ALGEBRAIC DEFORMATIONS OF
POLARIZED VARIETIES

T. MATSUSAKA®

Introduction. Let V be a projectively embeddable complete non-singular
variety of dimension » >1. Let f be a projective embedding of V,U a non-
singular variety, W a non-singular variety and ¢ a morphism of W onto U
such that ¢-!(u,) = (V) for some point #, of U. Denote by >I(V) the set
of all those complete non-singular fibres ¢~'(x), # € U, as we consider all
possible (f,U,W). Suppose that we call members of 3}(V) (algebraic) defor-
mations of V and propose to study X(V) from the stand point of algebraic
geometry, as a generalization of the case of curves. This has been taken
up at least locally by Kodaira, Spencer, Kuranishi and others in the case
of characteristic 0 from a little more general point of view of complex mani-
folds (cf. [9] and references given in [16]).

Within the frame work of algebraic geometry, one could ask if (a) there
is a subset § of V) which is an algebraic family (of finite type, of course) of
non-singular varieties in a projective space, containing every member of 3XV) up to an
tsomorphism. Or we could consider a suitable equivalence relation in (V)
and consider (a’) the problem (a) replacing ““isomorphism” by “‘equivalence relation”.
But we shall consider here only (a) and not the problem (a’). When (a)
is affirmative, to study >I(V) modulo the equivalence relation defined in
terms of isomorphisms is reduced to study & modulo the equivalence relation.
Then we could ask if (b) the abstract quotient space T of V) modulo
the equivalence relation has a siructure of an algebraic variety. If (a) and (b) can
be solved affirmatively, we would then propose to study (c) various properties
of the algebraic variety ¥. The first major difficulty one encounters along this
line of approach is that (a) is false even for well-known types of algebraic
varieties. When V is an Abelian variety, it is impossible to find & in (a),
and if one insists on finding something similar to &, then it would have to
be an infinite union of irreducible algebraic families. Moreover, ¥ in this
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case would have to be an infinite union of algebraic varieties, if the solution
of (b) is possible at all. At least in the case of characteristic 0, this diffi-
culty can be avoided in the case of Abelian varieties by introducing the
concept of polarization (cf. [14], [25]) because of a theorem of Lefschetz
which states that 3X is ample if X is a non-degenerate divisor. Therefore,
we reformulate the definitions and problems accordingly in terms of polarized
varieties. This still does not eliminate one more major difficulty in the
case of characteristic p, since an example of a polarized Abelian variety
V shows that the self-intersection numbers of basic polar divisors, i.e. the
ranks or the degrees, of members of >}(V) may not be bounded. This means
that the solution of (a) and (b) are not possible within the frame work of
algebraic varieties of finite types.

Therefore, we reformulate again the definitions and problems in terms of
polarized varieties of ranks bounded by a positive integer d and write
SWV,d) for 3Y(V). Then, when » =2, (a) has a solution, as we have shown
essentially in [16] (cf. Theorem 3). When » >2, (a) is still an unsolved
problem except for some special cases. In general, if (a) has a solution &,
we shall call & a wuniversal family of 3(V,d). Let 3} be a subset of 3}V, d)
which admits a solution of (a) relative to >. We shall call it an admis-
sible subset of 3}(V,d) (a precise definition will be given later). Consider
now the problem (b) with respect to 3}, using a universal family §. Very
little is known about the solution of (b) in general, except for some special
cases, notably the case of polarized Abelian varieties and the case of
polarized Abelian varieties with complex multiplications (for references, see
[17], in particular works of Siegel, Baily, Shimura and Mumford). In order
to see if the solution of (b) is possible, we try to find a ‘“good” universal
family & of 33. Regarding members of & as points on a Chow-variety or
a Hilbert scheme, we get a locally closed algebraic variety F of finite type
from . Then we regard & as a ‘“good” universal family, which we shall
call a typical universal family, if, among other things, (i) the equivalence rela-
tion on 3} induces on F a closed equivalence relation, (ii) the orbits are
equi-dimensional and the dimensions remain constant throughout F and if
(iii) special orbits are specializations of generic orbits over some field of
references (a precise definition will be given later). ~We shall show (Theo-
rems 5, 6, 7) that such a good universal family exists for >} if we remove
some ruled varieties from 3. This removing process is technically not
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easy, but we can accomplish it by letting some good ruled varieties to remain.
Then we shall show that (b) has a solution if we allow ¥ to be a @-variety
(cf. [15]) or a @-space, which is a generalization of a locally closed algebraic
set where the components are Q-varieties. Whether a solution of (b) is
possible or not for 3 within the frame work of algebraic varieties is an
unsolved and, probably, a very difficult problem.

§1 is preliminary. In §2, we redefine the concept of polarization, a
slightly different one from [14],[25] and prove the existence of a basic polar
divisor and the field of moduli. The latter is a useful concept as a first
approximation to the moduli question, especially when (a) and (b) have no
solutions. In §7 we consider, as an example, the case when V is a polarized
variety of rank 4, and is a generic complete intersection U = Hp,+ - + Hm,
of hypersurfaces of degrees m; in the projective space P¥.  First we
show that a small deformation of V (in the sense of algebraic deformation)
is also a complete intersection of the similar kind as V' as long as its rank
is d (cf. Theorem 18.5 of [9] in the case of hypersurfaces). Then we consi-
der the set 3} of members of YV, d) which are of rank d and are complete
intersections of the same type as V. We show that 3} is an admissible
subset of X1 (V,d) and that (b) has a solution in which ¢ is a @-variety.
Further we show that dim & = 3 2°(U, Oy(m;)) — s — dim PGL(N) + dim aut(U),
where ©; is the sheat of local rings on U and aut(U) the algebraic group
of automorphisms of U (cf. [14]; U is considered as polarized). Moreover,
we show that dim aut (U)=0 if 3lm;—N—1>0 and, in the case of
characteristic 0, that ¥ is a @Q-manifold which is similar to a non-singular
variety (cf, [15]).

Notations, Conventions and Terminology. Basically we shall follow those of
[23].  As to cohomological conventions and terminology, we shall follow
[31,[20] and [26]. As to results on specializations, we shall follow [21]. For
the convenience of the reader, we first list some of the basic notations which
do not require detailed explanation.

C(X) (resp. €,(X)*) The set of divisors (resp. positive divisors) which are
linearly equivalent to X.

Ca(X) (resp. €,(X)*) The set of divisors (resp. positive divisors) which are
algebraically equivalent to X.

C.(X) (resp. €,(X)*) The set of divisors (resp. positive divisors) which are
numerically equivalent to X.
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AV; X)
H'(V, (X))
H'(V, X)
hV, (X))
RV, X)
1(X)

X—=X'ref. D.
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The group of divisors which are linearly equivalent to 0 on V.

The group of divisors which are algebraically equivalent to 0
on V.

The group of divisors which are numerically equivalent to 0
on V.

will be used for the above when there is no danger of confusion.
The order of the torsion group &, /®, of divisors of V.

The graph of a rational map g¢.

The complete linear system determined by a divisor X.

The module of rational functions on a variety V, satisfying
div(f) + X >0 with respect to a V-divisor X.

Linear equivalence of divisors.

The (invertible) sheaf determined by a divisor X.

The sheaf on V determined by a V-divisor X.

The i-th cohomology group of V' with coeflicients in 2(X).
The same as above.

The dimension of H(V, (X)).

The same as above.

The dimension of L(X), = AV, (X)) = dim 4(X) + 1.

The sheaf of local rings on a variety U.

The projective space of dimension N.

The Euler-Poincaré characteristic of {(X).

The same as above.

The Chow-point of a positive cycle ¥ in a projective space.
A hyperplane section of a subvariety V' of a projective space.

X’ is a specialization of X’ over O.

Let V be a complete variety, non-singular in codimension 1, and X a

V-divisor. L(X) is a finite dimensional vector space (cf. [23]). Let f,, ..., f,

be a basis of L(X) and £ the map of V into a projective space determined

by x> (fo(@) i+ - - 1 fo(2)).

When f is a projective embedding of V and

when A(X) has no fixed point, we shall call X an ample divisor on V (very
ample in the sense of Grothendieck); £ will be called a non-degenerate projective
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embedding of V determined by X and will be denoted by fy; A(X) will be
called an ample complete linear system. When a V-divisor X has a property
that a positive multiple of X is ample, it will be called non-degenerate (ample
in the sense of Grothendieck).

Suppose that a V-divisor X satisfies the following conditions: (i) X’ is
ample whenever X’ € €,(X); (i) A'(V,&mX’))=0 for such X’ whenever
i>0,m>0. Then we shall call X sufficiently ample.

Let U be a set of V-divisors. Denote by B(V,1) the set of all possible
fy(V) for ample divisors X in 1. Denote by p(V,1) the set of Chow-points
of members of BV, 1N).

Suppose now that V is non-singular in codimension r and that it is
embedded in a projective space. By an algebraic family § of positive 7-
cycles on V, we understand a set of positive cycles of dimension » on V such
that the set of Chow-points of them forms a locally closed algebraic set F in
a projective space. When F is absolutely irredusible (i.e. the point set
attached to a variety), & will be called an irreducible algebraic family; F will
be called the Chow-variety of &§. Let, in general, §; be a subset of & such
that the set of Chow-points of members of it forms a component F; of F.
Then &; will be called a component of §. When F is normally algebraic
over a field k£, & will be said to be normally algebraic over k. This is equi-
valent to say that & is normally algebraic if F is a k-closed set minus a k-
closed set. When F; is defined over a field ¥, we shall say that &; is
defined over k. Further notions on algebraic varieties can be carried over
to the families &, & by identifying cycles with their Chow-points which
would not require detailed explanation.

Let V be again a complete variety, non-singular in codimension 1 and
A an algebraic family of positive V-divisors. Let X, be an arbitrary but
fixed member of %. When the class of X— X, with respect to linear
equivalence exhaust the points of the Picard variety of V by varying X in
A, we shall say that ¥ is a fofal family. When [(X) is constant throughout
A and when A(X)c A for every X in ¥, we shall say that % is a complete
JSamily. As one can see easily, using the concept of the Picard variety, a
complete total family is an irreducible algebraic family (cf. [12]).

Known basic results which will be used quite often, but scattered in the
literature, will be stated as Theorem A, B, C, ..., Proposition A, B, C,

., Lemma A, B, C, ..., with references.
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§1. Preliminaries.

THEOREM A. Let V and V' be non-singular subvarieties of projective spaces, X
a V-divisor, X' a V'-divisor and O a discrete valuation-ring such that (V',X') is a
specialization of (V,X) over O. Then x(V,X)=22V',X"). When V=V' and
X=X mod &,, then x(V,X)= V", X").

This can be found in [7], [3].

ProrosiTiON 1. Let V™ and V'™ be subvarieties of projective spaces having no
singular subvarieties of codimension 1, X a V-divisor, X' a V'-divisor and O a
discrete valuation-ring such that (V', X') is a specialization of (V,X) over O. Then
we have the following results:

(a) When X~0, then X' ~0;
(b) When X=0 mod ®&,, then X' =0 mod &,;
(c) WhenV and V' are non-singular and X=0 mod &, , then X' =0 mod ®,;

(d) When V and V' are non-singular, X = X'® | q.e., the self-intersection numbers
are invariant by specializations.

Proof. [a] is contained in [21]. (b) follows from the definition of algebraic
equivalence, fundamental properties of Chow-forms (cf. [2]) and from the
extended Zariski connectedness theorem (cf. [1] and [4]). (c) follows from
the definition of numerical equivalence, (b) and from the finiteness of t(V)
(cf. [13]). There is a positive integer m such that X+ mC,, mCy (resp.
X’ +mCy,, mCy,) are ample and that their higher cohomology groups vanish.
Then (X + mCy) = (X’ +mCy) and [(mCy) = [(mCy,) by Theorem A. De-
note by G(x) the support of the Chow-variety of the complete linear system
Ax).  Then G(X’'+mCy) 1is the uniquely determined specialization of
G(X+ mCy) over © over (V,X)>¥',X') ref. ©. The same is true for
G(mCy) and GmCy). Hence, when (v, ..., x.), (¥.,..., ys» are sets
of points in GmCy), G(X’ 4 mCy,) respectively, there are sets (x;, . .., %),
Y1y -« .5 Yp) in GmCy), G(X+ mCy) such that (V/, X/, (2), (y’)) is a special-
ization of (V,X, (x),(y)) over O. Expressing X~ (X 4+ mCy) —mCy,
X' ~ (X’ 4+ mCy) —mCy, and combining the above remark with the
compatibility of specializations with intersection-product, we get (d) easily.

ProrosiTioN 2. Let V' be a non-singular subvariety of a projective space and
X a sufficiently ample divisor on V.  Then the set C,(X)* is a complete total
Samily of divisors.
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Proof. 1(X) is constant throughout €,(X)* by the definition and Theorem
A. Let X, be a fixed member of €,(X)* and Z an arbitrary divisor on V,
algebraically equivalent to 0. By the definition of a sufficiently ample
divisor, Z+ X, is sufficiently ample and there is a member X of €,(X)*
such that Z+ X, — X~ 0. It follows that the class of X — X,, X e €, (X)*,
exhaust the points of the Picard variety of V. From these two facts and
from (a) of Proposition 1, our proposition follows easily.

ProrosiTiOoN 3. Let V and V' be non-singular subvarieties of projective spaces,
X a V-divisor, X' a V'-divisor and O a discrete valuation-ring such that (V’, X’) is
a specialization of (V,X) over O.  Suppose that X' 1is sufficiently ample on V' .
Then X is sufficiently ample on V and 1(X) = 1(X') = 2V, X) = 2(V', X’) .

Proof. 'This follows at once from the definition of a sufficiently ample
divisor, the upper-semi continuity (Proposition 2.3 of the Appendix) and
from Theorem A.

TueoreMm B. Let V and V' be non-singular subvarieties of projective spaces
and O a discrete valuation-ring such that V' is a specialization of V over O. Then
the Picard variety of V and that of V' have the same dimension.

This is a result due to Grothendieck (cf. [6], p. 14).

ProPOSITION 4. Let V and V' be subvarieties of projective spaces which are
non-singular in codimension 1. Let X (resh. X’) be a positive divisor on V (resp.
V'), belonging to a complete total family A (resp. W) of positive divisors on V (resp.
V') such that I(X) = 1(X’). Let O be a discrete valuation-ring such that V', X’)
is a specialization of (V,X) over O. Then, when A (resp. A’) is the support of
the Chow-variety of N (resp. W), A’ is the uniquely determined specialization of A

over O over the given specialization.

Proof. This proposition follows easily from the definitions, Theorem B
and (a), (b) of proposition 1.

Tueorem C. Let V be a complete non-singular variety.  Then the group
&, | &, ts finite. Let V and V' be non-singular subvarieties of projective spaces, O
a discrete valuation-ring such that V' is a specialization of V over O and p the
characteristic of the residue field of ©. Let (8,V)]®.(V)), (resp. ©,V7) [ & (V'),)
be the q-primary part of the torsion group of divisors on V (resp. V') for a prime
q%=0 mod p. Then the specialization induces a canonical isomorphism between
(©,(V) | 8.(V)g and (&,(V") [ &a(V), .
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Proof. The first part is contained in [13]. As to the second part, see
[6], Remark. 3. 10.

TreOREM D. Let O be a discrete valuation-ring with the quotient field k; let
V and W be non-singular subvarieties of projective spaces and T the graph of an
isomorphism between V. and W such that V, W, T are defined over k. Let X
(resp. 'Y) be a non-degenerate divisor on 'V (resp. W), rational over k, such that
Y=T(X). L& V' ,W,X,Y',T) be a specialization of V,W,X,Y,T) over O
and assume that V', W’ are non- singular and that X' (resp.Y’) is also non-degenerate
on V' (resp.W’'). Then T" is the graph of an isomorphism between V' and W' if
one of V', W’ s not a ruled variety.

This is the Theorem 2 of [16].

TaeorEM D', Using the same notations and assumptions as in Theorem D,
except that V', W' may be both ruled varieties, assume that T’ contains a component
T wheih ts a birational correspondence between V' and W' . Then T’ is the graph
of an isomorphism between V' and W' .

Proof. The proof of Theorem D given in [16] is in fact a proof of this
theorem. When V’ or W’ is not a ruled variety, 7/ contains a component
T as described in the above theorem (cf. Theorem 1 of. [16], which is
essentially due to Abhyankar). Then we established Theorem D in (16) by
proving our Theorem D’.

§2. Polarized varieties. Let V be a complete non-singular variety. Let
M be a subset of the ring of integers and ¥ a set of V-divisors satisfying
the following conditions:
(P,) There is a finite set of prime numbers (p,, ..., p,) such that M
consists of 0 and the integers + II, pf, where the ¢; are non-negative integers,
p; #1 for all i and at least one of the e; is positive;
(P) (p;, ..., 7D, consists of the characteristic of the universal domains and
the prime divisors of t(V)V;

(P,) X contains an ample divisor X;

1) When we deal with geometry involving specializations over discrete valuarings of
unequal characteristics, then we shall be dealing with the characteristic 0 and the fixed
characteristic p in this paper. In such a case, even when V is defined over a field of charac-
teristic 0, we include p in the set (p;,..., »,). Otherwise, we shall be dealing with varieties
over fields of the fixed characteristic, and there shall be no ambiguity in this definition.
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(P,) When Y is a V-divisor, it is contained in ¥ if and only if there is a
member Z of ¥ and a pair (r,s) of integers, not in M, such that rY=sZ
mod &, .

