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1. Introduction

It is common practice for research workers in a great number of widely dif-
fering fields, to gather vast amounts of experimental data (see [1 — 3], for example).
These data are then analysed, using various statistical or other techniques, in an
attempt to obtain information concerning the phenomenon being studied. One
important source of such information is evidence of oscillations in the data collect-
ed. Various techniques for revealing frequencies of oscillations are available (see
[4], for example); they usually involve some form of data processing. In many
cases the collected data are records of one or more realisations of a stationary
stochastic process, and the frequencies of interest appear as local maxima or peaks
in the spectrum of the process [5]. In this paper a method for determining the po-
sition of the maximum spectral value directly from the autocovariance function is
presented and discussed.

One widely used method for estimating the spectral density function from
experimental data is that described by Blackman and Tukey [4]; an essential step
in their method being the determination of an apparent autocovariance function.
However in some situations the main interest in the spectral density function is
the position of its maximum value [6]. In such cases it is not necessary to estimate
the spectral density function and the technique described in this paper may then
be useful.

2. The convolutional approach

Let p(t) be the • autocovariance function of a real continuous parameter
stochastic process which is wide sense stationary and has zero mean. Let p{x) be
continuous and absolutely integrable so that the corresponding spectrum S(co)
exists and

S(co) = P
J — 0
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Only those processes whose spectra are rational will be considered i.e. spectra
which can be expressed as the ratio of two polynomials with real coefficients, the
degree of the denominator being at least two higher than the degree of the numer-
ator. The spectra are also assumed to have no zeros on the real axis. Local maxi-
ma of such spectra will be called peaks and the so-called periods will be denoted by
Tt, so that Ti = 2nl(Oi, cot ^ 0, where co, are the peaks in the spectrum.

Since

S(a>) = f"
J - 0

then

where
/•CO

p(z) * p{z) = p(x-u)p{u)du
J - o o

= — P S2((y)e-toVco.
2TTJ_00

Define C2n(-) such that

C2O(T) = p(T),

Then in general
/•oo

S2"(a>) = C2 n(T)ei < B^T,
J — oo

where

C2»(T) = — P S^o))*"'*"^-
27IJ-O,

In addition, since the peak frequencies of S2"(co) are solutions of d/d(o(S2"(co)) =
2"S2"~1(a>)S'(co) = 0, they are the same as the peak frequencies of S(a>), since
S(co) and hence 52"-1((«) > 0, all co.

Suppose S(co) has a dominant peak, i.e. a peak with the largest magnitude,
-*t coo > 0. Define Tao as the period in the underlying process corresponding to a>0

It will be shown that
l im 4TU = Tmo

where Tn is the smallest positive value of z for which C2n(t) = 0. However when
co0 = 0, i.e. when S(a>) has its maximum at the origin, C2r,(z), for 'sufficiently large'
n, remains positive for arbitrarily large T.

The following three theorems provide the core oftheconvolutional approach.
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THEOREM 1. If S(co) is the rational spectrum of a real stationary stochastic
process with zero mean, and S{\a)0\) > S(co), all \co\ J= \a>0\, co0 =£ 0, then for
every e, 0 < e < i|o>0|, there exists an N such that for n > N

(i) C2»(T) = - f V"(co) cos cozdoj > 0, 0 ^ x ^ ,
7tJ0 2(|<B0l+e)

and

(ii) C 2 . (T) = - f S2"(w) cos an dm = 0
7rJ0

/or a/ /easf owe T //I the interval

n
< T <

2(|co0l+e) 2(|o)0|-£)

THEOREM 2. If S(co) is the rational spectrum of a real stationary stochastic
process with zero mean, and S(0) > S(a>), all a # 0, then for every T > 0 there
exists an N such that for n > N,

C2n(x) = - f S2"(o)) cos coxdco > 0, 0 g x < T.

THEOREM 3. Under the conditions of theorem 1.

Lim = c o s a>Q x .

n^oo C2-(0)
A proof of theorem 1 is given by Hutchens [7] while the other two theorems may be
proved in a similar way. However they become obvious once it is realised that
52"(a))/C2n(0) behaves, for large n, like n[5(co — co0) + d(co + a>0)] where <5(-) is the
Dirac delta function.

Thus, knowing p(x), the dominant peak frequency of S(co), a> JS 0, can be de-
termined as follows. If Tn, the smallest positive value of x for which C2«(T) = 0,
does not tend to a finite limit as n -* oo, S(co) has its maximum value at the origin.
On the other hand, if Tn converges then, for n 'sufficiently large', Tn approximates
7t/2a)0, where a>0 is the dominant peak frequency of S(co), co > 0. Similarly Tao,
the period in the underlying process corresponding to a>0, can be estimated as
ATn for n 'sufficiently large'.

