6 , −7. Suppose on the contrary that a6 = −7. Then (with
b7 = −6, a5 = −3, and b5 = −2), it follows from the inequality

|(a7 − b7) − (a5 − b5)| = |a7 + 6 − (−3 + 2)| = |a7 + 7| ≤ 2

that a7 ∈ [−9,−5] ∩ 1
2Z,

a7 ∈ {−9,−17/2,−8,−15/2,−7,−13/2,−6,−11/2,−5}.

This leads to a7 = −8, since 2b8 = 7
4 a7 ∈ Z. Setting a7 = −8 gives b8 = −7. By using

the inequality

|(a8 − b8) − (a6 − b6)| = |a8 + 7 − (−7 + 2.5)| = |a8 + 11.5| ≤ 2,
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we deduce that −13.5 ≤ a8 ≤ −9.5, which never implies that a8 = −9. This contra-
diction shows that a6 , −7.

Thus, a5 = 0 and, therefore, b6 = 0. Using (3.4) with n = 4,

|(a6 − b6) − (a4 − b4)| = |a6 + (5/2)| ≤ 2,

which, because (12a6/7) ∈ Z, gives a6 = − 7
2 and, thus, b7 = −3 by (3.2). Again,

|(a7 − b7) − (a5 − b5)| = |a7 + 3 − (0 + 2)| = |a7 + 1| ≤ 2,

which, because (7a7/4) ∈ Z, gives a7 = 0. Finally, it follows that

(a4 − b4)2 = 25
4 > 1 + (a3 − b3) + (a5 − b5) + (a7 − b7)

= 1 + (0 − 0) + (0 + 2) + (0 + 3) = 6,

which contradicts (3.5) for n = 4. This contradiction shows that a4 , −
5
2 . Hence, we

have either a4 = 0 or a4 = 5
2 . Consequently,

b5 =

{
0 when a4 = 0,
2 when a4 = 5/2.

The case n = 5. By using the fact that (5a5/6) ∈ 1
2Z, and also |a5 − b5| < 5 with b5 = 0

or b5 = 2, it follows that a5 ∈ {0, 3,−3, 6}. But the inequality (3.4) with n = 3 yields
that a5 = 6 does not hold. Next, suppose that a5 = −3. Then, the inequality |a5 − b5| < 5
with b5 = 0 or b5 = 2 gives b5 = 0. Using (3.5) with n = 3,

(a3 − b3)2 < 1 + (a3 − b3) + (−3 − 0),

which is impossible because (a3 − b3)2 − (a3 − b3) + 2 = (a3 − b3 − 1/2)2 + 7/4 > 0.
Hence, a5 = −3 cannot occur. Note that

b6 =

{
0 when a5 = 0,
5/2 when a5 = 3.

The case n ≥ 6. We assume that am = 0 or am = (m + 1)/2 for 2 ≤ m ≤ n. Then

bn+1 =

{
0 when an = 0,
n/2 when an = (n + 1)/2.

Since |an+1 − bn+1| < n + 1, and also (2(n + 1)an+1)/(n + 2) is an integer, it follows that

an+1 ∈ {0, (n + 2)/2,−(n + 2)/2, n + 2}.

If an+1 = −(n + 2)/2, then by using |an+1 − bn+1| < n + 1 we deduce that bn+1 = 0, which
implies that an = 0. Thus, it follows from (3.4) that

an−1 = 0 and bn−1 =
n − 2

2
.
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Then bn = 0, an−2 = (n − 1)/2 and hence we obtain bn−2 = (n − 3)/2, an−3 = (n − 2)/2,
since

|(an − bn) − (an−2 − bn−2)| ≤ 2 (see (3.4)).

Therefore (see (3.4)),

|(an−1 − bn−1) − (an−3 − bn−3)| = |(n − 2) − bn−3| > 2, since n ≥ 6.

This contradiction shows that an+1 , −(n + 2)/2. Now we will prove that an+1 , n + 2.
Suppose not. Then an+1 = n + 2. We recall that

|(an+1 − bn+1) − (an−1 − bn−1)| ≤ 2 (see (3.4)), (3.9)

where bn+1 = 0 or n/2; an−1 = 0 or n/2; and bn−1 = 0 or (n − 2)/2. When bn+1 = 0,
it can be easily seen that the inequality (3.9) does not hold. If bn+1 = n/2, then one
has an+1 − bn+1 = (n/2) + 2 and so, we need only to discuss the case an−1 = n/2 and
bn−1 = 0, since in other cases, it is easy to verify that (3.9) does not hold. In the case
an−1 = n/2 and bn−1 = 0, we have an = (n + 1)/2, bn = (n − 1)/2, an−2 = 0. Thus, by
using the inequality

|(an − bn) − (an−2 − bn−2)| = |1 + bn−2| ≤ 2 (n ≥ 6),

we have bn−2 = 0, which shows that an−3 = 0. Hence,

|(an−1 − bn−1) − (an−3 − bn−3)| = |(n/2) + bn−3| ≥ 3,

which contradicts (3.4). Therefore, an+1 , n + 2. Hence, an = 0 or an = (n + 1)/2 for
n ≥ 6. Then, by induction, the claim follows.