When there is a pair (I, %) satisfying (P,) — (P,), % will be called a structure
set of polarization of type M. When that is so, the pair (V,%) will be called
a polarized variety of type M. A member of ¥ will be called a polar divisor.
A class of V-divisors determined by a polar divisor is called a polar divisor
class. A polarized variety (V,X) of type M is said to be defined or rational over
a field k if V is defined over k and if there is a rational polar divisor over
k. From now on, polarized varieties will be denoted by a bold faced letter.
Automorphisms and isomorphisms of polarized varieties are defined as usual.
A projective embedding f of a polarized variety V is a projective embedding
of the underlying variety V of ¥V, determined by an ample linear system
containing a polar divisor. F£(V) will then denote a polarized variety of the
same type as ¥, whose underlying variety is (V) such that a hyperplane
section of £(V) is a polar divisor. The definition of H(V, 1), p(V,U) can be
extended to the case of polarized varieties in the obvious manner, allowing
only projective embeddings as polarized varieties in the definitions.

Remark 2.1. The definition of polarized varieties given here is some-
what different from the previous definition given in [14], [25]. The old
definition is modified in this manner so that it is more suitable to algebraic
varieties, other than Abelian varieties. It is possible to consider a subset %/
of the ring of integers, containing I in (P), (P), to define polarizations.
But this will not add anything further. On the contrary, if 9% is contained
in M and we consider the structure of polarization of type I, slightly
different phenomena will occur. But as long as 9 contains the character-
istic of the universal domain, results will not be substantially different from
those which will be developed in this paper.

Let (V,X)=V,(V',¥) =V be two polarized varieties of the same type.
Let & be a field of definition of V. Assume that there is a discrete
valuation-ring © of ¥ with the following properties: (i) V’ is a specialization
of V over O; (ii) when X is a k-rational polar divisor of ¥ and X’ a special-
ization of X over O, then X’ is in ¥’. Then we shall say that ¥’ is a
specialization of V over © and denote this fact by V>V’ ref. ©. When &’
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is a discrete valuation-ring which is dominated by O, we shall say also that
V’ is a specialization of V over O’.

The absolute values of the self-intersection numbers X™®, u =dimV,
of polar divisors of ¥V attain the smallest positive value d. d will be called
the rank or the degree of the polarization. Let X, be a polar divisor of ¥
and assume that it satisfies the following conditions: (i) A V-divisor Y is in
¥ if and only if Y =7rX, mod ®, with » & I, where I is the type of V;
(ii) when Z is an ample polar divisor, then Z= sX, mod &, with a suitable
posttive integer s, not in M. When such a polar divisor X, exists, it is
called a basic polar divisor. A basic polar divisor class of ¥ with respect to
algebraic equivalence is uniquely determined. Moreover, the rank is given

by X§™.

ProrosITION 5. Let V be a polarized variety. Then there ts a basic polar
divisor.

Proof. Let ® be the additive group of V-divisors, where V is the
underlying variety of ¥. The group ®/®, is finitely generated (cf. [19]).
Therefore, it is possible to find a set (D,, ..., D,, Ty,..., Ty) of gene-
rators of & modulo &, such that the 7, are torsion divisors and that
Na,D;+316,T;=0 mod &, if and only if a; =0 and ;=0 mod ¢;, where
the ¢; denote the order of T; modulo ®,. Let Y be a polar divisor and
Y=Xa,D;+ X b;T; mod ®,. Lete be the G.C.D. of the a;, b; in Z—M,
where I is the type of polarization of ¥V, and set X a;D; + 36,7, = + eZ.
The signature is so determined that a positive multiple of Z is algebraically
equivalent to an ample divisor. When that is so, the self-intersection num-
ber of Z is positive. Let X be an arbitrary polar divisor. There are two
integers # and s, not in M, such that »X=sZ mod ®,. We may assume,
without loss of generality, that (r,s) =1 since » and s are relatively prime
to t(V). Set X=3¢,D;+X1d;T; mod &, and Z=3>1a;D; + X1 0;T; mod §,.
Then we get rc;=sa; and rd;=sb; mod #;. From the first we get
a; = rai where the aj are also integers. The ¢; are divisors of t(V). Hence
they are relatively prime to s. It follows that there is an integer z such
that su=1 mod #;,. We then get rzd; =05, mod ¢; from the second relation.
Thus Zz =7 adiD; + X 2d,T;) mod &, . SetZ' =+ (X aiD;+ X xd;T;), where
the signature is so chosen that a positive multiple of Z’ is algebraically
equivalent to an ample divisor. Clearly Z’ is a polar divisor and the self-
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intersection number of Z’ is strictly less than that of Z when »# £ 1. This
process leads us to find a basic polar divisor.

Let v be a polarized variety and k, a fixed field. Consider the set S
of fields K, containing k,, having the following properties: (i) When W is
isomorphic to ¥, a generic specialization of W over K is still isomorphic
to V; (i) There is a polarized variety U, isomorphic to V¥, defined over a
separably generated extension of K. When S is not empty and contains
the smallest field K,, K, will be called the field of moduli of V over k,. The
existence of the field of moduli of V over &, can be proved almost exactly
the same way as in [14] with a few trivial modification of the proofs. The
definition of the field of moduli in [14] is different in appearance from the
present one which is due to Shimura [22]. But they are clearly the same,
which will become clear also in the following context. One different aspect
of our present situation than that of [14] is that we can establish the exis-
tence of the field of moduli always, whereas we needed an assumption (valid
for characteristic 0 or for curves and Abelian varieties in general) to establish
it in [14]. Because of this and because of the fact that we shall need some
of the results of [14], we shall reestablish the existence of the field of moduli
here.

We proved in [12] that when V is a complete non-singular variety and
Z an ample divisor on it, there is a positive integer m, such that €,(mZ)*
is a complete total family for # >m,. However we shall need later a more
precise result than this. Therefore we shall begin proving it.

TrEOREM 1. Let V™ be a complete non-singular variety, C an ample divisor
and X an arbitrary divisor on V. Set 2V,mC)=gm), xV,X+ mC) = g,(m).
Then (a) there is a constant c,, depending only on g(x), gx(x) and the intersection-
numbers I( XD, C»~D) such that every divisor Z in €,(X + tC) is ample and that
W(\V,Z)=0 for i >0 if t >c,; (b) Let rX=C mod &, for some positive integer
v, then there is a constant c,, depending only on g(x) and v, such that every divisor
wmn C,(tX) is sufficiently ample for t >c,.

Proof. There is a constant ¢;, depending only on g(x), g«(x) and the
intersection-numbers (X, C»-9), such that #*(V, X+ tC) = 0 when i >0,
t >c} by Proposition 3.5 of the Appendix. Let Z be an arbitrary member
of €,(X+ ¢C). Then Z—tC=X'=Xmod &, and x(V, X + mC) =x(V, X’ + mC)
by Proposition 3.2 of the Appendix. Moreover, various intersection numbers
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of X with C and those of X’ and C coincide. Therefore, whenever ¢ > ¢/,
every Z in €,(X + ¢C) satisfies h'(V,Z) =0 for i >0 and AV, 2) = 2V, Z) =
XV, X+ tC) = h'(V,X+ tC). Since gx(x) is a polynomial by Proposition 3.1
of the Appendix, there is a constant ¢y, depending only on gx(x), such that
gx(2) >1 when ¢ >¢7. This is because gx(x) >1 when z is sufficiently large.
Set max (¢}, ¢)) = c¥—1. Set dy = {C®»D.(X+ c*C)}- (C® —2) + C™® . When
Z is an arbitrary member of €,(X+ ¢¥C), Z+ dC is ample for d >d, (cf.
[23], Chap. IX, Corollary of Theorem 13). Set ¢, =c¢¥+d,. This ¢,
satisfies the requirements of (a).

Suppose now that »X=C mod ®,. When s is a non-negative integer,
we have x(V,sX+mC)=x(V,s’X+ (m+ q)C) if s=5s"+q-r and 0< s/’ <7 (cf.
Proposition 3.2 of the Appendix). Set x(V, sX + mC) = g,x(m) for 0 < s<7r.
Set also x(V,mX) = h(m). We have g,x(m) = k(s +mr) and h(rm) = g(m) by
Proposition 3.2 of the Appendix. k(m) is a polynomial in m when m is
positive by Lemma 3.1 of the Appendix. It follows that g,x(x) depends only
on g(x) and s. The same is true for various intersection-numbers of sX
with C, since these are given by the (s/7)’-C®. Therefor, for each s
such that 0 < s< 7, there is a constant ¢,,, depending only on g(») and
s, such that every divisor Z in €,(sX + mC) is ample and satisfies 2°(V,Z) = 0
for i >0 if m>c¢,,,. Let ¢, be the maximum of the ¢,;. Then every
such Z is ample and satisfies A'(V,Z)=0 for i >0 if m>c}. Set ¢, =
cz+ (r+1). Every divisor in €,(¢X) has then these two properties too when
t >¢,. This proves (b).

TueoreM E. Let V be a complete non-singular variety and N a complete total
JSamily of positive divisors on V , consisting of ample divisors. Then BV, A) has a
structure of an algebraic varietp. When U s defined over a field k of definition of
V,p(V,N) is defined over k. Moreover, p(V,N) has the smallest field of definition
and this field is also the smallest field of definition of its closure.

This is Theorem 3 of [14].

TueoreMm F.  Let V be a polarized variety and aut(V) the set of automorphisms
of V.. Then aut(V) is an algebraic group.

This is Theorem 6 of [14].

As an immediate corollary to Theorems E and F, we get the following
result:

CoROLLARY. Let V be a polarized variety, q the dimension of the Picard
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variety of V and U a complete total family of positive polar divisors of V, consisting
of ample polar divisors. Let X be a member of A and 1(X)=N+1. Then
dim p(V,N) = q + dim PGL(N) — dim aut (V).

TrEOREM G. Let V be a non-singular subvariety of a projective space and
a complete total family of divisors on V.. Let k be a field of definition of V over
which A has a rational member. Then A is defined over k.

This is [11]-II, Proposition 1.

Lemma A, Let V be a polarized variety and Z a basic polar divisor of V.
Let m and v be two positive integers such that €,(mZ)*, C,(rZ)* are complete total
Samilies, consisting of ample polar divisors. When p(V,C,(mZ)) is defined over a
field K, then p(V,C.(r2)) is defined over an algebraic extension of K.

Lemva B, Let the notations and assumptions be as in Lemma A. When
WV, C,(m2)) ts defined over a field K, p(V,C.(smZ)) is defined over K whenever s
is a positive integer such that €,(smZ)* is also a complete total family consisting of
ample polar divisors.

Lemma C. Let U be a non-singular subvariety of a projective space, X a
positive U-divisor and m a positive integer whick is prime to the characteristic p .
Assume that €,(X)*, C,(mX)* are both irreducible algebraic families. Let A, A,
be respectively the Chow-varieties of them. Then, when k is a common field of defi-
nition for U and A, , A is defined over a separably algebraic extension of k.

These Lemmas A, B, C are respectively Lemmas 8, 9, 10 of [14]. As
a consequence of Lemma C, we get the following result.

Lemma 1. Let V be a non-singular subvariety of a projective space and X a
non-degenerate V-divisor. Let r be a positive integer, ==0(p), and assume that
Co(X)*, Cu(rX)* are both complete total families of divisors, consisting of ample
divisors. When k is a field of definition of p(V,C,(rX)), »(V,C.(X)) s defined
over a separably algebraic extension of k.

Proof. Since p(V,C,(rX)) is defined over k, it has a rational point w
over a separable algebraic extension K of k. Let W be the variety co-
rresponding to w and £ an isomorphism between V and W such that
f(rX)=Cy mod ®,. By our assumptions, €,(f(X))*, €,(rf(X))* are complete
total families, consisting of ample divisors. Moreover, the latter contains a
rational divisor over K. Hence it is defined over K by Theorem G. When
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that is so, the former family is defined over a separable algebraic extension

of K by Lemma C. Our lemma follows then from Theorem E.

THEOREM 2. Let V be a polarized variety of type W and k, a fixed field.
Then the field of moduli of V over ky exists. When Z is a basic polar divisor of
V and m a positive integer, not in MM, such that C,(mZ)* is a complete total family
of ample polar divisors, the smallest field K of definition of p(V,€,(mZ)) over k, is
the field of moduli of V over k.

Proof. Denote by 9t the set of positive integers s, not contained in M
such that €,(sZ)* is a complete total family of ample polar divisors. By
Theorem 1, a positive integer s, not contained in 9, is contained in N
whenever it is sufficiently large. Therefore, when #» is a large integer not
in M, then »m is also in M. Let » be such a large positive integer. De-
note by k, k, respectively the smallest fields of definitions of »(V,€,(m2)),
wV,C,(rmZ)) over ky,. By Lemma B and Lemma 1, k, is contained in k and
k is a separable algebraic extension of k., .

We contend that k= k,. For this, it is enough to show that p(V, €,(m2))
has no other conjugate than itself over k.. Let ¥’/ be an element of
BV,C.(rmZ)). Let f be an isomorphism between ¥V and ¥V’ and Z’' = f(Z).
Clearly B(V, Co(rmZ)) = PV, C.(Cv)) = BV, C,(rmZ’)). Let a be an auto-
morphism of k, over k, and K a field of rationality of ¥/, Z’, Cy over
k,. Extend « to an isomorphism of K into the universal domain and de-
note it by the same letter . We have p(V,C,(rmZ))* = p(V,C,(rmZ)) and
PV, (mZ")* = p(V'* C,(mZ'*). From the first equality we see that V’* is
in p(V,€,(rmZ)) and, when that is so, there is an isomorphism g between
v/ and v’*. This shows that R(V’,C,(mZ’")) = R(V'*,C,(mg(Z’))). On the
other hand, rmZ’=Cy mod ®, and this implies rmZ’*=Cy= mod ©,.
Since g is an isomorphism of polarized varieties and since hyperplane sec-
tions of ¥/, ¥’* are polar divisors, it follows that rmg(Z’) = g(rmZ’') = g(Cy) =
Cye mod &,. Thus, we have mZ’* =mg(Z’) mod ®, since r is not in .
Consequently, B(V’,C,(mZ")) = BV’ C,(mZ’*)). When we combine this with
the second equality we have established, we see that p(V,€,(mZ)) has no
conjugate than itself over k&, .

Since p(V,C,(mZ)) is defined over k, k belongs to S, the set of fields
which enter in the definition of the field of moduli of V over k,. We con-
tend that every field in S contains k. Let L be an element of S. There is a
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polarized variety V¥’ defined over a separably generated extension L’ of L
and isomorphic to V. Let X’ be a rational polar divisor of ¥/ over L’
and # a positive integer such that um is also in N. wumX" is rational over
L. @, umX")*" is a complete total family of ample polar divisors and con-
tains a rational divisor over L’. Hence this family is defined over L’ by
Theorem G and »(V"”,C (umX')) is defined over L’ by Theorem E.
BV, C(umX'")) = BV, C,(umt Z)) for some positive integer ¢, not contained
in M. Therefore, L’ contains ku: and ku«: =k as we have proved. Let «
be an isomorphism of L’ into the universal domain over L. By the definition
of L, ¥’* is isomorphic to V. Replacing v/, L’ by v/’*, L’®*, we see that
L’* contains k by the above result. Since this is so for all possible « and
since L’ is separably generated over L, it follows that L’ contains k. Our
theorem is thereby proved.

CoRrOLLARY. Let m be a positive integer such that mZ is a sufficiently ample
polar divisor of V. Then, when K’ is the smallest field of definition of p(V, €,(mZ)),
koK' is the field of moduli of V over k,.

§ 8. Polarized varieties (continued). A main purpose of this paragraph is
to show that specializations of polarized varieties can be realized in projec-
tive spaces up to isomorphisms. In order to do this, we shall begin with a
few lemmas.

LEmma 2. Let V™ be a complete abstract variety, non-singular in codimension
1 and A an arbitrary linear system of positive dimension on V. Let k be a common
field of definition of V and A and (x,, . .., x,) a set of independent generic points
of V over k. Then there is a member X of A which goes through the points x; if
and only if dimA=vr. If such X exists and the set of such X forms a finite set,
X s the only element of the set, dimA =r and X is rational over k(x,, . .., x,).
This is well known and easy to prove.

LeEMMA 3. Let V* (resp. V'») be a complete absiract variety, nonsingular in
codimension 1 and X (resp. X') a V-(resp. V’-) divisor. Let k be a common field of
rationality of V and X, © a discrete valuation-ring of k and assume that (V,X) —
V', X") ref. O and that 1(X) =1(X"). Let k' be the residue field of © and X', . . ., X%
m independent generic members of A(X') over k. Then there is a set of m in-
dependent generic members Xy, . . ., X, of A(X) over k and a discrete valuation-ring
0% of a common field K of rationality of the X, over k such that ©* dominates O
and that V', X', X%, . .., X0w) is a specialization of (V,X, Xy, . . ., X,) over O%.
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Proof. Set dim A(X)=dim A(X’)=r. Let the 2,,(1<i<r;1<a<m)
be independent generic points of V over k. By Lemma 2, there is a uni-
quely determined divisor X, in A4(X), for each e, such that X, goes through
the z,; for all i; moreover, X, is rational over the field k(x). Denote by
Vi, the product of V by itself s-times. Then there is a positive divisor W
on ViunX Ve, rational over k, such that We((x) X Vi) = () X X;X » « « X X,
(cf. [23], Chap. VIII, Theorem 6).