3. Two theoretical examples

Two theoretical examples of the application of the convolutional approach
will be discussed in this section; a practical application is given in the next section.
The first example has a spectral peak at the origin and the second at cu = 1.19,
while the statistical properties of the two processes considered are:
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(i)

5(0,) =
(5-co2)2+4co2 '

(ii) p(r) = e~3|t |cos2r,

(13co2(13-co2)2

The dominant peak frequencies given above indicate that Tn should increase
without limit for case (i) and should converge to 1.315 for case (ii).

The repeated convolutions were carried out using the CDC 6400 at the Uni-
versity of Adelaide. For this purpose the autocovariance functions were digitised at
intervals of 0.05 units over the interval |T| ^ 15 and were taken as zero for |T| > 15.
It was necessary to incorporate in the programme an instruction to stop when
n is 'large enough'. Theorem 3 suggests that these limits be imposed so that
C2n(?)/C2n(0) approximates a cosine curve. Accordingly the following two crite-
ria for stopping the programme were used:

(i)
c 2 n (0)J t = T n 2Tn

n/2Tn

f <0.9,
2 n (o)J t = m

where m is the smallest positive value of T such that C2,.(T)/C2,,(0) is a minimum.

3.1. Results and conclusions

Table 1 gives the values of Tn for some n for the first example, while table 2
gives the interesting information obtained for the second example.

TABLE 1

n

0

1

2

3

4

5

6

Tn

1.570
1.854
2.280
2.890
3.760
4.998
6.890
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n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Estimation

Tn

0.782
0.936
1.071
1.222
1.380
1.490
1.540
1.533
1.425
1.360
1.330
1.330
1.330
1.344
1.340
1.342
1.345

of spectral maxima

TABLE 2

Lc2n(0)Jt=7.n

-0.202
-0.410
-0.464
-0.592
-0.634
-0.680
-0.754
-0.862
-1.010
-1.100
-1.150
-1.168
-1.164
-1.158
-1.155
-1.152
-1.150

Lc2»(0)J

-0.021
-0.051
-0.088
-0.130
-0.178
-0.245
-0.347
-0.507
-0.712
-0.870
-0.940
-0.963
-0.961
-0.956
-0.954
-0.953
-0.953
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The following conclusions may be drawn from these tables.

1. Table 1 shows that Tn rapidly increases for each n and it can be concluded
that P(T) = e~2|t'cosT is the autocovariance (autocorrelation) function of a
stochastic process whose spectrum has its dominant peak at the origin.

2. Column 2 of Table 2 indicates that Tn is converging, thus showing the pres-
ence of a period in the underlying process. If the two conditions stated above
are considered to give suitable accuracy, then using columns three and four of
Table 2, n is 'sufficiently large' when n = 11. This gives Tn = 1.33 as an estimate
of n/2co0 = 1.315.

Thus in each of the examples considered, the convolutional approach gives a
good estimate of the dominant peak frequency.

4. A practical application of the convolutional approach

In this section a practical illustration of the convolutional approach is given,
using data on water levels in an experiment described by Noye [2]. These data were
punched on cards and were subsequently analysed on the CDC 3200 at Monash
University, Victoria. Basically the programme is the same as that used in the theo-
retical examples discussed in the previous section. However an additional subrou-
tine was incorporated to remove the mean, and another to compute the initial
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autocovariance function. Since the step for obtaining the autocovariance function
is very similar to convolution, the programme is essentially one of repeated con-
volutions, even when one begins with raw data.

The conditions which the convoluted autocovariance function was required
to satisfy, before it was assumed that sufficient accuracy had been obtained, were
the same as those stated in section 3 except that the second condition was relaxed to

< -0.85,
C2n(0).

where m is the smallest positive value of T such that C2n(r)/C2n(0) is a minimum.
The value —0.85 was chosen after observing the first output using the original two
conditions in the programme.

Three convolutions of the autocovariance function were necessary to meet the
chosen conditions, giving T3 = 385.41 minutes = 6.423 hours. Thus T = 4T3 =
25.69 hours. This is in close agreement with the estimate of 25.0 hours obtained by
Noye [2] for the dominant period present.-

5. General discussion

The convolutional approach described in this paper provides a method where-
by the period corresponding to the dominant peak of the spectrum may be estimated.

Errors which are likely to occur in this approach are:

(i) recording errors;
(ii) computational errors;
(iii) errors due to a finite number of convolutions;
(iv) errors due to a finite length of record.

All these errors except (iii) have been discussed at length in various texts (see [4],
[5], for example), with relation to similar problems. In the present case the accu-
racy of the estimate is affected by the number of convolutions of the autocovari-
ance function which are performed. Since the number of convolutions which can
be carried out in practice is limited, suitable conditions must be incorporated to
stop the computer programme. These conditions must be related to the required
accuracy and one such set of conditions was described earlier. The argument used
by Hutchens [7] in the proof of theorem 1 may be adapted to determine a relation
between accuracy and the number of convolutions needed.
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