The remaining part of the proof of Case 1 is divided into three subcases first
(together with the fact that b2 = 1/2).

Case (i). a2 = 3/2.

Case (ii). a2 = a3 = 0.

Case (iii). a2 = 0 and a3 = 2.

Case (i). If a2 = 3/2, then b3 = 1 and so, by using the inequality

(a2 − b2)2 ≤ 1 + (a3 − b3),

we obtain that a3 = 2. Thus, b4 = 3/2 and, from the inequality (see (3.4) with n = 2)

|(a4 − b4) − (a2 − b2)| = |a4 − (5/2)| ≤ 2,

it follows that a4 = 5/2. Again, the inequality (see (3.4) with n = 3)

|(a5 − b5) − (a3 − b3)| = |a5 − 3| ≤ 2

yields a5 = 3. Using the method of induction and the inequalities (see (3.4))

|(an − bn) − (an−2 − bn−2)| ≤ 2 (n ≥ 6),
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we have that an = (n + 1)/2. Thus, we have ended up with the harmonic function

f4(z) = h4(z) + g4(z)

= z +

∞∑
n=2

n + 1
2

zn +

∞∑
n=2

n − 1
2

zn

=
1
2

( z
(1 − z)2 +

z
1 − z

)
+

1
2

( z
(1 − z)2 −

z
1 − z

)
= Re

( z
(1 − z)2

)
+ i Im

( z
1 − z

)
.

Recall again that zh′4(z) = g′4(z) and h4(z) − g4(z) = z/(1 − z), by Lemma C (with
α = 0); it follows that f4 is univalent in D and maps D onto a domain convex in the
real direction.

Case (ii). Let a2 = 0 and a3 = 0. Then, b3 = 0, b4 = 0, and, from the inequality

|(a4 − b4) − (a2 − b2)| = |a4 + (1/2)| ≤ 2 (see (3.4) with n = 2),

it follows that a4 = 0 and, hence, by (3.2), b5 = 0. Then the inequality (3.4) with n = 3
becomes

|(a5 − b5) − (a3 − b3)| = |a5| ≤ 2,

which gives a5 = 0. By using the induction and the inequalities (3.4), we obtain that
an = 0 for all n ≥ 6. Thus,

f5(z) = z +
z2

2
,

which is obviously univalent in D.

Case (iii). Let a2 = 0 and a3 = 2. Then, b3 = 0, b4 = 3/2, and the inequality (see (3.5))

(a3 − b3)2 ≤ 1 + (a3 − b3) + (a5 − b5)

reduces to 1 ≤ a5 − b5, which gives a5 = 3 (and therefore b6 = 5/2). Now, there are
two possibilities for a4, that is, either a4 = 0 or a4 = 5/2.

In the case a4 = 0, the inequality (see (3.4) with n = 4)

|(a6 − b6) − (a4 − b4)| = |a6 − 1| ≤ 2

implies that a6 = 0. Similarly (see (3.4) with n = 5),

|(a7 − b7) − (a5 − b5)| = |a7 − 3| ≤ 2

yields a7 = 4 and (see (3.4) with n = 6)

|(a8 − b8) − (a6 − b6)| = |a8 − 1| ≤ 2
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shows that a8 = 0. By using the induction and the inequalities (3.4), we can easily
obtain that

a2n = 0 and a2n−1 = n for all n ≥ 1.

Therefore,

f6(z) = z +

∞∑
n=2

nz2n−1 +
1
2

z2 +

∞∑
n=2

2n − 1
2

z2n

=
z

(1 − z2)2 +
z2(1 + z2)
2(1 − z2)2 .

We next show that the function f6 is not univalent in D. Indeed, the analytic part h6 of
f6, namely, h6(z) = z/(1 − z2)2, has the derivative

h′6(z) =
1 + 3z2

(1 − z2)3

and, thus, h′6(i/
√

3) = 0. Again, by Lewy’s theorem, f6 cannot be univalent in D. In
Figure 3, we have drawn the images of the rays rei(π/3) and rei(2π/3) under f6(z) for
0 < r ≤ 1. Moreover, from Figure 3, we can see that there are three pairs of points (r, s)
other than (0, 0) such that f6(rei(π/3)) = f6(sei(2π/3)). In Figures 4 and 5, we have also
drawn f6(Dr) and f6(Cr), the images of the disk of radius r and the image of the circle
of radius r for different values of r under f6.