By Lemma 2, there are mr independent generic points z;; of V’ over
¥ such that X, goes through z;; for 1< i <r. When that is so, (2’) is a
specialization of (x) over O, over the specialization (V,X)—(V’,X’) ref. O.
There is a discrete valuation-ring ©* of k(x), dominating O, such that
(V, X, () >V, X7, (&) ref. O* Let (Vimrn Vi W)=V tmry Vi, W) ref. O* be
an extension of the above specialization. Since W is rational over %k and
since O* dominates O, it follows that W’ is rational over &’. Then W'(x’) is
the uniquely determined specialization of W(z) over D* over these speciali-
zations, since specializations and intersection-product are compatible. W’(a’)
is of the form X7 x - - .x Xu» where the X! are V’-divisors. Since linear
equivalence is compatible with specializations, X; is a member of 4(X").
Since X, goes through the x,; for all i, X, goes through the z}; for all 7.
Consequently, X, = X by Lemma 2. Our lemma is thereby proved.

LemMma 4. Let V, V', X, X/, O* K, the X, and the X, be as in Lemma 3
and K’ the residue field of O* Let the g. be functions on V', defined over K/,
such that div(gy) = X, — X', (set gy =1). Then there are functions g, on V, defined
over K, such that div(g,) = X, — Xi, g1 =1, and that (V', X', (X )i<e<m, (g))1<a<m)
s a specialization of (V, X, (X,)1<e<m, (gu)i<a<m) Over O¥.

Proof. Let P be a generic point of V over K and P’ a generic point
of V” over K’ such that P’ is a specialization of P over ©* When 9’ is
the specialization-ring of the specialization, it is integrally closed since V’ is
irreducible; it is then a discrete valuation-ring since dimg (P)= dim x(P’)
(cf. [21], Proposition 5, Theorem 15). Moreover, when $* is the maximal
ideal of O* R*O’ is the maximal ideal of ©’ (cf. [21], Corollary 2 of Theo-
rem 15). Let the #&; be the functions on V, defined over K, such that 4,=
1, div(h;) =X, — X;. Let ¢ be a generator of $* Since ¢ generates the valua-
tion-ideal of ©’, there is an integer e; such that teh,(P) is a unit in O’
Setting them as A&j(P), we see the existence of the functions g/ on V7,
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defined over K’, such that A,(P)—g7(P’) ref. ©/. By the definition, the g}
are specializations of the #; over ©’ and div(g}) =X; — X; (cf. [21], Theo-
rem 20). Hence, there are constants ¢; in K’ such that g¢; =c}g;. Let the
c; be elements of ©* such that ¢, —>¢; ref. ©* When we set g, = ¢;#;, the

g; satisfy our requirements.

ProrposiTioN 6. Let V* (resp. V') be a complete non-singular abstract variety,
X (resp. X') an ample divisor on V (resp. V') and assume that 1(X) = 1(X'). Let k
be a common field of rationality of V and X, O a discrete valuation-ring of k and
assume that (V', X') is a specialization of (V, X) over O. Let f' be a non-degenerate
projective embedding fx, of V'. Then, there is a field K which contains k, a discrete
valuation-ring ' of K which dominates O and a non-degenerate projective embedding
F=Ffy of V such that (V', X', I';) is a specialization of (V,X,Is) over O'.

Proof. Let K be the residue field of ©. Since X’ is rational over F/,
A(X’) is defined over k. Set I(X)=1(X')=N and let the X, be N+1
independent generic members of A(X’) over k. Let the g, be the functions
on V’/, defined over %, such that div(g,) = X, — X}, (we set g; =1). We
apply Lemmas 3 and 4 to our situation. Then there is a field K which
contains k, a discrete valuation-ring ©’ of K which dominates O, a basis
g0 - . ., 9y of the module L(X) over K such that (V/, X, (¢")) is a specializa-
tion of (V, X, (9)) over £'. (g) (resp. (¢)) determines a projective embedding
f (resp. /) of V (resp. V'), Let I' (resp. I”) be the graph of f (resp. f’)
and T a specialization of I' over ©’. We contend that T = I"+ T’ where
I =0, pr,7/ =0. In fact, dim T =dim7” and, from the definition of
specializations of functions, it easily follows that /7 is contained in the
support of 7. Hence I” is a component of 7. The rest of the assertion
follows from the compatibility of specializations with algebraic projection.

Next we contend that 77=0. A divisor on V is in 4(X) if and only if
it is of the form f-1(H) for a suitable hyperplane H and the same is true
for V/, f’ and A(X’). Let K’ be the residue field of ©’ and H,, ..., H,
(resp. Hj, ...,H;) independent generic hyperplanes over K (resp. K').
Then (H') 1is a specialization of (H) over £’ and the same is true for
pri(T-(V' x Hy- - -+ H;)) and fY(H,- - - H,) by the compatibilities of speciali-
zations with intersection-product and algebraic projection. If 77 has a
component which projects to a variety of dimension » >0, it would follow
that pr(T-(V/xH,- - -H,)— "' (H,- - - H}) %0 The first term is a speciali-
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zation over £’ of the intersection-product of » properly intersecting members
of A(X). The second term is the intersection-product of  properly intersec-
ting members of A(X’). Then the strict inequality leads to a contradiction
since specializations are compatible with specializations. If a component of
T’ projects to a point on the second factor, it must be of the form V’ x
(a point) which is against to the fact that pr, 77 =0. Hence we have proved
our assertion.

Thus we have shown that there is a non-degenerate projective embedding
f(resp. ') of V (resp. V') determined by X (resp. X’) such that £ is defined
over K and that (V, X, I'r) > (V', X', I'r) ref. £’. There is a projective trans-
formation A’ (of the ambient space of £/(V’)) such that fl=Hnof. R is
uniquely determined by a defining matrix (¢;;) and we can find a matrix
(ci;), with the ¢;; in some extension of K, such that (c};) is a specialization
of (c;;) over ©’. Let h be the projective transformation (of the ambient
space of f(V)) determined by the matrix (c;;). Then it is easy to see that
I'nw 1s a specialization of I', over ©’. When that is so, (V/, X/, Iwor) 1s a
specialization of (V, X, I'nof) over ©’ by the compatibilities of specializations
with intersection-product and algebraic projection (cf. [23], Propositions 10
and 11 of Chapter VIII too). Our proposition is thereby proved.

Proposition 6 allows us to change embeddings in specializations. To
supplement this we shall have the following proposition.

ProrosiTioN 7. Let V, V', X, X', k, O be as in Proposition 6. Let f be a
non-degenerate projective embedding of 'V determined by X. Then there is a projective
transformation h in the ambient space of f(V) and a non-degenerate projective embed-
ding ' of V' determined by X' such that (V',X’,I's) is a spectalization of (V, X,
Thoyr) over .

Proof. Since X’ is ample, there is a non-degenerate projective embed-
ding £/ of V’ determined by X’. By Proposition 6, there is a non-degenerate
projective embedding £* of V, determined by X, having the property
described in that proposition. f and f* differ by a projective transforma-
tion. Hence we have our proposition.

Before we pass to the next paragraph, we shall add one definition. Let
V be a polarized variety, Z a basic polar divisor and V the underlying
variety of V. x(V,mZ) is a polynomial in m by Proposition 3.1 of the
Appendix. We shall denote this polynomial also by 2(V,mZ). It is indepen-

https://doi.org/10.1017/5S0027763000012733 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012733

ALGEBRAIC DEFORMATIONS OF POLARIZED VARIETIES 203

dent of the choice of Z by Proposition 3.2 of the Appendix and is uniquely
determined by V. We shall call this polynomial the Hilbert polynomial or
Hilbert function of V.

§ 4. Deformations and universal families. Let V be a polarized variety.
A polarized variety W will be called a deformation of V if the following
conditions are satisfied. There is a finite set (V, ...,V, of polarized
varieties such that (a) V, =V, V,= W, that (b) either V, is isomorphic to
V.., or V, (resp. V,_,) is a specialization of V,_; (resp. ¥,) over some discrete

valuation-ring. We shall denote the set of deformations of ¥ by X3(V).

Remark 4.1. Owur definition, in the case of characteristic 0, is narrower
than that of Kodaira-Spencer (cf. [9]) in the following two points. We are
restricting all the fibres which enter into their definition to be algebraic.
Also we are considering algebraic varieties with extra structure, the structure

of polarization.

Remark 4.2. When the characteristic is 0 and all the discrete valuation-
rings contain the field of rational numbers, >1(V) has the property that
every member of it has one and the same rank as polarized varieties. This
follows from the well-known theorem of Lefschetz on a criterion of a
topological cycle to be an algebraic divisor (cf. [8], Chap. IV). On the
other hand, when the universal domain is of characteristic p, a specialization
of a polarized variety sometimes change ranks which was illustrated to the
author by Nishi in the seminar at Brandeis, 1962. His example illustrates
moreover that, when V¥V is a suitably polarized Abelian variety in the
universal domain of characteristic p >0, the set of equivalence classes of
21 (V) defined in terms of isomorphisms of members of >} (V) is not a finite
union of algebraic varieties?.

Because of the above remark, we shall consider the following subset of
>1(V). Letd be a positive integer such that d > rank (V). We shall denote
by X (V,d) the subset of X} (V), consisting of those polarized varieties whose
ranks are at most d. We shall also denote by 33, (V, d) the subset of >} (V, d),
consisting of polarized varieties of rank d. When the universal domain is
of characteristic 0 and when the deformations are always over the field of

2) The author understands that Nishi intends to publish his example elsewhere.
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rational numbers, then >} (V) =31 (V,d) = 3} (V,d) by the quoted theorem
of Lefschetz.

From now on, we shall assume that the underlying varieties of polarized
varieties we shall consider are non-singular subvarieties of projective spaces. By doing
this we shall loose no generality by virtue of Proposition 6.

Before we proceed to introduce some other fundamental concepts, we
shall discuss briefly about deformations and Hilbert polynomials.

Lemma 5. Let V,,...,V, be polarized varieties such that either V,_, and
V., are isomorphic or V, (resp. V,_,) is a specialization of V,_, (resp. V) over some
discrete valuation-ring. Let the Z; be basic polar divisors of the V; and n the common
dimension of the V;. Then there are positive integers s, s, such that s,"Z{’= s,*Z{"
and that UV, ms,Z,)) = AV, ms,Z,) for all integers m. If rank (V,) = rank (V,),
then s, = s,.

Proof. V,_, and ¥V, are related by an isomorphism or by a specialization
and algebraic equivalence is preserved by either one. Therefore, such an
operation induces a map €,(mZ,_,) >C,(mr,Z;) or €,(mZ;) —>C,(mr,1Z;_,) of
algebraic equivalence classes, where m is an integer and 7,.,,7; are some
positive integers which are independent of m. Since the Euler-Poincaré
characteristic relative to divisors is invariant by an isomorphism or by a
specialization (cf. Theorem A), it follows that x(V,.,,mZ,_,) = ¥V, mr,Z,)
and Z,®=¢»2Z" or UV,.p,mriiZi) =2V,mZ) and Z =y, "Z 7.
From these and from Lemma 3.2 of the Appendix, our lemma follows
easily.

ProrosiTioN 8. Let V' be a polarized variety of rank d and W a member of
S%w(V,d). Then V and W have the same rank and the same Hilbert polynomial.

Proof. This follows at once from the definition and from Lemma 5.

We shall assume, from now on, that the discrete valuation-rings which enter in
the definition of deformations contain one and the same basic field k,. k, will be referred
to as the basic field of deformations. Every field we shall consider will be assumed
to contain k.

We shall introduce two more subspaces of 3} (V). Let X/ (V,d) be the
set of polarized varieties ¥V’ of ranks at most d, satisfying the following
condition: There is a finite set of polarized varieties (V,, ... ,¥,) such that
Vo=V’, V.=V and that either ¥, is a specialization of V,., over some
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discrete valuation-ring or ¥, and V,_, are isomorphic. Let XV (V,d) be the
set of polarized varieties ¥’ of ranks at most d, satisfying the following
condition: There are two sets (Vi ...,Vwn), Unss, . ..,U:) of polarized
varieties such that V,=V, U,=V’, V,, = U,,; and that either V,_, (resp.
U, is a specialization of ¥, (resp. U;_;) over some discrete valuation-ring or
they are isomorphic. We further set 3V (V,d) N3, (V,d)=3%(V,d),
SYWV,d) =3 (V,d) N 3 (V,d). Clearly, we have the following inclusion
relations:

2 (VOd) c 2y (VL,Jd) cx (Vbd) c ()

Sometimes, we shall call 3V (V,d) and Y, (V,d) local spaces of deformations at
V and V' (V,d), X3 (V,d) quasi-local spaces of deformations.

In order to introduce the concept of a universal family, we shall consider
one more definition. Let & be an algebraic family of non-singular subvarieties
of a projective space. Let 9t be a multiplicatively closed set of integers such
that every member of & is the underlying variety of a polarized variety of type
9 where hyperplane sections are polar divisors. For a given &, there is
always such 9t by virtue of Theorem C. When we identify members of &
with such polarized varieties of type 9, we shall denote the resulting set by
(& M) and call it an algebraic family of polarized varieties of type M. When
there is no danger of confusion, we sometimes denote (&, M) simply by .

Let ¥V be a polarized variety of type 9t and of rank at most d. Let
(& M) be an algebraic family of polarized varieties of type MM and 3 a
subset of 31 (V,d). Assume that (§,9) satisfies the following conditions:

(Uy) Every member of 3! is isomorphic to a member of (F,I);

(U) When k is a common field of definition of the components of &, a
generic member of each component of & over k is a member of 3
Then we shall call (¥, M) a universal family of 3. When 3 is a subset of
SV, d), (& M) will be called a universal family of 3 if it satisfies (U,),

(U,) and (U;) Every member of (§ M) has the rank d.

Sometimes, when (&, %) is a universal family, we shall say that & is a
universal family if there is no danger of confusion. In this case, the identifi-
cation of members of & with members of (§ M) are assumed to have been
done already.
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Remark 4.3. In the case of 3 (V,d), the above definition can be stated
in the following equivalent form:

(Uy) Every member of 3!(V,d) is isomorphic to a member of (&, M);
(U3) Every member of (&, 9) is a member of 3} (V,d).
The same is true for TV (V, d).

Unfortunately, the existence of a universal family for 3} (V,d), X (V,d),
SV (V,d), X% (V,d) is not known in general. But there are some important
cases where the existence of a universal family can be established and we
shall comment on this briefly here. First, clearly >1(V,d) is a finite union
of the 33, (V,d;) with d > d,. The same is true for 3V (V,d). Therefore, it is
enough to discuss the problem for 33, (V,d), X1 (V,d). Moreover, we may
assume without loss of generality that ¥ is of rank exactly d. By Proposi-
tion 8, members of 3}, (V,d) have one and the same Hilbert polynomial.
When that is so, the existence of a universal family of 33, (V,d) and that
of 3% (V,d) follows from Proposition 4.3 of the Appendix if the following
conjectural statement is true.
(%) Let V be a non-singular subvariety of a projective space and Z a non-degenerate
divisor on V. Set x(V,mZ) = g(m). Then there is a constant c, depending only on
the polynomial g(x) such that mZ is ample for m > c.

When dimV =1, () follows easily from the Theorem of Riemann-
Roch. In fact, g(xz) determines the genus g uniquely, and when that is so,
it is enough to take ¢ to be 2g+ 1.

When dim V =2, () has been verified in [16].
When V is an Abelian variety, 3Z is always ample whenever Z is a

non-degenerate divisor on V (a theorem of Lefschetz, generalized to the
arbitrary characteristic case by Nishi, cf. [17]).

Tueorem 3. Let V' be a polarized variety of dimension n and a positive
integer such that rank (V)< d. If (%) tis true for dimension w, a universal family of
SW(V,d) and hence of Y3(V,d) exists.

If XV, d) has a universal family, it is clear that all the other spaces of
deformations admit universal families (cf. Proposition 4.3 of the Appendix). On
the other hand, we can establish the following theorem without much
difficulty.

TuEOREM 4. 3V (V,d) and 33, (V,d) always admit universal families.
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Proof. Let d,=rank (V). d >d, by our definition. In general, when
a polarized variety U 1is specialized to a polarized variety U’ over some
discrete valuation-ring, a basic polar divisor is specialized to a polar divisor.
Therefore, rank (U) is always a multiple of rank (U”), which shows that the
rank of a member of 3V (V,d) is bounded by d and is a multiple of d,.
Set e = I,d;, where the d, are positive multiples of d, but are bounded
by d. Then, for any positive integer », re has a property that the rank of
a member of SV (V,d) divides re.

When X is a basic polar divisor of V, there is a positive integer 7
such that reX is sufficiently ample by Theorem 1. Let W=V, ...,V
V.=V be a finite set of polarized varieties such that W is in XV’ (V,d)
and that either V¥, is a specialization of ¥, , over some discrete valuation-
ring or they are isomorphic. Then rank(V,) divides re and rank (V,) divides
rank (V,;_,). Since algebraic equivalence is preserved by isomorphisms and
specializations, we can find a polar divisor Y; on each ¥, such that ¥, =mX
mod ®,, that either the specialization V,_; >V, extends to a specialization
Y;.1 =Y, or an isomorphism between V,_, and V¥, transforms Y, ; to ¥, and
that Y, is a basic polar divisor of ¥, = W. Then m"d, divides re when n=
dim ¥V and every Y, is sufficiently ample on V; by Proposition 3.2 of the
Appendix. Hence W has a non-degenerate projective embedding determined
by Y, which maps W into the projective space of dimension /(mX)— 1 with
the resulting non-singular variety of degree m"d, (cf. Proposition 3). Fix r
now once for all. Since m"d, divides re, the possibilities of m is finite. Our
theorem now follows easily from the fundamental results on Chow-forms
(cf. [2]) and from Proposition 4.3 of the Appendix.

CororLLARY. Let & be a universal family of 3V (V,d). Consider the equiva-
lence relation on & in terms of isomorphisms of members of & as polarized varieties.
Let F be the set of Chow-points of members of & and R the equivalence relation
defined on F by that of & Then there is a locally closed set W in a projective
space, an open subset F’ of F and a continuous map B of F’ on W such that the
Jollowing properties hold: (a) B induces on each component of F' a morphism; (b) W is
the quotient space of F’ with respect to R and B the canonical map in the sense of
topological space; (c) When k is a common field of definition of the components of
F and W and when u is a point of F', corresponding to a member U of %, k{(p(u))
is the field of moduli of U over k; (d) When u is a generic point of a component
of F over k, u is contained in F'. When F’ is given, B and W are uniquely
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determined up to a homeomorphism which tnduces a one-to-one birational correspondence
on each component of W.

Proof. It is not hard to prove this corollary from Theorem 1, Theorem
2, Theorem E and Theorem G, using the usual technique of eliminating
undesirable points. Therefore we leave a proof for an exercise of the reader.

From the above corollary, it follows that the number of components c(V,d)
of W and the dimensions of the components of W are uniquely determined by >V’ (V,d).
c¢(V,d) could be called the number of local modult components at V. When
¢(V,d) =1, we shall denote by =n(V,d) the dimension of W and call it the
number of local moduli at V, which is at most the number (V) in the case
of characteristic 0 defined in (9).

Let ¥V be a polarized variety of rank at most 4 and 3} a subset of
21(V,d) (resp. 3 (V,d). An algebraic family & of polarized varieties will
be called a smooth universal family of 37 if the following hold:

(SU,) & is a universal family of >};

(SU,) When U is a member of &, Cy is sufficiently ample;

(SU;) When U is a member of & B(U,€C,(Cy)) is contained in &;

(SU,) No member of & 1is contained in a hyperplane and the set of
hyperplane sections forms a complete linear system on each member of ¥;
(SU;) Cg is a constant, independent of a member U of F if dim ¥V =xn.

We shall say that 31 is an admissible subset of 3V, d) (resp. X(V, d))
if: (a) There is a universal family of 3}, contained in ¥}, and a member
of XV, d) (resp. 33(V,d)) which is isomorphic to a member of 3} is in I;
(b) When W, W, W, are members of X} (V,d) (resp. 3% (V,d)) such that
wW,—>W, refk, W,—>W, ref. k, and that W, W, 3, then W,e 3. When
WV, d), WV,d), >YV,d), 3% ¥,d) admit universal families, they are
admissible subsets of X(V,d) and X, (V,d), 3% (V,d) are admissible subsets
of 3, (V,d).

TueoreM 5. Let V"™ be a polarized variely of rank at most d, 3 an
admissible subset of X3 (V,d) (resp. 3% (V,d)) and assume that $ is a universal
Jamily of 3} which is contained in 3. Then 3\ admits a smooth universal family
&, contained in 3). If each component of D is defined over a field k, then § can
be chosen so that every component of it is also defined over k.

Proof. We shall assume that Xl c 31(V,d) since the other case is
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similar. Let 9 be the type of polarization of ¥. We may assume, without
loss of generality, that ¥ is contained in 3>]. We shall identify members of
$ with their underlying varieties. Let Z be a basic polar divisor of ¥ and
Zy a basic polar divisor of a member W of §. By Lemma 5, there are
positive integers e, e, such that ¢"Z" = ¢,"Z% and UV, meZ) = x(W, mey Zy).
Moreover, we have e = e, if rank (V) = rank (W). 9 can be written as a
finite union of algebraic families $(d;) such that $(d;) consists of polarized
varieties of rank d4; by Proposition 4.3 of the Appendix. Therefore, it is easy
to see that e can be fixed throughout § and that e, can be taken from
a finite set I of positive integers. Let 7y, be defined by Cup=ryZy mod
®,. The set I’ of these 7y is finite since Cp™ is bounded. Set r = I,y
(rlrw)ewCw = rewZy mod G, Then 2V, mreZ) = 2(W,m (r|rw) ewCyw) for
all W by Proposition 3.2 of the Appendix. Set Ty = (#/rw)ewCyw and g(m)
= (W, mTw). Applying Theorem 1 to W, Ty and g(m), we see an existence
of a constant ¢, depending only on g(i.e. on ) with the following proper-
ties: (a) mTw is sufficiently ample on W when m >c; (b) I(mTw) = g(m)
= [(X)=xW,X) when X is in €,(mTyw), m >c. Let us fix m such that m > c,
m & .

We reembed every member W of $ into the projective space of
dimension ¢(m) —1 by non-degenerate embeddings determined by divisors
iIn @G,(mTw). Images are non-singular subvarieties of degree m"Tyw™ =
(mre)"Z™. We have to analyse the set of images carefully. Let the $, be
the components of § and the H, the Chow-varieties of the $,. Let w be
a generic point of H, over k, representing W. €,(mTw)* is a complete total
family defined over k(w) (cf. Proposition 2 and Theorems E,G). Let X be
a generic divisor of this family over k(w), L a field of rationality of X over
k(w) and let £y be defined over L. Let r be a generic projective transfor-
mation of the ambient space of (W) over L and set f =cofy, fF(W)=U,
«U)=u, t =cp). Let T, =locy(w,u,t), F,=loc,(u), J,=locyt). Then 7,
F,, J, are defined over & by Lemma 4.1 of the Appendix. The set F*
of points in F, which represents non-singular varieties, not contained in any
hyperplane, is k-open on F, and the set ], of points on J,, which represents
irreducible cycles in the multiple projective space, is k-open on J, by the
same lemma. Hence F*= U.F} and J= U,J, are locally closed sets over
k in their ambient projective spaces. Let T, be the restriction of 7, on
H,x F*x J, and set T = U, T,, H= U.H,.
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We contend that the set-theoretic projection F of T on F* is k-open on
F* 1In order to prove this, we apply Proposition 4.1 of the Appendix,
taking K to be k. The condition (c) is clearly satisfied. The condition (b)
is satisfiled by Lemma 4.2 of the Appendix and by the fact that § is a
universal family of our admissible subset 31 of 31 (V,d). When A4 is a
subvariety of F,, defined over a field ¥’ containing %, and when a generic
point of A is a projection of a point of 7, then TV=HxA X JNT is a
finite union of locally closed subvarieties of the multiple projective space,
containing a component 7 which has the projection A on F* Hence the
projection of 7’ on A contains a non-empty k’-open subset of A (cf. [24]).
Thus (a) is verified and our assertion is proved.

When & is the family of polarized varieties of the same type as V,
determined by F, each component of & is defined over k. Thus & is a
smooth universal family of 31 which is contained in Y} q.e.d.

CororLLARY. Using the same notations and assumptions as in our theorem, let
& be a smooth universal family contained in 3. Let U be a member of & and &,
a component of & containing U. Then B(U,E,(Cp) C F.

Proof. Let k be a field of definition of &, and W a generic member
of &, over k. €,(Cw)* and €,(Cy)* are complete total families by Proposition
2. Then, when Y is a divisor in €,(Cy)*, there is a divisor X in €,(Cw)*
such that (W, X)—(U,Y) ref. k& by Proposition 4. ¥ and X are sufficiently
ample and [(X) = {(Y) by Proposition 3. B(W,E,(Cw)) is contained in & by
the definition of § and it has a structure of an algebraic variety by Theorem
E. It also contains W. Hence it is contained in &, since it is a component
of ¥ Then our corollary follows from the compatibility of specializations with
algebraic projection and from Proposition 6, applied to (W, X) and (U,Y).

§ 5. FEquivalence relations. Let & be an algebraic family of polarized
varieties ina projective space. By the equivalence relation on &, we understand
always an equivalence relation on § defined in terms of isomorphisms. Let
F be the set of Chow-points of members of § The equivalence relation on
& defines an equivalence relation on F, which we shall call the equivalence
relation on F. We shall say that the equivalence relation thus defined is
k-closed if F is normally algebraic over k and if the set € of pairs of
equivalent points on F is a k-closed subset of F x F. We shall say that it is
closed if there is a field k such that it is k-closed. The equivalence relation
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will be called strongly k-closed if it is k-closed and if the relation which defines
the equivalence of two members of & is stable by specializations over .
By this we understand the following. Let V,W,V’/,W’ be members of &
such that ¥ and W are isomorphic by an isomorphism £ and that (V,w)
—(V/,W’) ref. k. Then an extension I'r—>I" ref. k of the specialization to
I'r is such that 77 is the graph of an isomorphism between V’ and W’
When there is a field k¥ such that the equivalence relation is strongly k-
closed, we shall say that it is strongly closed.

THEOREM 6. Let V be a non-ruled polarized variety of rank at most d and
>0 an admissible subset of 32 (V,d), containing V. Let § a smooth universal family
of 33 which is contained in ). Then there is an algebraic family B of polarized
varieties with the following properties :

(@) The set of Chow-points of members of B is a closed subset of that of ¥,
(b) B is a subset of § and ts stable by the equivalence relation on ;
(c) A non-ruled member of 3 is isomorphic to a member of F— B,

(d) The equivalence relation on & induces on §— B a strongly closed equivalence
relation.

Proof. Let F be the set of Chow-points of members of § Let k£ be
an algebraically closed common field of definition of the components of F.
Express F as a union of components as follows: F = (U,F,) U (UgFp),
where generic points of the F, (resp. Fjg) over k represent non-ruled (resp.
ruled) varieties. F, exists by Theorem 1.1 of the Appendix.

Step I.  We shall identify polarized varieties with their underlying
varieties for the sake of simplicity. Let # be a generic point of F, over k,
representing U. By the definition of §, Cy is sufficiently ample. Then €,(Cy)*
is a complete total family defined over k(z) by Proposition 2 and Theorem
G. Let X be a generic divisor of it over k(u), K a field of rationality of X
over k(u) and f = f, a non-degenerate projective embedding of U, deter-
mined by X, defined over K. Let r be a generic projective transformation
over K of the ambient space of £(U) and set W =cof(U). Let w= c¢(W),
t =c¢() where I'=TI:0s P the ambient projective space of the locus of ¢
over k and the A, the locus of (¢,u,w) over ¥ on PX F X F. Let A be
the union of the A,, which is clearly closed on P x F X F. Denote by B’
the set of points (#/,#’,w’) in A such that ¢’ represents a reducible cycle. B’
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is a proper closed subset of A. Let B be the closure on F of the set-theoretic
projection of B’ on the second factor of the product P x F x F. B defines
an algebraic family of polarized varieties. We shall show that this family

satisfies our requirements.

Step IL. A point (¢',u’',w’) isin A,~B' if and only if u’ represents a member
U of F, t represents a non-degenerate projective embedding fx, of U’ with
X' eC,(Cy)t and w' represents W' =F 4, (U’).

This follows from Lemma 4.2 of the Appendix.

Step II1. (a) is clearly satisfied by B. In order to prove (c), it is enough
to show that a generic point #’ of a component of B over k represents a
ruled variety by virtue of Theorem 1.1 of the Appendix. There is a generic
point (#,#’,w’) of a component of B’ over k. When it is in A,, it is a
specialization of (¢, u,w) over k. Since u’, w’ represents members of & and
since #’ represents a reducible cycle, #’, w’ must represent ruled varieties by
Theorem D and by Propositions 2 and 4.

Next we shall prove (b). Let u’ & B, u'/* € F representing U",U’*,
such that U’’* is isomorphic to U” by an isomorphism &'’ (as polarized
varieties). Let #’ be a generic point of a component of B over %k such
that «’ —u’’ vef. k. By Propositions 4 and 6 and by the definition of F,
there is a point #/* in F, representing U’*, and an isomorphism A’ between
U'* and U’, which is represented by «’, such that (U, U™, I'v) — (U, U'"*, ['y)
ref. k. Therefore, it is enough to prove that #/* isin B since B is k-closed
on F. Since u’ is a generic point of a component of B over k, there is a
point (¢, u/,w’) of B’. Without loss of generality, we may assume that it is
in A, Since (¢, u,w)—>(#,u’,w’) ref. k, thereis a discrete valuation-ring O
of k(¢,u,w) such that (¢, u,w)—(t,u’,w’) ref. O. Then u —->u’ ref. O, i.e.
U—-U ref. O. Applying Proposition 6 to this and to U'*, k/, we see the
existence of a member U* of & and an isomorphism 2 of U* and U such
that (U, U*,I'y) > (U, U'*, I'w) ref. ©. g=cofoh™ is an isomorphism between
U* and W, and we see easily that an extension I',—I7* ref. © of the above
specialization over © is such that I”* is a reducible cycle on U’* x W’. Set
c(U*) = u*, ¢(I'y) = F and ¢(I"*) = . Then (f, u* w)—> (F/, w's,w') ref. k. Since
U = h(Us) and since U=x is a member of &, u* is a point of &, by our choice
of u (cf. Corollary to Theorem 5). Then (Z,u* w)<s A, by the result of
Step II.  When that is so, (#,u*,w’) € A, and consequently it is in B’ since
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¢’ represents a reducible cycle. (b) is thus proved.

Finally we shall prove (d). Let «’/,w’ be two points of F, representing
two isomorphic varieties U’, W/, isomorphic by the map #’. If '’ € F,, then
U,W) = (Iw, U, W’) ref. k by the result of step II. Hence (#/,w’) is in
the projection of A on F X F.

Let #’,w"” be points of F — B, representing U, W/’ and #’, w’ be now
points of F, representing U’, W’ and assume that U’, W/ are isomorphic
by an isomorphism 4’ and that (U’,W’)— (U"”’,W"’) ref. k. Assume that «’
is in F,. Then (U, W)— (I'w,U’,W’) ref. k by step II. When (I'w,U’, W’)
>, U, W) ref. k, (I, U”,W") is a specialization of (I',U, W) over k.
Hence I is irreducible by the choice of U””. Then I’ is the graph of an
isomorphism between U’ and W’/ by Theorem D’, Propositions 2,4 and by
the sufficient ampleness of hyperplane sections. (d) follows from these
observations at once.

Remark 5.1. Theorem 6 is valid to 3, (V,d) too.

Remark 5.2. A non-singular surface in a projective space is ruled if and
only if P, =0 according to the theorem of Enriques-Kodaira, the first
complete proof of which was given by Kodaira in 1961 (unpublished).
According to an unpublished work of Mumford, it is so if and only if
P, =0 for all positive m for characteristic p. When we combine this with
our Theorem 1.1 and Proposition 2.1 of the Appendix, every member of
S1(V) is a ruled surface if and only if ¥V is a ruled surface. Therefore,
if v is a non-ruled surface, 3 (V,d) admits a universal jfamily and B in our
theorem is empty. When dimV¥V >2, every little seems to be known in this
line. Therefore, we shall mention here some problems, affirmative solutions
of which would enlighten the situation.

Let V and V' be complete non-singular varieties such that V’ is a
specialization of V over some discrete valuation-ring. If V is not a ruled-
variety, is it true that V/ is not a ruled variety?

When V is a ruled variety, all the P, vanish at least in the case of
characteristic 0. Is this fact invariant of the deformations?

Since the general situations are as above, we shall introduce the follow-
ing definition. Let V be a polarized variety of rank at most ¢ and 3} an
admissible subset of 31 (V,d). Let U be a member of 3} and assume that
there is a smooth universal family & of 3} contained in 3} and an algebraic
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family 8 of polarized varieties, which satisfies the four conditions of Theorem
6 such that U is isomorphic to a member of § — 8. Then we shall say that
U is a solid polarized variety of 3). We shall use the similar definitions for
admissible subsets of 33, (V,d). Let & be a smooth universal family of >}
contained in 3} and B an algebraic family of polarized varieties, satisfying
the four conditions of Theorem 6, such that a solid polarized variety of 3}
is always isomorphic to a member of & —®B. Then we shall say that § — B
is a typical universal family of 3.