In the case a4 = 5/2 (and, hence, b5 = 2), the inequality (see (3.4) with n = 4)

|(a6 − b6) − (a4 − b4)| = |a6 − (7/2)| ≤ 2

shows that a6 = 7/2 (and, hence, b7 = 3). Thus, the inequality (see (3.4) with n = 5)

|(a7 − b7) − (a5 − b5)| = |a7 − 4| ≤ 2

clearly implies that a7 = 4. Finally, by using the induction and the inequalities (3.4),
we can easily see that an = (n + 1)/2 with n ≥ 8. Thus, we end up with the harmonic
function f7(z) = h7(z) + g7(z), where

h7(z) = z +

∞∑
n=3

n + 1
2

zn =
1
2

( z
(1 − z)2 +

z
1 − z

)
−

3
2

z2

and

g7(z) =
1
2

z2 +

∞∑
n=4

n − 1
2

zn =
1
2

( z
(1 − z)2 −

z
1 − z

)
− z3.

We claim that the function f7 is not univalent in D. As in the case of f4,1, it suffices to
show that

Im f7(reiθ) = 0 = − Im f7(re−iθ)
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Figure 3. Images of the rays rei(π/3) and rei(2π/3) under f6(z).

2 1 1 2

–2

–1

1

2

2 4 6

–4

–2

2

4
(a) (b)

Figure 4. The images f6(D) and f6(D3/4).

for some r ∈ (0, 1) and a θ ∈ (0, π). Indeed,

Im f7(reiθ) = Im(h7(reiθ) − g7(reiθ))

= −
3
2

r2 sin 2θ + r3 sin 3θ +
r sin θ

1 + r2 − 2r cos θ

and, in particular,

Im f7(reiπ/2) =
r(1 − r2 − r4)

1 + r2 ,
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Figure 5. The image curves f6(|z| = 3/4) and f6(|z| = 7/10).

–2 –1 1 2

–2

–1

1

2

Figure 6. The image of the unit disk under f7.

which shows that
Im f7(r0eiπ/2) = 0 = − Im f7(r0e−iπ/2),

where r0 =

√
(
√

5 − 1)/2 ≈ 0.786151 is the root of the equation 1 − r2 − r4 = 0 in the
interval (0, 1). Hence, the function f7(z) is not univalent in D (see also Remarks 3.7(b)
below for an alternate proof of it). The graph of f7 under the unit disk is shown in
Figure 6.

Case 3.6. The case b2 = − 1
2 .
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Let F(z) = − f (−z) = H(z) + G(z) = z +
∑

n=2 Anz2 +
∑

n=2 Bnzn. Then F ∈ S0
H and

An, Bn are half-integers with B2 = 1/2. From the case b2 = 1/2,

F ∈
{
Re

( z
(1 − z)2

)
+ i Im

( z
1 − z

)
,Re

( z
1 + z

)
+ i Im

( z
(1 + z)2

)
, z +

z2

2

}
,

which, by transferring in terms of f , shows that

f ∈
{
Re

( z
(1 + z)2

)
+ i Im

( z
1 + z

)
,Re

( z
1 − z

)
+ i Im

( z
(1 − z)2

)
, z −

z2

2

}
.

The proof of Theorem 1.1 is complete.

Remarks 3.7. Here are alternate approaches to show that the functions f4,1 = h4,1 + g4,1
and f7 = h7 + g7 are not univalent in D.

(a) Suppose on the contrary that f4,1 is univalent in D. Since the coefficients of f4,1
are all real, f4,1 is typically real (see [7, Section 6.6]) and, hence, the analytic
function h4,1(z) − g4,1(z) must be typically real. Now, from (3.8) we note that

h4,1(z) − g4,1(z) = 2z +
1
2

z2 + z3 −
3
2

z4 −
z

1 − z
,

so that Reψ4,1(z) > 0 holds in D (see [6, Theorem 2.20]), where

ψ4,1(z) =
1 − z2

z
(h4,1(z) − g4,1(z)) = 1 −

1
2

z − z2 − 2z3 − z4 +
3
2

z5.