ProrosiTioN 9. Let V' be a non-ruled polarized variety of rank at most d and
S an admissible subset of N (V,d) (resp. 2% (V,d)), containing V. Let & and &
be two smooth universal families of 33, U and U’ be members of § and §' respectively
and assume that they are isomorphic by an isomorphism g’. Let k be a common field
of definition of the components of §, & and consider the following property:
#) Let L, M,W be members of & such that L and M are isomorphic by an
tsomorphism £ and that (L,M)— (U, W) ref. k. When I is a specialization of
¢ over k over the specialization above, I s the graph of an isomorphism between
U and W.
When (§8) denotes the corresponding property for U, replacing F by &', then (§)
and (%) are equivalent.

Progf. Assume that U’ satisfies ($4). By Propositions 6,7 and by Theorem
5, there are members L/, M’,W’ of & and isomorphisms g between L and
L', h between M and M and A between W and W’ such that
(L',M', T4, Tw) > (U, W, Iy, 'w) ref. k& over the specialization (L, M,I)—
(U,w,I") ref. k. When we extend our specializations further to a specializa-
tion of I'hrg—1 over k, it specializes to the graph of an isomorphism between
U and W’ by (##). Hence I” is easily seen to be the graph of an
isomorphism between U and W. Thus U satisfies (). In the same way, (#)
implies (#4).

ProrosrTioN 10. Let V be a non-ruled polarized variety of type I and of
rank at most d. Let 3 be an admissible subset of >1(V,d), containing V, & a
smooth universal family of 3\ and B an algebraic family of polarized varieties which
satisfies the four conditions of Theorem 6 relative to §. Let s be a positive integer
not tn M. Let (&,,B,) be cither one of the following (a), (b): (a) r =35, &, =
UresBWU,C,(#Cy) and B, = UpesPB U,C,(rCr)); (b) r=1/s and F,, B, asin
(@) if every U in & contains a sufficiently ample divisor X such that sX = Cy mod
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®,. Then §, is a smooth universal family of 3\ and B, is an algebraic family,
satisfying the four conditions of Theorem 6 relative to ,.

Proof. Since & is a smooth universal family, & B and r satisfy the
requirements of the Corollary of Proposition 4.2 of the Appendix (cf. also
Corollary to Theorem 5). Therefore, &, and B, are algebraic families
of polarized varieties of type 9t such that the hyperplane sections are
polar divisors., From the definition of &,, it is clear that &, is a smooth
universal family. When % is a common field of definition of the com-
ponents of &, 9B,&,,8, and when A is a member of B,, a specialization
A" of A over kin &, is also a member of $B,. This follows from the
definition of B,, (a) of Theorem 6 (satisfied by B) and from Proposition
7. Therefore, the set of Chow-points of members of B, is closed on that
of .. From the definition of B,, it is clearly closed by the equivalence
relation on &, and a non-ruled member of 37 is isomorphic to a member of
&, —B,.

Finally, we shall show that the equivalence relation on &, induces on
&, — B, a strongly closed equivalence relation. Let W be a generic member
of a component of &, over & and K a field of definition of p(W,€,(Cw)) over
k. Let W* be a generic member of F(W,€,(Cw)) over K. W* is contained
in &, by the definition of a smooth universal family. Let W’ be a member
of &,, contained in the same component of &, as W and W’* a member
of &, which is isomorphic to W’. There is a member W of PW,C,.(Cw))
such that (W, W)— (W’, W’*) ref. k by Proposition 6. By Proposition 2 and
by Theorems E and G, we may take K to be a field of definition of W
over K. When this is done, (W, W) is a specialization of (W,W*) over K.
Hence (W,w#*) — W'/, w’*) ref. k. Let F, be the set of Chow-points of
members of §,. Then the above shows that the set of pairs of equivalent
points on F, is contained in a k-closed subset of F, x F, such that generic
points of the components of the closed subset over & are pairs of equivalent
points. When that is so, our assertion follows easily from Propositions 6 and
9 and from (d) of Theorem 6 which is satisfied by 8.

TueorEM 7. Let V' be a non-ruled polarized variety of rank at most d and

>3 an admissible subset of 33(V,d), containing V. Then 3} admits a typical universal
SJamily. When & is a smooth universal family of 3, contained in Y, and B
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the intersection of algebraic families which satisfy the conditions of Theorem 6 relative
to § F—B is a typical universal family contained in 3.

Proof. It is easy to verify that 8 satisfies also the conditions of Theorem
6. Let U be a solid polarized variety of Y. By our definition, there is a
smooth universal family & contained in ! and an algebraic family %,
satisfying the conditions of Theorem 6, such that U is isomorphic to a
member of § —B’. Let M be the type of polarization of ¥ and r a
positive integer not in 9%. Define 9B), &, asin Proposition 10,(a). & is a
smooth universal family, 98’ satisfies the conditions of Theorem 6 relative to
%, and U is isomorphic to a member of &, —B,. From the definitions, it is
possible to find a pair (r,#) of positive integers, not contained in 9%, such
that %, =&, where &, is defined as in Proposition 10,(a). @~ When 9B, is
defined similarly, our theorem will be proved if we show that B, is the
intersection of algebraic families which satisfy the conditions of Theorem 6
relative to &,. This is because B satisfies those conditions relative to § and
because of Proposition 10, since this implies that B, satisfies also those
conditions relative to &,.

Let now B’ be the intersection of all those algebraic families of polarized
varieties which satisfy the conditions of Theorem 6 relative to &,. As we
remarked, B’ also satisfies those conditions relative to &,. Set ¢ = 1/u. When
we apply Proposition 10,(a) and (b), we get (&,), =& and (B,), =3B and
B, is contained in B; moreover B, satisfies the conditions of Theorem 6
relative to &. It follows that B, =8 and consequently B’ = (8}), = B,. Our
theorem is thereby proved.

Remark 5.3. Proposition 10 and Theorem 7 are valid for Y, (V,d) too.
Before we discuss the significance of a typical universal family, we have to
settle the following proposition.

ProposITION 11. Let V (resp. V') be a polarized variety, X (resp. X') a
sufficiently ample polar divisor of V (resp. V') and O a discrete valuation-ring such
that V and X are rational over its quotient field and that (V,X)— (V’,X’) ref. O.
When we denote by A, A’ the closures of p(V,Co(X)), »(V’',C,(X")) in their ambient
projective spaces and when A — L ref. D, every component of A’ is contained in a
component of L.

Proof. Let W’ be a member of $(V/,E,(X’) and W’ its underlying
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variety. Denote also by V, V’ the underlying varieties of ¥, ¥’. There is a
divisor ¥’ in ©,(X’) such that W’ = f,,(V’). Since X and X’ are sufficiently
ample, there is a divisor Y in @,(X) such that (4,Y)—=(L,Y’) ref. O by
Propositions 2 and 4. Moreover, we have {(Y)= [(Y’) by Proposition 3.
Therefore, there is a £y such that (V, X, A,Y,I'r,) > (V', X', L,Y',Tr,,) ref. ©
by Proposition 6 (replace O by a discrete valuation-ring dominating it, if
necessary). When that is so, fy,(V’) =W’ is such that its Chow-point is in
L by virtue of the compatibility of specializations with algebraic projection.
Our proposition is thereby proved.

CoroLLARY. Using the same notations and assumptions as in the proposition,
assume further that V' satisfies the following condition: When W is a member of
PV, C.(X)), I the graph of an isomorphism between V and W, W' a polarized
variety which is not contained in a hyperplane and when (V,W,I[)— V', W', I")
ref. O, then I is the graph of an isomorphism. Then L — p(V’,C,(X’)) consists
of the Chow-points of those positive cycles which are either singular or contained in a
hyperplane and every component of A’ is a component of L.  Moreover, aut (V)
and aut(V’) are algebraic groups of the same dimension.

Proof. Let us use the notations and conventions of the proof of our
proposition. Let W’ be a non-singular subvariety of a projective space,
not contained in a hyperplane, such that ¢(W’) € L. There is a member W
of B(V,C,(X)) such that (V,X,A,W)—> V", X', L,W’) ref. O. Let £ be an
isomorphism between V and W determined by a divisor ¥ in €,(X) and
(', Y)—>(I",Y") ref. O be an extension of the above specialization. By our
assumption, I is the graph of an isomorphism between V’ and W’. Y is in
€.(X’) since algebraic equivalence is preserved by specialization. Hence Y’
is sufficiently ample and 77 is a non-degenerate projective embedding
determined by Y’ by virtue of Proposition 3, since specializations are
compatible with intersection-product and algebraic projection. Thus W’ is
a member of PB(V’,€,(X’)). From this and from our proposition, the first
and the second assertions follow immediately. The last assertion follows from
the above results, Theorem B, Proposition 3 and from the Corollary of
Theorem F.

Remark 5.4. Let V be non-ruled and 3 an admissible subset of 3 (V, d)
(resp. 2% (V,d)), containing V. Then it admits a typical universal family
contained in ¥ by Theorem 7. Let F be the set of Chow-points of
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members of & and E the set of pairs of equivalent points on F. E is closed
on FxF and when w is a point of F, representing W, then
wX FNE=wX|pW,C,(Cw))| by the definition of equivalence relation. Let
k be a common field of definition of the components of F and E, # a point
of F representing U and assume that # —w ref. k. Then [p(U,E,(Cy))| has
the unique specialization [p(W,&,(Cw))| over k, over this specialization.
These follow from the definitions, Theorem 7 and from Proposition 11.

§ 6. Q-varieties of moduli. We shall here briefly review the concept of
Q-varieties. For details, see [15]. Let U be an abstract variety and E a
closed subset of U x U. Assume that every component of E has the
projection U on either side of the product and that the components of E
have the same dimension. Moreover, assume that E defines an equivalence
relation on U. When E satisfies these conditions, we shall say that a field
k is a field of rationality of (U,E) or a field of definition of it if U is defined
over k, E is k-closed on U x U and if every component of E is defined over
a separable extension of k. We shall say that (U, E) is an unmixed equivalence
pair if it satisfies further the following conditions:

(E;) Let z be a generic point of U over k, 2’ a point of U and E{x}
(resp. E{a’}) the set of points of U which are equivalent to =z (resp. 2').
Then E{x'} is the unique specialization of E{z} over k, over the specializa-
tion x =z’ ref. k;

(E,) When x is a generic point of U over k, every component of E{x} is
defined over a separable extension of k(x).

Let 77 be the abstract quotient space of U by the equivalence relation
defined by E if (U,E) is an unmixed equivalence pair. Let f be the
abstract canonical morphism of U on /. We defined on %/ the concept of
a @-variety, and, with this structure, f is a rational map of U on %/. We
have shown that (%, f) can be treated as if it is a pair of an abstract
variety and a rational map in many cases from the qualitative point of view
in algebraic geometry. When the E, are components of E, we set E=3\E;
where each E; appears with the coefficient 1. When 2’ is simple on U, f(z')
is called a regular point of 2. When E(2/), defined as usual by the
intersection-product, contains a component whose coeflicient is prime to the
characteristic p of the universal domain, f(2’) is called a p-regular point
of Z/. We have shown that a p-regular point can be treated as if it is a
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simple point on an algebraic variety from quantitative point of view in
algebraic geometry. If 2/ consists of p-regular points, it is called a Q-
manifold. When (U, E) is defined over k, k is called a field of definition or
rationality of 7/ and U is called a covering variety of Z/.

For the sake of convenience, we shall introduce the following definition.
Let .~ be a topological space. We shall say that &~ is a Q-space if the
following conditions are satisfied: (a) & is a finite union of Q-varieties 77,
(b) A subset Y of & is closed on 7 if and only if every Y, = F,NY is
closed on 7, (the topology on 7, is the quotient topology). A field k will
be called a field of definition of & if every &, is defined over k.

When g and 77/ are @-spaces, a continuous map f of an open subset

of 77 into 77/ will be called a rational map of .7~ into .7’ defined over a field k,
if & is a common field of definition of the component @-varieties of 7, 7’
and if f induces a rational map f, of a component Q-variety .7, of 7~
defined over k for each «. Let #, be a point of &~ and J the set of indices
a such that ¢, € 7,. Then we shall say that f is single-valued at t, with the
value ¢, when ¢#; is a unique specialization of f(¢,) over k over the speciali-
zation f,-»¢, ref. k£ of a generic point ¢, of 7, over k for a € J. f will be
called a birational map if f7' is defined and is a rational map of .77/ into
7. A birational map f between & and 7/ will be called a one-fo-one
birational map if f and f7' are everywhere single-valued rational maps.

ProprosiTioN 12. Let V be a non-ruled polarized variety of rank at most d
and 3} an admissible subset of DY(V,d), containing V. Let & be a typical universal
Samily of 3N, F the set of Chow-points of members of F and the F. the components
of F. Let E (resp. E,) be the set of pairs of equivalent points on F (resp. F,), T~
the abstract quotient space of F by the equivalence relation on it and f the abstract
canonical morphism of F on 7. Then:

(@) (Fy E,) is an unmixed equivalence pair and E, s the support of a subvariety
of Fy X Fy; (b) E, is the restriction of E on F,XF, and E = U,E,;
() When u s a point of F,, representing U, EN(F X u)=E, N (F, X u) =
p(U,Cu(Cy)) xu; (d) E is closed on F X F; (e) When f, is the restriction
of fon F, and 7,= fu(F,), T, can be identified with a Q-variety (F,, f,);
(£) When we introduce the quotient topology on 7, 7 is a Q-space such that
T = UWT, and that f is an everywhere single valued rational map of a Q-space F
onto T; (g) When u' is a point of F representing U’ and when k is a common
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Jfield of definition of the F,, 7, and the f,, k(f(w’)) is the field of moduli of U’

over k.

Proof. Equivalence relations on F and F, are determined by iso-
morphisms of polarized varieties. Then (c) follows at once from the defini-
tions and from the Corollary to Theorem 5. Let now « be a generic point
of F, over Fk, representing U. €,(Cp)* is a complete total family defined
over k(u) by Proposition 2 and Theorem G. Hence »(U,€,(Cy)) is defined
over k(u) by Theorem E. There is a subvariety E, of F,xF,
defined over k¥ and having the projection F, on the first factor, such that
E,o(u X Fy) =u x E(u) = u x p(U, (Sa.(CU)) (cf. Corollary of Theorem 5; [23],
Chap. VIII, Theorem 6). Since # is a point of E,(u), it follows that E,
has the projection F, on the second factor of the product. When («/,w’)
is in E,, it follows easily from Proposition 6 that it is in E,. When
(w',w') is in E,, it is in E, since the equivalence relation on F is strongly
closed (cf. Theorems 6 and 7). It follows that E, = E, and (a) follows from
these and from the Corollary of Proposition 11.

(b) follows from the definition of our equivalence relation and from
the Corollary of Theorem 5. (d) follows from Theorems 6 and 7. (e)
follows from the definition of a @-variety and from what we have proved
above. 7 is clearly the union of the &,. Let S beasubset of . &7 When
we consider the quotient topology on &, S is closed on 7 if and only if
FUS) is closed on F. f7YS) is closed on F if and only if fS)N F, =
fUS), is closed on F, for each & (cf. Proposition 5.1 of the Appendix).
SUS), is stable by the equivalence relation on F, by the Corollary of
Theorem 5. Therefore, f1(S), is closed on F, if and only if f,(/7(S),) is
closed on the Q-variety .7, since the topology on 7 is the quotient topology
of F, with respect to the equivalence relation. By the definition of f
and f, and using the Corollary of Theorem 5, it is easy to verify that
fo(f7YS)) =S N F,. Therefore, 7~ isa Q-space. Then f is an everywhere
single-valued rational map by (e). (g) follows from the definition of a typical
universal family, Proposition 2 and from Theorem 2.

Remark 6.1. Our proposition is valid for 3>3,(V,d) too.

Remark 6.2. In order to define F, F,, we have used the concept of
Chow-points for the sake of convenience. But this is not essential. For
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instance, the F, may be replaced by those algebraic varieties F; such that
(@) U.F. is a locally closed subset of a projective space, that (b) there
is a one-to-one birational correspondence between U.F, and U.F, as Q-
spaces and that (c) when k is a common field of definition of the F,, the
F. and the birational correspondence /J, then k(z)=Fk(J(x) for any point
of U.F,.

Let ¥V be a non-ruled polarized variety of rank at most d and >} an
admissible subset of 31(V,d), containing V. Let .7~ be a Q-space with
the component Q-varieties &,. Suppose that &~ satisfies the following
conditions:

(M) There is an abstract morphism g* of 31 on . U o and p*U)# oo
if and only if U is a solid polarized variety of 3};

(M) When U and U’ are solid polarized varieties of 3!, then g*U) =
g¥(U") if and only if U and U’ are isomorphic;

(M;) When & is a typical universal family of 3}, the &, the components
of &, the F, the Chow-varieties of the &, and when F = U,F,,s* induces
a surjective map of F on &, a surjective and everywhere single-valued
map 8 of F on &  and (&, p) is the quotient space of the topological
space F with respect to the equivalence relation on F;

(M) B induces on F, an everywhere single-valued rational map B,
mapping F, onto &, after rearrangement of indices is made if necessary;
moreover, there is a common field %k of definition of the &, such that
when # is a point of F, representing U, k((x)) is the field of moduli of U
over k.

When 7 satisfies these conditions, we shall say that & is a @-
space of moduli of Y} defined over k¥ and g* the canonical morphism of 3. We
shall use similar definitions for admissible subsets of 3, (V,d).

THEOREM 8. Let V be a non-ruled polarized variety of rank at most d and
> an admissible subset of 33 (V,d), containing V. Then it admits a Q-space of
modult (7, B*), which is uniquely determined up to a one-to-one birational
correspondence.  When there is a typical universal family of 3% such that every
component of it is defined over a field k, there is a Q-space of moduli defined over k
and vice versa.

Proof. By Theorems 5 and 7, 3} admits a typical universal family &.
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Let the &, be the components of &, the F, the Chow-varieties of the &,,
F=U,F, and (7, 8) as in Proposition 12 relative to F (using B for f).
Let k¥ be a common field of definition of the F,. The @Q-variety 7, =
(F,, B.) is defined over k by Proposition 2 and by Theorems E and G since
E, is a variety defined over k (cf. Proposition 12, (a) and (c)). When U
is a solid polarized variety of ), isomorphic to a member U’ of § and
«’ the Chow-point of U7, we set g4U) =p(u’). Otherwise, we set g*U) = co.
Let & be another typical universal family of 3! and (7, 8*) the corres-
ponding pair. There is a map ¢ such that g*U) = ¢(g*U)) between 7~
and /. By the definitions, Proposition 12 and by the Corollary of
Proposition 11, ¢ is canonically determined and is a one-to-one birational
correspondence between &~ and /. It follows from this that (778% is
a @-space of moduli of X} defined over k and that it is determined up to
a one-to-one birational map.

Let now (7 p*) be a Q-space of moduli defined over a field ¥ and
the 7, the component Q-varieties of 7. Let & be a typical universal
family of 3%, K a common field of definition of the components &, of &
over k and U a generic member of &, over K. Set g*U)=1¢. ¢ is a generic
point of a component of &~ over K. Since it is defined over k, £ is a
generic point of it over k. Since K(#) (resp. k(#)) is the field of moduli
of U over K (resp. k), it is the smallest field of definition of »(U,€,(Cy))
over K (resp. k) by Proposition 2 and Theorem 2. By the Corollary of
Theorem 5 and by Theorem 7, it follows easily that « = ¢(U) is a generic
point of p(U,E,(Cy)) over K(¢). Then it is so over k(). From these, it
follows at once that # has the same locus over k as over K, which is the
closure of the Chow-variety of &,. Let F’ be the union of these. The
correspondence # — §¥(U) = ¢ is a rational map of the Q-space F’ into the
Q-space 7. Since k(u) contains k(¢) by Theorems E, G, 2 and by Proposi-
tion 2, the rational map is defined over k. When I is the closure of the
graph of the rational map on F’ X &, it is k-closed and the set of Chow-
points F’ of members of § is the set-theoretic projection of I" on F’. Hence
% has to be normally algebraic over k, i.e. locally k-closed. Our theorem
is thereby proved.

Remark 6.3. This theorem is valid for admissible subsets of 33, (V,d)
too.
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THEOREM 9. Let V be a non-ruled polarized variety of rank at most d and
31 an admissible subset of 3)(V,d), containing V. Let &, be a universal family of
SN, contained in 3 and (T, B¥) the Q-space of moduli of >\ defined over a field
k. Let F be an open subset of the Chow-variety of a component of &, 7' a Q-
space and 7 an everywhere single-valued rational map of F into T/ satisfying the
SJollowing conditions :

(@)  There is a component Q-variety 7, of 7  such that g* induces on F a
generically surjective map 8 to F,; (b) If u, u' are points of F which represent
tsomorphic polarized varieties of F,, then T(u)=7(w’); (c) When K is a common
field of definition of F,r and the components of 7' over k and when u is a point
of F representing U, K(B(u), 7(n)) = K(@XU), 1(u)) is a separable extension of K(B(u))
= K(g*(U)).  Then there is a rational map h of F, wnlo ' such that h is
defined over K, single-valued at every p¥(U) = pu), u € F, and that ¥ =hopB on
F.

Proof. Clearly there is an abstract morphism % of g(F) c 7, into 7/
such that ¥ =kop8 on F. By our assumption, when « is a generic point
of F over K, p(u) is a generic point of &, over K. Let #' be a generic
specialization of pu) =t over K(Bu)) and (f,u)—(#,u’) an extension of
this to a generic specialization of (¢,u#) over K(Bu)). Since K(pu)) =
K(g¥(U)) is the field of moduli of U over K, #’ represents a member U7 of
&, which is isomorphic to U. Since #’ is also in F, it follows that 7(u) =
7(u’). Consequently, ¢ =1 and ¢ is rational over K(3(x). Our theorem
follows at once from this, Theorem 8 and from the definitions.

Remark 6.4. Our theorem is valid for admissible subsets of >3, (V,d)

too.

Remark 6.5. The condition (c) is necessary. One can construct an
example where % is not a rational map and K(@*U),r(x)) is a pure
inseparable extension of K(g*(U)). k

The following theorem is an easy exercise of the results we have established
and a proof will be left to the reader.

TueorEM 10.  The notations and assumptions being those of Theorem 8, there
15 the smallest normal extension k of the basic field ky of deformations, which has the
Sollowing properties: (a) There is a Q-space of moduli (T, B*) defined over k;
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(b) When o is an automorphism of k over k, and when F, is a component of
T, FL° is also a component of T

§7. An Example. Let V" be a polarized hypersurface. By this we mean
that ¥ is isomorphic to a hypersurface of the projective space P"*'. In the
case of characteristic 0, we have [(V,d) =1 and u(V,d) = pi1+mCm — (+2)?
if n>2, m>3, excluding the case n =2, h =4 where m is the degree
of the hypersurface in P"*!, isomorphic to V¥V (cf. [9]). In the case of
characteristic p, the same ts true if we take for d the rank of V and assume that
V s isomorphic to a generic hypersurface over k, in P"*'.

Let ¥™ be a polarized variety and set n = N—s. Suppose that there
is a non-degenerate projective embedding £ of ¥ into P¥ such that £(V)
is the intersection-product of s properly intersecting hypersurfaces of degrees
m;. Arrange the m; so that m;_; <m;. Then we shall say that V™ is a complete
intersection of type (my,...,ms). The following facts are well-known (cf. [20]):
Let U be the intersection-product of s properly intersecting hypersurfaces
Hpu, of degrees m; in P?, then HYU,Oym) =0 for 1<i<N-—s—1
and HY-S(U,Qy(m)) = H U, Oy(p — m))* where p=¥m;—N—1, m is an
arbitrary integer and = indicates the dual.

It is well-known that a non-singular generic hypersurface has the
irregularity 0, i.e. its Picard variety is of dimension 0. Also a generic
hypersurface section of a non-singular subvariety of dimension » >2 of a
projective space has the same irregularity as the ambient variety (cf.
Matsusaka, “On the Theorem of Castelnuovo-Enriques”, Nat. Sci. Rep.,
Ochanomizu Univ., 1953). When that is so, a complete intersection V"
of type (m,,...,m,) has the irregularity 0 by Theorem B if n>2.
Consequently, algebraic equivalence and linear equivalence on ¥ coincide.

Throughout this paragraph, we shall fix the following notations. ¥v"* will
denote a complete intersection of type (my,...,m,). d will denote the rank
of V. We assume that V is isomorphic to the intersection-product Hm, - - - Hm,
of independent generic hypersurfaces over k, in P¥.  This assumption is not
necessary when the characteristic is 0. Furthermore, we set (my,...,m,) =
(Mg, e v o sy e oo s Miye oo s B)ye oo (e o v ,my), where mys=m; if i
and the m; are repeated #;-times. We shall be mainly interested in the
spaces > (V,d) and 3% (V,d). Our immediate goal is to show that every
member of 315 (V,d) is also a complete intersection of the same type as V.
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Essentially, this corresponds to Theorems 14.1 and 18.5 of [9] within the
frame work of abstract algebraic varieties, when ¥ is a hypersurface. As a
matter of fact, we can conclude easily from this that the set of non-
singular subvarieties of dimension n, degree IIim; in PY, which are specializations
of the intersection-product of s independent generic hypersurfaces of degrees m; over
ky, 15 a uniersal family of 33 (V,d), regarding it as a subset of 31(V,d).

Since ¥V is a complete intersection, there is a non-degenerate projective
embedding £ of ¥V such that f(¥V) can be expressed as the intersection-
product of s properly intersecting hypersurfaces. Denote by C¥ a hyper-
surface section of F£(V) by a hypersurface of degree r and set £7}(C}) =
C,. Let W be a member of 3% (V,d) such that ¥V is a specialization of
W over a discrete valuation-ring ©. There is a polar divisor D, on W
such that (W,D,)— (V,C;) ref. O, where C,~C,. We have the following
relations: A2'W,D,) = ' (V,C,) =0 for 0<i<n=N-—s;

1W,D,)=x2V,C,) =c, (cf. Theorem A); »(V,C,) =c, — (—1)"h"(V,C,),
rW,D,)=c, — (=1)*r"W,D,); h"(W,D,)<h"(V,C,).

Lemma 6. When n is even, h"V,C,)=hrW,D,) and »"V,C,) =
r"W,D,).

Proof. If niseven, B°(V,C,)=c, — h™V,C,) and i"(W,D,) = ¢c,—h*(W,D,).
By the upper semi-continuity, we have »(W,D,) < r(V,C,). Hence
r"(W,D,) = h"V,C,). Our lemma follows at once from this.

LemMa 7. Assume that hNV,C,) = B*W,D,) for all positive integers r.
Then W is a complete intersection of the same type as V.

Proof. D, is ample by Proposition 2.2 of the Appendix. By Proposi-
tion 6, there is a non-degenerate projective embedding g determined by
D, such that (W,I'y) > (V, Iy ref. O. Identifying Vv, W with £(V), g(W), we
may assume that ¥, W are already in the projective space of dimension
N. Let A(V,m;) be the linear system of hypersurfaces of degree m;, consis-
ting of those hypersurfaces which contain V. We have dimA(Cm,) =
dim A(m;H) — dim A(V,m;) and a similar formula for W, where H denotes
a hyperplane. Then we get dimA(V,m;)=dimAW,m;) from our
assumption.

Denote by Z;;, 1<i<!,1<j<t,; independent generic members of
the A(V,m;),1<i <1, over some field of definition of V. Then the Z;
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intersect properly on the ambient projective space and their intersection-
product is precisely ¥. Denote by G,, G; the supports of the Chow-varieties
of the AW,m;), AV,m;), we have (W, (G,;)—¥,(G;) ref. ©. Therefore,
there are members 7,;; of A(W,m;) such that (W,(T:;) —>(V,(Z;,) ref. O.
The 7T,; intersect properly, contains W, and their intersection-product
specializes to ¥ over © by the compatibility of specializations with intersec-
tion-product. Clearly, ¥ and W have the same degree as positive cycles
and this proves that W is the intersection-product of the 7;;, Our lemma
is proved.

ProrosiTioN 139, Let 'V and W be polarized varieties of rank d such that
V s a specialization of W over a discrete valuation-ring O. If dimV =n>1
and V s a complete intersection of type (my,...,m,), W is a complete inlersection
of the same type as V. There is a non-degenerate projective embedding h (resp. g)
of V (resp. W) such that R(V)=V' (resp. gW)=W') s the intersection-product
of s properly intersecting hypersurfaces of the degrees wm; and that W' -V’ ref. O.
Moreover, h°(V',rCy) = h"(W',rCw) for all integers r.

Proof. When = is even, our proposition follows from Lemmas 6 and 7.
Therefore, we assume that » is odd and that »>2  Using the same
notations as in Lemmas 6 and 7, take 7 so large that D, and C, are both
sufficiently ample. When we denote by G,, G, the supports of the Chow-
varieties of A(D,), A(C,), we have (W,D,,G,)— WV, C,,G.) ref. O, C, ~C,,
since I(D,)=1(C,) by Proposition 3. Then, when =z’ is a given point of
G), there is a point of G, which specializes to z’ over the above specializa-
tion with reference to ©. Therefore, we may assume, without loss of
generality, that (W,D,)—>(¥,C,) ref. © and that D,,C, are non-singular
varieties. Since C, = Ff(C¥) and since h' (U, Oy(m)) =0 for any non-singular
intersection-product of dimension at least 2 of properly intersecting hypersur-
faces, the set of hyperplane sections of C¥ is complete. This implies that
C,, together with the induced polarization, is a complete intersection of
type (my,...,m,r). Then D, is a complete intersection of the same type
by Lemma 7.

MV, Ch) = B"Y(C,, (Cr + CR)-C,) and  A"(W, Dy) = k"~(D,, (D} + Dp)-D,)
for large », where C,~C,, D, ~D,, C;, ~C,, Dy ~D,, and C,,D;,C;, D},

3) This proposition does not require our basic assumption that V is isomorphic to the
intersection-product of s independent generic hypersurfaces over &,
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are chosen so that the intersections involved are proper. #'(V,C,) =h"(W,D,)
follows from Lemma 6, h*V,C,) = cwn — (—1L)"2*(V,C,) and the similar
formula for W and D,. The rest of our proposition now follows from
Proposition 6 and Lemma 7.

Let us denote by &N, n;my,...,m,) the set of non-singular varieties
in the projective space P¥ of dimension » = N— s which are specializations
of a generic complete intersection of the same type as V. We identify it
with an algebraic family of polarized varieties of rank &, having the
same polarization type as V. Then, as we have remarked, Proposition
13 and the definitions imply that &N, n;my,...,m,) is a unversal jfamily of

s (V,d) and [(V,d) =1. Next, we shall compute the number »(V,d).

LemmA 8. Let W be a member of FN,n;my,...,m,) and a complete
wntersection of type (my,...,m,). Let A(m;) be the complete linear system of
hypersurfaces of degree m; in PY¥ and AW,m;) the linear subsystem of it, consisting
of those hypersurfaces which contain W. Then the smallest field of definition of W and
the smallest field over which the Chow-varieties of the AW ,m,) are defined coincide.

Proof. Let K be the smallest field of definition of W and L the smallest
common field of definition of the Chow-varieties of the A(W,m,). First we
shall show that L contains K. There are members Hn, of the AW,m;)
such that they intersect properly and that W = Hp,- - - Hn,.
may assume that these Ha, are independent generic members of the
linear systems over L. Let L’ be a common field of rationality of the
H,, over L. Then W is rational and hence defined over L’. We may
take L’ to be regular over L. Taking an independent generic specializa-
tion of the Hm, over L, we see that W is also defined over a regular
extension L'’ of L which is independent over L with respect to L’. Hence
W is defined over L and L contains K.

Hence, we

Next we shall show that K contains L. For this it is enough to know
that the module of forms of degree m which vanish on W has a basis over K.

But this is an easy exercise. Hence we have our lemma.

Lemma 9. Let dim Alm;) = v; and dim AV, m;) = u; where V, is a member
of F(N,mymy, . ..,m,) and is a complete intersection of type (my,...,m,). Then
dm FN,n;my . o . ,m;) = 23v; — ;.

Proof. Let the Hn, be independent generic members of the A(m;) over
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a field of definition k of §(N,n;my,...,ms). Then clearly the ntersection-
product W of the Hwm, is a generic member of this universal family over k.
Hence v, is a specialization of W over k in particular. By Proposition 13,
we have WV, Vo Hm) = h"(W,W+Hn,). Hence the formula (W, W Ha.)—1
= dim 4(m;) — dim AW ,m;) and the similar formula for V¥V, show that
dim AV, m;) = dim AW, m;) = u,;.

Let the G; be the Chow-varieties of the A(m;) and F the Chow-variety
of F(N,n;my,...,m). Set G=1I,G;. Let the x; be the Chow-points of
the Hm, and w the Chow-point of W. Denote by T the locus of
(%40« « » T, w) Over k. Since k(wxy,...,x,) is regular over k and since w is
rational over (x,...,%;), T is defined over k and is the closure of the
graph of a rational map of G into F. 'The projection of T on F is F,
and the cycle T™'(w) which is defined by (G X w):T =T (w) X w is prime
rational over k(w). From the definition of 7 and from Lemma 8, it is
then easy to see that [77'(w)| is the product of the supports of the Chow-
varieties of the AW,m;). Our lemma is an immediate consequence of

these results.

COROLLARY., dim F(N,n;my, . . . ms) =25 BV, Ve Him) — s

ProposiTiOoN 14. Let W be a generic member of the universal family
KN, Mmoo ymy) of 20V, d) over a field & of definition of it. Then n(V,d)
=3 WU, U+Hn) — s — (dim PGL(N) — dim aut (W)), where U denotes an arbitrary

member of the universal family.

Proof. Our formula is an immediate consequence of the definitions and
of Lemma 9, Corollary of Theorem F.

PropositioN 15.  The set HIN,n;my,...,m,) of members of FN,n;
Mye oo, m;) which are complete intersections of type (my,...,m,) is an
irreducible algebraic family such that its Chow-variety is an open subset of that of
TN, n;my, . .. ,ms) over k. When o =XImi—N—12>0, every member of
KN, n;my, ..., m) ts not ruled, and, for such a member U, we have
dim aut (U) = 0.