But it is easy to verify that Re ψ4,1(z) > 0 does not hold in D, which is a
contradiction. Hence, f4,1 does not belong to the class S0

H .
(b) As an alternate approach to show that f7(z) is not univalent in D, we begin to

observe that
h7(z) − g7(z) = −

3
2

z2 + z3 +
z

1 − z
.

Suppose on the contrary that f7 is univalent in D. Then, because f7 is typically
real, h7 − g7 is a typically real analytic function (see [7, page 103]) and, thus,
Reψ7(z) > 0 holds in D (see [6, Theorem 2.20]), where

ψ7(z) =
1 − z2

z
(h7(z) − g7(z)) = 1 −

1
2

z + z2 +
3
2

z3 − z4.

But it is easy to verify that Reψ7(z) > 0 does not hold in D. Thus, f7 cannot be
univalent in D.

4. The proof of Theorem 1.2

Let

f (z) = h(z) + g(z) = z +

∞∑
n=2

anzn +

∞∑
n=2

bnzn ∈ S0
H,CV(E)
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and ϕ = h − g. As before, since f is sense-preserving, it follows that

|h′(z)| = |g′(z) + ϕ′(z)| > |g′(z)| for z ∈ D,

which implies that
g′(z)
ϕ′(z)

≺
z

1 − z
for z ∈ D.

Hence, there is a Schwarz function ω1(z) =
∑∞

n=1 cnzn such that

g′(z)
ϕ′(z)

=
ω1(z)

1 − ω1(z)
for z ∈ D

and, therefore,

g′(z) =
ω1(z)

1 − ω1(z)
ϕ′(z) for z ∈ D. (4.1)

Next, we consider

F(z) = H(z) + G(z) = z +

∞∑
n=2

Anzn +

∞∑
n=2

Bnzn ∈ S0
H,CV(E)

and define Φ = H −G. Similarly, there is a Schwarz function ω2(z) =
∑∞

n=1 Cnzn such
that

G′(z) =
ω2(z)

1 − ω2(z)
Φ′(z). (4.2)

Also, we write
1

h(z) − g(z)
=

1
z

+ e0 + e1z + · · · .

Claim 4.1. Suppose that an = An and bn = Bn for n = 2, 3, . . . ,N,

2

√
1 −

∑N−2
n=1 n|en|

2

N − 1
< r0, (4.3)

2
√

1 −
∑N

n=1 |cn|
2

N + 1
< r0, (4.4)

and
2
√

1 −
∑N

n=1 |Cn|
2

N + 1
< r0, (4.5)

where r0 > 0 is a bound of the uniformly discrete set E. If both f and F are either
convex in real direction or convex in imaginary direction, then f = F.

Without loss of generality, we assume that f and F are convex in real direction.
Then, by the shearing lemma, both h − g and H −G are univalent and convex in real
direction. By [14, Lemma 2.1], h − g = H −G.
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Now we use the principle of induction to prove Claim 4.1. Assume that an = An and
bn = Bn for n = 1, . . . ,m with m ≥ N. We let

Cm+1 =: am+1 − Am+1 = bm+1 − Bm+1

and, also, let

1
1 − ω1(z)

= 1 +

∞∑
n=1

dnzn and
1

1 − ω2(z)
= 1 +

∞∑
n=1

Dnzn.

Then
ω1(z)

1 − ω1(z)
=

∞∑
n=1

dnzn =

( ∞∑
n=1

cnzn
)( ∞∑

n=0

dnzn
)

and similarly
ω2(z)

1 − ω2(z)
=

∞∑
n=1

Dnzn =

( ∞∑
n=1

Cnzn
)( ∞∑

n=0

Dnzn
)
.

These two relations imply that{
d1 = c1,
dk = c1dk−1 + c2dk−2 + · · · + ck−1d1 + ck for k = 2, . . . ,m + 1 (4.6)

and similarly{
D1 = C1,
Dk = C1Dk−1 + C2Dk−2 + · · · + Ck−1D1 + Ck for k = 2, . . . ,m + 1. (4.7)

By using (4.1) and (4.2),
2b2 = d1,
(k + 1)bk+1 = kd1(ak − bk) + (k − 1)d2(ak−1 − bk−1)

+ · · · + 2dk−1(a2 − b2) + dk for k = 2, . . . ,m

and similarly
2B2 = D1
(k + 1)Bk+1 = kD1(Ak − Bk) + (k − 1)D2(Ak−1 − Bk−1)

+ · · · + 2Dk−1(A2 − B2) + Dk for k = 2, . . . ,m.

Therefore, we see that dn = Dn for n = 1, . . . ,m − 1 and

dm − Dm = (m + 1)(bm+1 − Bm+1) = (m + 1)Cm+1.