Proof. The first assertion in our proposition is an easy exercise.
As we remarked, every member of &N, n;m,,...,m,) is a regular
variety by Theorem B. For the sake of simplicity, let us identify a member
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W of §(N,n;my,. . .,m,) with its underlying variety W. A canonical divisor
of P¥ is a hypersurface of degree — N — 1 as is well-known and easy to prove.
In general, when Hn,,...,Hn, are properly intersecting hypersurfaces such
that their intersection-product is non-singular, a canonical divisor of Hu, - « + Hn,
is given by Hw,+ - - Hn,H,, where p=3'm; —N—1 (cf. [27]). Therefore,
when p is positive, a canonical divisor of W is an ample divisor. Since
the underlying variety U of a member of &N, n;m,,. .. ,m,) 1s a specializa-
tion of some W over k,, it follows that U-H, is also a canonical divisor on U
and that a canonical divisor on U is either ample or linearly equivalent to 0.
The connected component G of aut(U) leaves every divisor class on U with
respect to algebraic equivalence fixed. Moreover, the irregularity of U is 0.
Hence G leaves every complete linear system of divisors on U invariant.
Consequently, G has a non-trivial representation as a linear algebraic group.

If U is a ruled variety, it is birationally equivalent to P! x D" where
D™' is a normal projective variety. A canonical divisor on this product
is linearly equivalent to K(P!) x D+ P! X K(D"*™'), where K(x) denotes a
canonical divisor of *. This is well-known and easy to verify. Then it is
easy to see that the virtual geometric genus p, (P! x D"') is 0, and, when
that is so, the geometric genus p,(U) has to be 0 (cf. [27]). Therefore, U
cannot be a ruled variety.

If U cannot be a ruled variety, the connected component of aut (U)
containing the identity is an Abelian variety (cf. [16]). Hence it has to be
reduced to the identity as is well-known since it has a non-trivial represen-
tation as a linear algebraic group (cf. M.Rosenlicht, “Some rationality
questions on algebraic groups”, Annali di Matematica, 1957; H. Matsu-
mura, “On algebraic groups of birational transformations”, Rendiconti,
Accad. Naz. Lincei, 34, 1963). Owur proposition is thereby proved.

ProrosiTioN 16.  There is a non-singular algebraic variety A and a subvariety
Z of A x PV with the following properties: (a) x X P¥ and Z intersect properly
on A X PY for every point x of A; (b) Z(x) which is defined by (x X P)-Z =
x X Z(x) s a member of DN, n;my,...,m) when polarized suitably, and vice
versa; (c) A and Z are defined over the basic field k, and ky(x) is the smallest
field of definition of Z(x) over k.

Proof. When 4 is a linear system of dimension r of divisors on a
complete variety B without singular subvariety of co-dimension 1, there is
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a positive cycle T on P" x B such that (i) y x B and T intersect properly
on P" x B for every y on P’, (ii) T(y) is in 4 and conversely, and that
(iii) when & is a common field of definition of B and 4, &(y) is the smallest
field of rationality of T(y) containing k. This fact is well-known and we
shall call it a Grassman parametrization of A (cf. [23], Chap. IX).

Denote by § the family H(N, n;m,,...,m,) and let U be a member of
9. Set dim A(m,) =v, P,=Pv P =I,P; and dim AU,m;) = u, u, is
independent of the choice of U by Proposition 13. Denote by (P;,T;) the
Grassman parametrization of A(m;) and (2’) = (2y,...,%,) a point of P’
such that z; is a point of P,. For the sake of simplicity, we shall identify
members of  with their underlying varieties.

Let P, be the set of points () of P’, such that the 7,(x;) intersect
properly on P¥ and that T,(x,): - - Ty(z,) is non-singular, forms an open
subset of P’ which is easy to prove. When (x) is in Py, Ty(x,)- - - Te(x,) =
U(x) is a member of §, and conversely, a member U of § can be expressed
this way. For a point (x) of Pj, the linear system A(U(x),m;) is represented
by a subspace L((x),m,;) of dimension #; in P, Set L((x)) = I,L((x), m;).
We shall show that the L((x)) form an involutional family of positive cycles on
P’, then apply a theorem of Chow ((2)) to construct A and Z.

In order to do so, we first observe the following basic properties are
satisfied by the L((z). (i) For (x)e P;, L((z)) is uniquely determined,
dim L((z)) = 3 u; and U(x) and L((x)) have the same smallest common field
of definition over k, (cf. Lemma 8). (ii) When (z),(2’) € P, and (x)-— (2")
ref. %, L((x))— L((2’)) ref. &k, uniquely over this specialization. (iii) When
(x), (") € P, such that (x’)e L((x)), then U(z)=U(x’) and vice versa.
(iv) When (x),(x’) € P, and L((x)) = L({(z")) ref. k,, then U(x)—>U(x’) ref. &,
uniquely over this specialization.

(i) and (i) show that the L((x)) form generically an involutional system
on P’ in the sense of Chow (cf. [2]). Let A be the set of Chow-points of
the L((x)) when (x) is in P,.  Then every point of A is simple on its
closure A by the theorem of Chow. A is the image of P, by the canonical
rational map of P’ into A, and the map is defined at every point of Pg.
Since A contains always a non-empty open subset of A (cf. [24]), it is easy
to prove that A is actually open on A. Then (i)-(iv) prove the existence

of Z as required in our proposition, which is an easy exercise of [23],
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Theorem 6, Chap. VIII and of the compatibility of specializations with
intersection-product.

Prorosition 17.  Call H4(N, n;my, . . . ,m,) the subset of H(N, nymy, . « ., ms),
consisting of polarized varieties of rank d. Then DN, n;my, .. .,m) is an irredu-
cible algebraic family defined over ¥k,  Moreover, Proposition 16 is valid for
DN, n3my, . o ., my) too if we take a suitable open subset of A which is defined over k.

Proof. This follows at once from Proposition 16 and from Proposition
4.3 of the Appendix.

Let us denote by >* the subset of >} (V,d) consisting of complete
intersections of type (my,...,m;). Then Propositions 15 and 17 show that
> is an admissible subset of X, (V,d), that Hu(N,n;my,...,m,) is a universal
Samily of 3% contained in it and that an arbitrary member of 33, (V,d) can be
obtained by specialization over k, from a member of 33* (cf. Proposition 13).

Turorem 11. Let V™ be a polarized variety of rank d. Assume that it is a
complete intersection of type (my,...,m;) and isomorphic to the intersection-product of
s independent generic hypersurfaces Hm, of degrees m; over ky, in PY. Set U=
Hp,+ + + Hn,. Then we have the following results (assume that m, >1 and n >1):
(@) LV,d) =1, n(V,d) =2 (U, Op(im;)) — s — (dim PGL(N) — t) where t =
dim aut (V);

(b) When p=3m;—N—1>0, every member of H(N,m;my,...,ms) 1is not
ruled and dim aut (V) = 0;

(c) When 3* is the set of members of >3, (V,d) which are complete intersections
of type (my,...,m,), it is an admissible subset of >3, (V,d);

(d) When p >0, 3* admits a Q-variety of moduli (T, p*) defined over k, and
7 is a Q-manifold when the characteristic is 0.

Proof. (a) and (b) follow from Propositions 14 and 15. We have settled
(c) already.

By Proposition 17, there is a non-singular algebraic variety A and a
subvariety Z of A x PV, both defined over k, such that # X P¥ and Z
intersect properly on A x PV for every u on A and that the Z(#) exhaust
Do, nymy . oo ,mg). Da(N,nymy, . . . ,m,) satisfies the following conditions:
(i) 1(Cy) = constant for all members U; (@ii) Every member U is not
contained in a hyperplane; (iii) C{ is constant for all U; (iv) The set
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of hyperplane sections of U 1is complete for all U; (v) PB(U;C.(Cv)) C
Da(N,nymy, .. .,m) for all U. 1In fact, (i) follows from Proposition 13.
(ii) 1is a part of our assumption. (iii) is obvious. (iv) follows easily from
WU, Qu(m)) =0. (v) follows from (i) and (iv). Moreover, dim p(U, €,(Cv))
=dim PGL(N) if p >0. Assuming from now on that p >0, Theorem D
shows that the equivalence relation on 9,(N,#n;m,,...,m,) defined in
terms of isomorphisms of polarized varieties is strongly k,-closed. Denote
by E, the set of pairs of equivalent points on A by the equivalence relation
induced by that of $4(N,n;m,...,m,). Since there is a canonical one-to-
one birational correspondence between A and the Chow-variety of
Da(N,nymy, . .. ,m,) defined over k, by Proposition 17, E, is ky-closed on
A x A and the equivalence relation on A is strongly k,-closed. Hence (4, E,)
defines a Q-variety &, defined over k, consisting of regular points. Let g
be the canonical map of A on 7. g is a morphism defined over &, and
we extend g to a map g* of X3* onto & in the usual manner. Then it
will be easy to verify that (7, g*) is a Q-variety of moduli defined over
k, if we show that ky(g(«)) is the field of moduli of Z(u) for all # from A.
The set E{u} of points on A which are equivalent to # is the transform
of p(U,€,(Cy)) by the canonical birational correspondence, if we set Z(u) = U.
ko(B(n)) is by definition the smallest field of definition of the support of E{u}
over &, Hence it is the smallest field of definition of p(U,C,(Cy)) over
k. Cy is ample and €,(Cy)* is a complete total family since it is the
complete linear system determined by Cy. It follows that &,(g(#)) is the
field of moduli of U over k,. (cf. Theorem 2). Our theorem is thereby
proved.
Appendix®

§ 1. Ruled varieties. A ruled variety V is by definition an algebraic variety
whose field of rational functions K contains a subfield L such that K is a pure
transcendental extension of positive dimension of L.

In this paragraph, we shall show that a non-singular variety in a
projective space, which is a specialization of a ruled variety, is also a ruled
variety. We shall begin with a rather obvious lemma, a proof of which will
be left to the reader.

LEmMMA 1.1. Let V be a non-singular ruled variety in a projective space. Then

* Most of the results here are not new. They are collected here for the sake of convenience.
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V XV carries an irreducible algebraic family & of positive cycles T with the following
properties:  (a) The Chow-variety of & s complete; (b) When k is a common
Sield of definition of V and & and when T is a generic cycle of & over k, T is a
birational correspondence between V. and V; (c) ® contains a cycle T’ such that
every component of it is degenerate, i.e. no component H of T’ has the property
[H:V,:[H:V,]50, where V denotes the i-th factor of the product V X V.

We shall state briefly an idea of a proof and leave the rest to the reader.
There is a field & of definition of V, a variety W defined over ¥ and a
rational map f (not necessarily a morphism) of V defined over ¥, generically
surjective on W, such that a generic fibre f'(w) over k is birationally
equivalent to the projective line over k(w). One can find a family of
positive chains satisfying (a), (b) and (c) on f~(w) X f~w). From this family
it is possible to construct a family of positive cycles on V XV we are
looking for.

Tueorem 1.1. Let V be a non-singular ruled variety in a projective space,
V' a variety in a projective space and O a discrete valuation-ring such that V' is a
specialization of V over . Then V' is also a ruled variety.

Proof. By our lemma, V XV carries an irreducible algebraic family ®
of positive cycles satisfying (a), (b), (c). Let G be the support of the Chow-
variety of ® and (V,G)—(V’,G’) ref. ©. Since G is connected, G’ is
connected by Zariski’s connectedness theorem, extended by Chow and
Grothendieck (cf. [1], [3]).

Assume that V’ is not ruled. Let o’ be a point of G’. There is a
point v of G such that (V,G,v)— (V’,G’,v") ref. O and we may take v to
be a generic point of G over a common field of definition of V and G. v
is then the Chow-point of a birational correspondence between V and V.
When that is so, ¢ is the Chow-point of a positive chain on V' xV’,
which contains a component such that it is a birational correspondence
between V¥’ and V’ (cf. [16]). Since ® contains a degenerate member by
(c), it follows that G’ contains the Chow-point of a degenerate chain on
V’ xV’. This is against to what we have observed and V’ has to be a
ruled variety.

§ 2.  Upper semi-continuity.

ProrosiTioN 2.1. Let V, W be non-singular algebraic varieties in projective
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spaces, X a V-divisor, Y a W-divisor and O a discrete valuation-ring such that
V,X)>W",Y) ref. O. Then

RV, X)< h(W,Y).

Progf. This is well-known and is a special case of a more general upper
semi-continuity (cf. [3]). But if a reader is interested in proving this case
as a simple exercise, he can proceed as follows. First observe that the case of
dimension 1 is an easy consequence of the Riemann-Roch theorem, the formula
I(X)< I(Y) and the invariance of canonical divisors by specializations. In
general, denote by C, a hypersurface section of V' by a hypersurface of
degree m so that C, is a normal variety (cf. [18]). Then A (V,X)=
B (Cpy Cr+(Cr + X)) for i >0 if m is large (cf. [26]). Then the general case
can be proved by induction, using the invariance of the Euler-Poincaré
characteristic (cf. Theorem A), the duality theorem and [(X) < I(Y).

ProrosiTiON 2.2, Let V, W be non-singular subvarieties of projective spaces,
X a V-divisor and Y a W-divisor. Let O be a discrete valuation-ring and assume
that (W,Y) is a specialization of (V,X) over O and [(X) = 1(Y). Then, when Y
is ample, X 1s also ample.

Proof. Let G(X) (resp. G(Y)) be the support of the Chow-variety of
A(X) (resp. A(Y)). Since linear equivalence is preserved by specializations,
it follows that (V, X, G(X)) = (W,Y, G(Y)) ref. ©. Therefore, when (v,,...,v,)
is a set of points of G(Y), there is a set (u,,...,u#,) of points in G(X) such
that the specialization can be extended to (#;,...,%,) > @,...,v,) ref. O.

Since Y is ample, A(Y) has the property that (i) it separates points of
W and that (i) for any given point @ of W there is a set YV,...,Y,, n=
dim W, of members of A(Y) such that @ is a proper component of multi-
plicity 1 of n;Y; on W. Conversely, since (ii) implies that @ is simple on
the Y, and that the tangent linear spaces to the Y; at @ form a set of #x
independent hyperplanes on the tangent linear space to W at @, (i) and
(i) imply the ampleness of Y. Using this remark and also the above remark
for specializations, we can verify easily that X satisfies (i) and (ii) and hence
that X is ample on V. In order to do this, what we need is the compa-
tibility of specializations with intersection-product and a few fundamental
facts on specializations of cycles (cf. [21]). Details will be left to the reader.

ProrosiTioN 2.3. Using the same notations and assumptions as in Proposition
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2.2, assume further that Y is sufficiently ample. Then X is sufficiently ample.

Proof. This is an immediate consequence of Propositions 2.1 and 2.2

since algebraic equivalence is preserved by specializations.
§ 3. Some cohomological questions.

ProposiTioN 3.1. Let V™ be a non-singular subvariety of a projective space
and X, Z divisors on V. Then x(V, X+ mZ) is a polynomial in m.

This is a special case of a theorem of Snapper (cf. [22’]) and a little
more general result is obtained in [8]. But it is also an easy exercise to
the readers. Note that z(V, D) = (— 1)"(p.(V) + p.(— D)) (cf. [26]), that V carries
an ample divisor and then make use of the formula for p, which is similar
to [46], § 12 in [27]. As a corollary of this, Theorem C and Theorem A,
we get the following result.

ProrosiTiON 3.2.  Let V be a non-singular subvariety of a projective space
and X, Y two divisors on V which are numerically equivalent on V. Then 2V, mX)
=x(V,mY) for all integers m.

ProrosiTioN 3.3.  Let V® be a non-singular subvariety of a projective space,
A* an ample linear system on 'V and X a divisor on 'V such that A(X) is not
empty. Let C® be a non-singular subvariety of V of codimension i, which is the
intersection-product of i properly intersecting members of A*, such that X and the
C® intersect properly on V. Assume that the following conditions are satisfied:
(@) A(X) induces on C® the complete linear system A; = A(X-CP) for i>0;
(b) A" = A(X)— A* exists and induces on C™ " a complete non-special linear
system.  Then the minimum sum of A* and A(X) is complete and A(X + C) induces
a complete linear system on C.

Proof. We proceed by induction on xn. A well-known lemma of
Castelnuovo states that when 4* is a linear system without base points on
a complete non-singular curve and when a complete non-special linear
system 4 is such that 4 — 4* exists and non-special, then the minimum sum
of 4* and 4 is complete. When » =1, our assumptions imply that these
conditions are satisfied. Hence the minimum sum of /* and A(X) is complete.

Assume now that our proposition is true up to dimensions » —1. Set
CW = C. A(X) induces A(X-C) on C and A* induces on C an ample linear
system A¥. Moreover, A(X-C) — A% exists and this induces Trqm-v(A(X ) — A%).

https://doi.org/10.1017/5S0027763000012733 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012733

236 T. MATSUSAKA

Therefore, the minimum sum of A(X:C) and Af is complete by our
induction assumption. Let C’ be a member of 4% such that C and C’
intersect properly on V. Let M be the defining module of functions % of
4% on V such that div (k) + C’ >0. When the f are taken from L(X) and
the % taken from M, the functions f-% generate the module M’ of functions
which defines the minimum sum A* of A(X) and A4*  Tr4*¥ contains
clearly the minimum sum of Trc4(X) and Trc4* Hence TroA* =A(C+(X +C")).
It follows that M’ induces the module L(C«(X+C") on C. M is a
submodule of L(X+ C’). Hence we can complete a basis of M to a
basis of L(X+C’) by adding those functions g on V which induce 0 on C.
Since div(g)=Y —X—C’, Y >0, and since C is not a component of X
and C’, it follows that C is a component of ¥. Set Y=Y"+4+C. Y’ isa
positive divisor. Let % be a function in M such that div(z)=C—C".
Then g/k is in L(X) and hence ¢ is in M. Our proposition is thereby
proved.