It follows from (4.6) and (4.7) that cn = Cn for n = 1, . . . ,m − 1 and

cm −Cm = dm − Dm = (m + 1)Cm+1.

For the Schwarz functions ω1(z) and ω2(z), it follows from (4.4) and (4.5) that

|cm −Cm| = (m + 1)|Cm+1| < |cm| + |Cm| < (m + 1)
r0

2
+ (m + 1)

r0

2
= (m + 1)r0,
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which implies that

|Cm+1| = |am+1 − Am+1| = |bm+1 − Bm+1| < r0.

Hence,
am+1 = Am+1 and bm+1 = Bm+1.

Suppose that E is uniformly discrete with bound r0 and N is a natural number
sufficiently large enough that

1 <
(N − 1)r2

0

4
and 1 <

(N + 1)r0

2
.

We note that the conditions (4.3), (4.4), and (4.5) are fulfilled whatever the en,
cn, and Cn are. Since f is univalent with real coefficients, f is a typically real
univalent harmonic function and therefore by the well-known coefficient estimates (see
[2, page 23, Theorem 6.4])

|an| ≤
(n + 1)(2n + 1)

6
and |bn| ≤

(n − 1)(2n − 1)
6

.

Hence, we have only finitely many choices of a2, . . . , aN , b2, . . . , bN as the coefficients
of functions in S0

H,CV(E). Once a2, . . . ,aN , b2, . . . ,bN are specified, by Claim 4.1, there
is at most one candidate for such a function f ∈ S0

H,CV(E). The proof is complete.

Acknowledgements

The authors would like to thank the referee for his (or her) careful reading of this
paper and many useful suggestions. The first author is on leave from the Department
of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India.

References
[1] D. Bshouty, W. Hengartner and O. Hossian, ‘Harmonic typically real mappings’, Math. Proc.

Cambridge Philos. Soc. 119(4) (1996), 673–680.
[2] J. G. Clunie and T. Sheil-Small, ‘Harmonic univalent functions’, Ann. Acad. Sci. Fenn. Ser. A I 9

(1984), 3–25.
[3] M. Dorff, ‘Convolutions of planar harmonic convex mappings’, Complex Var. Theory Appl. 45

(2001), 263–271.
[4] M. Dorff, ‘Anamorphosis, mapping problems, and harmonic univalent functions’, in:

Explorations in Complex Analysis (Mathematical Association of America, Washington, DC,
2012), 197–269.

[5] M. Dorff, M. Nowak and W. Szapiel, ‘Typically real harmonic functions’, Rocky Mountain J.
Math. 42(92) (2012), 567–581.

[6] P. Duren, Univalent Functions (Springer, New York–Berlin–Heidelberg–Tokyo, 1982).
[7] P. Duren, Harmonic Mappings in the Plane (Cambridge University Press, New York, 2004).
[8] C. H. FitzGerald, ‘Quadratic inequalities and coefficient estimates for Schlicht functions’, Arch.

Ration. Mech. Anal. 46 (1972), 356–368.
[9] B. Friedman, ‘Two theorems on Schlicht functions’, Duke Math. J. 13 (1946), 171–177.

[10] A. W. Goodman, Univalent Functions, Vols. 1–2 (Mariner, Tampa, FL, 1983).

https://doi.org/10.1017/S1446788714000548 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000548


280 S. Ponnusamy and J. Qiao [24]

[11] P. Greiner, ‘Geometric properties of harmonic shears’, Comput. Methods Funct. Theory 4(1)
(2004), 77–96.

[12] T. H. Gronwall, ‘Some remarks on conformal representation’, Ann. of Math. (2) 16 (1914–1915),
72–76.

[13] W. Hengartner and G. Schober, ‘On Schlicht mappings to domains convex in one direction’,
Comment. Math. Helv. 45 (1970), 303–314.

[14] N. Hiranuma and T. Sugawa, ‘Univalent functions with half-integral coefficients’, Comput.
Methods Funct. Theory 13(1) (2013), 133–151; see also arXiv:1208.2483.

[15] J. A. Jenkins, ‘On univalent functions with integral coefficients’, Complex Var. Theory Appl. 9
(1987), 221–226.

[16] A. Lecko, ‘On the class of functions convex in the negative direction of the imaginary axis’,
J. Aust. Math. Soc. 73 (2002), 1–10.

[17] H. Lewy, ‘On the nonvanishing of the Jacobian in certain one-to-one mappings’, Bull. Amer.
Math. Soc. 42 (1936), 689–692.

[18] V. Linis, ‘Note on univalent functions’, Amer. Math. Monthly 62 (1955), 109–110.
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