ProrosiTioN. 3.4. Let V™ be a non-singular subvariety of a projective space,
X adivisoron V and Y an ample divisor on V. Let Y be a non-singular subvariety
of V of codimension «, which is the intersection-product of e« properly intersecting
members of A(Y) such that X and the Y intersect properly on V. When h'(V, X)
=0, Y, XY®) =0 for i >0 and 1< a<n—1, then B'(V,X+mY¥) =0 for
i>0, m>0.

Proof. When = =1, our result follows from the theorem of Riemann-
Roch. Therefore, we proceed by induction on n. Let Y’ be a member
of A(Y) such that ¥’ and the Y intersect properly on V.  Setting
Y® =Y, our induction assumption and the cohomology exact sequence
from 08V, X+ (m—1)Y") >V, X+ mY")>QY,Y « (X+mY")—0 imply
BV, X+ m—1Y")> WV, X+mY") for i >0, m>0. Since A'(V,X)=0 for
i >0 by our assumption, we get our lemma from this.

ProrosiTION 3.5. Let V" be a non-singular subvariety of a projective space,
A an ample linear system on V and X a divisor on V. Let C be a member of A
and set AV,mC) = gm), AV,X+ mC) = gx(m). Then there is a constant t,,
depending only on  g(x), gx(x) and the intersection numbers c¢; = I(XP+C™ ), such
that K'(V,X + tC) =0 for i >0 when t >t,.

Proof. Let C* be a non-singular subvariety of V of codimension e,
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which is the intersection-product of « properly intersecting members of 4,
such that (X,C®), (C*,C®) are pairs of properly intersecting cycles on V
and that C®.C® =C“*® provided «+g<n. Set CV=C. x(C?,
X:C® + (m—1)C+C®) + 2(C*V, X« C*) 4 C « C*V) = 2(C, X+ C™® + mC-C™)
implies that the polynomial gx.q@(@m)=%(C*, X.C* + mC.C*) can be
deduced from gyz(m) for 1<ae<n—1 In the same way, the polynomial
Gou(m) = 2(C™, mC+-C) can be deduced from gim) for 1< a<n— 1

When #% =1, our result follows at once from the theorem of
Riemann-Roch. Therefore, assume that there is a constant #/, depending
only on g(x), gx(x) and the ¢;, such that A (C*,C*®+(X+tC)) =0 for i>0
and 1<a<n—1 when ¢>1¢. The exact cohomology sequence of
08V, X+ (t —1)C) >V, X+ tC") - LC, C+(X + tC")) > 0 and the induction
assumption imply AV, X+ (¢ —1)C) = ANV, X + ¢C) and R'(V, X+ (t — 1)C) =
RV, X+ ¢tC) for t>1¢,i>1 (C’isa member of 4 such that C and C’
intersect properly on V). Since A'(V,X+tC) =0 for i >0 and for large ¢,
we see first of all that A*(V,X+¢C)=0 for i>1 and ¢ >¢.  Suppose, for
some t = t', that ”'(V, X+ (t — 1)C) = h'(V, X+ tC) = BNV, X + (¢ + 1)C). Then
the exact cohomology sequence we quoted above implies that A(X + ¢C) and
AX+ (¢t +1)C) induce on C complete linear systems. When that is so,
these two complete linear systems on V induce complete linear systems on
C* by similar reasons as above and by our induction assumption. Therefore
A4 and A(X + (¢ +1)C) satisfy the requirements of Proposition 3.3. It follows
that the minimum sum of these linear systems is A(X + (¢ 4+ 2)C). The same
is true of the induced linear systems of 4 and A(X+ (¢ +1)C) on C, and
consequently the minimum sum of these two on C is also complete. It
follows that A(X+ (¢ +2)C) induces on C a complete linear system. When
we replace ¢ by ¢+ 2 in the above exact sequence of sheaves and apply
the induction assumption and this result to the exact cohomology sequence
derived from it, we see that 2'(V, X + (¢ + 1)C) = h'(V, X + (¢ + 2)C). Repeating
this process, we get Ar(V,X+ (¢ —1)C)=h(V,X+ (¢t +1)C) for all non-
negative /. This is impossible unless A'(V,X+ (1 —1+1)C)=0 for all
non-negative /.

On the other hand, from what we have proved and from the definition,
we see that AV, X+ t'C) = gx(t") + RV, X + ¢'C). Moreover, we have
BV, X+ t'C) < (X + t'/C)™ 4+ n (cf. [16]). From this we get A'(V, X + #'C) <
(X+ t'C)™ + n—gx(t’) =s. Then it is now an easy exercise to show that
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AV,X+tC)=0 whenever ¢># +2s+1  QOur proposition is thereby
proved.

§ 4. On algebro-geometric conditions.

ProrosiTiON 4.1. Let 'V be a closed subset of an algebraic variety A and
(P) a set of algebro-geometric conditions. Assume that the following properties are
satisfied by V and (P). (a) When W s a subvariety of A, contained in V and
defined over a field k of definition of A over which V is closed, and when there is a
generic point of W over k which satisfies (P), there is an open subset D of W,
contaiming this point, such that every point of D satisfies (P). (b) There is a
field K of definition of A over which V is closed with the property that, when
x, &' are points of V, x—a ref. K and when « satisfies (P), then x satisfies
(P). (c) A generic point of each component of V over K satisfies (P).  Then the
set of points U of V which satisfies (P) is a K-open subset of V.

Proof. It is easy to see that our proposition can be deduced from the
case when V is a subvariety of A defined over K. Therefore, we shall
assume that V is a subvariety of A defined over K.

Assume now that z satisfies (P) and let D be an open subset of V,
containing w, such that every point of it is a point of U. D exists by (a).
Let the W, be the components of V' — D containing some points of U and
the W, the components of V' — D which do not contain any point of U.
Set V— UgW,z=V’" and let D’,U’ be the restrictions of D, U on V’. V' is
open on V and D =D, U=U" Therefore, it is enough to prove that U
is open on V’. When that is so, we may assume without loss of generality
that V =V’. By (a) and (b), there is a non-empty open subset D, of W,
such that every point of it is contained in U. Let the W,, be the
components of W,— D, and D® the open subset V — U, ,W,, D is
contained strictly in this open subset and every point of D® is contained
in U. When we continue this process, we get an increasing sequence of
open subsets of V which are contained in U. Moreover, this does not
terminate as long as points of U are not exhausted. Therefore, U is an
open subset of V.

When that is so, U is a K-open subset of V by the definition of U
and by our assumption (b). Our proposition is thereby proved.

In order to discuss the following lemmas and a proposition, we shall
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fix some notations and conventions. Let § be an irreducible algebraic
family of non-singular varieties in a projective space, k a field of definition
of § and H the Chow-variety of §. Let s bea positive integer, which is
prime to the characteristic, such that s and t(V') are relatively prime for all V' in
. Weset =35 or 1/s. We denote by »&,(Cy,) the class €,(sCy,) if r =15
and the class €,(X’) where X’ is a V’-divisor such that sX’=C,, mod ®&,
if r=1/s. In Lemmas 4.1, 4.2 we shall assume that a sufficiently ample
divisor is contained in r8,(Cy,) for every V' € 9. When that is so, every divisor
in 7€,(Cy,) is sufficiently ample and 7E,(C,)* is a complete total family
defined over k(v') if v" = ¢(V") (cf. Proposition 2 and Theorems E and G).

Let » be a generic point of H over k, representing V € , X a generic
divisor of 7G.(C,)* over k(v) and K a field of rationality of X over k().
Let fx be a non-degenerate projective embedding of V determined by X,
rational over K, and ¢ a generic projective transformation over K of the
ambient space of Fy(V). Set I'=T:o0r, w=cltofxV)), t=c¢(I"), G=
loc (), J =1loc(t), T =loc4(v, ¢, ).

LemMa 4.1. () G, J, T are defined over k. (b) The set of points G in G
which represent non-singular varieties, not contained in any hyperplane, is k-open on
G. (c) The set of points J in J which represent irreducible cycles in the multiple
projective space is k-open on J. (d) The restriction T of T on HXG X J is
k-open on T.

Proof. (a) follows easily from the fact that K can be taken as a regular
extension of k(v). (b) and (c) follows from the fact that those properties can
be described in terms of non-vanishing of finite sets of homogeneous poly-
nomials over & in the Chow-coordinates. (d) follows at once from (b) and (c).

LemMa 4.2, A point (o', u’,t’) is in T if and only if o' represents a member
V' of 9, t' represents a non-degenerate projective embedding fx, of V' with
X' € v&(Cy)t and u' represents £, (V').

Proof. Let (v',u’,t’) be a point of T. It is a specialization of (v, u, ¢)
over k and, when that is so, v/, u/, ¢’ are as described in our lemma by
Propositions 2, 4, Theorem D’ and by the compatibilities of specializations
with the operations of intersection-product and algebraic projection. Assume
now that V’ is in @, u’ represents fx(V’) and #’ represents the graph of
fx, with X’ e r€,(Cy)*. V'’ is a specialization of V over k and there is a
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divisor X in 7€,(Cy)* such that (V, X)—>(V’, X’) ref. k by Propositions 2 and
4. Then (V,X)—(V’, X’) ref. k by our choice of X. By Propositions 3 and
6, there is the graph I¥ of a non-degenerate projective embedding of V,
determined by X, such that (V,X, I'¥)—W’, X', I'r,) ref. k. From the
definition of I', it follows easily that (V, X, I'#) is a specialization of (V,X,I)
over k(v). Hence (v,u’,#) is a point of 7 and our lemma is thereby
proved.

ProrosiTiON 4.2. Let  be an vrreducible algebraic family of non-singular
varieties in a projective space P. Let s be a positive integer which is prime fo the
characteristic and to the order t(V) of a member V of . Setting r =s or r =1/s,
assume that the following conditions are satisfied: (a) For any member V of 9,
the set of hyperplane sections of V forms a complete linear system; (b) For such
V, C.(Cy) and rC,(Cy) contain sufficiently ample divisors on V; (c) D contains
BV, Co(Cy)) for all V in .  Then, when we set 9, = UvegBV,rC.(Cy)), 9,
is an irreducible algebraic family. When $ is defined over a field k, so is 9,.

Proof. By Theorem F, s is prime to t(V) for every V in . Let H be
the Chow-variety of $ and let us use the same notations and conventions
of Lemmas 4.1 and 4.2. By Lemma 4.2, when we denote by H, the set-
theoretic projection of T on G, H, is the set of points representing members
of ,. Therefore, we must show that H, is a k-open subset of G. In
order to do this, we shall show that the conditions (a), (b), (c) of Proposition
4.1 are satisfied.

(c) is trivially satisfied in our case. Let G’ be a subvariety of G such
that G’ N H, contains a generic point of G’ over a field L of definition of
G’ containing k. Then by Lemma 4.2, HXx G’ x J N T contains a component
T’ which has the projection G’ on G. Hence G’ N H, contains an L-open
subset of G’, containing the generic point of G’ over L. (cf. [24]). Thus
we have verified the condition (a).

Next we shall verify the condition (b) with respect to the field £ Let
u*, u’ be points of G, corresponding to non-singular varieties U*, U’ such
that w*—>u’ ref. k. Assume that U’ is a member of $,. There is a
member V’ of $ and a non-degenerate projective embedding £’ of ¥V’ such
that £/71(Cp) € #6,(Cy).  Set cofyV)=U and cofx(Cy) =Y.  Let
(U,Y) = (U* Y*) ref. k and (U* Y*) = U’,Y’) ref. k. Since Cy € r€,(Y) and
since algebraic equivalence is preserved by specializations, it follows that
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Cur € rC,(Y*) and Cy, 7€, (Y’"). When that is so, 7C,(f 1Y) = v&,(Cy))
and consequently f/71(Y’)=C,, mod ®, by our choice of . Hence Y’ is
sufficiently ample and Y* is also sufficiently ample by Proposition 2.3.
Moreover, I(Y) = I(Y*) = I(Y’) by Proposition 3. Set fy,(U’)=V’. By the
definition, we have f£y,(Y")=C; mod &,. Hence g = fy of’ is a non-
degenerate projective embedding of V’, determined by a divisor in €,(Cy,),
ie. Ve PV, 6,(Cy)). It follows that ¥’ € § by our assumption. Applying
Proposition 6 to £y, and to (U* Y*) —(U’,Y’) ref. k, we see the existence of
a non-degenerate projective embedding f* of U* determined by Y*, such
that (U* Y*, I'r) > (U, Y, ['r) ref. k. Doing the same to s+ and to (U,Y)
— (U*,Y*) ref. k, we see the existence of the graph I’ of a non-degenerate
projective embedding of U, determined by Y, such that (U,Y,I)—
(U*,Y*,T'r) ref. k. (zofx)™ is a non-degenerate projective embedding of
U, determined by Y. Therefore, when we put V =7(U), V and V differ
by a projective transformation and V is a member of P(V,C,(Cy). When
we set FHU*) =V* we have V—>V* ref. k and V*—>V’ ref. k. Since
V, V€ $ as we have seen and since § is an algebraic family defined over
k, it follows that V*< . Since ! is determined by a divisor in »&,(Cy),
it follows that I'e~! is defined by a divisor in #€,(Cv+) by the compatibility
of specializations with intersection-product and algebraic projection. This
shows, by Lemma 4.2, that U* is a member of $,. The condition (b) is
thus verified and our proposition is thereby proved.

CoRrROLLARY. Let © be an algebraic family of non-singular varieties in a
projective space. Let v be as in our proposition. Assume that § satisfies (a) and
(b) of our proposition and also the following condition: (c') When V is contained in
a component D, of 9, . contains PV, C€,(Cy)).  Then, when we define $, as in
our proposition, it is an algebraic family. Moreover, when 9 is normally algebraic
over a field k, so is D,.

Proof. Let the §, be the component families of . Then £, is the
union of the (§,),, which is an algebraic family defined over % by our
proposition. Let the (H,), be the Chow-variety of (9,), and S, the
complement of (H,), in its closure. Let &, be the algebraic family of
positive cycles in the projective space defined by S,. Our corollary will
follow easily if we show that &, N (§;), = ¢ when a = .

Assume that &, N ($p), contains U’. Let U* be a generic member of
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a component family of &, over k which contains U’. Let U be a generic
member of (9,), over k. There is a generic member V of $, over &
and an isomorphism f between V and U such that £7Y(C,) € r&,(Cy). Set
f(Cy) =Y. Let (UY)—(U*Y* ref. £ and (U* Y*)— (U’ Y’) ref. k. Since
algebraic equivalence is preserved by specializations, it follows that
Cy € rC,(Y), Cys € 7€, (Y*) and Cy, € #E,(Y”). Since U’ is a member of (Dp),
there is a member V’ of $, and an isomorphism £’ between V’ and U’
such that £Y(Cy,) <€ rC,(Cy). When that is so, £ 7(Y")=C,, mod &, by
the definition of » and Y’ is sufficiently ample. Therefore, Y* is also
sufficiently ample by Proposition 2.3. Then, as exactly the same way as
in the last part of the proof of our proposition, we can find the graphs
I, r*, I of non-degenerate projective embeddings of U, U*, U’, determined
respectively by Y, Y* Y’ with the following properties: (i) (U, Y, ')~
(U Y*,I'*) ref. k and (U* Y* I'*)— (U, Y, I") ref. k; (i) V=I(U) and V'
=["(U") belong to H; (iii) Ve PB(V,C,(Cy) and consequently V € H, by
(c). Set V*=I*U*). Since specializations are compatible with intersection-
product and algebraic projection, it follows that V' —V* ref. £ and V*—>V"
ref. k. Since $ is an algebraic family, the set of Chow-points of members
of  is a locally closed subset of a projective space. Hence V* is a member
of . Since I'*' is the graph of a non-degenerate projective embedding
of V*, determined by a divisor in 7&,(Cv+), it follows that V* is not in §,,
otherwise U* would be a member of (§,),. Thus, V* is in », in the
closure of $, but not in $,. This contradicts to the fact that £ is an
algebraic family. Our corollary is thereby proved.

ProrosiTiON 4.3. Let & be an irreducible algebraic family of non-singular
varieties in a projective space and v a positive integer. Denote by $(r) the set of
those members V. of & which carry a divisor X such that rX=C, mod &,. Then
&(r) is an algebraic family. When & tis defined over a field k, &(r) is normally

algebraic over k.

Proof. Let ¢, ¢, be the constants in Theorem 1 relative to a member
V of &, a hyperplane section of V and to our integer ». g(z) in the
theorem is now the Hilbert characteristic function of V, which is invariant
throughout & by Theorem A. ¢, and ¢, depend therefore on & and r
only. Let ¢ be a positive integer such that ¢ >max (rc;,¢,) and U, the set
of members V of § which carry a positive divisor Y such that 7Y =¢C,
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mod ®,. Suppose that a member W of & carries a divisor X such that
rX=Cy mod &,  Then A (W,qX)=0 for { >0 and A“W,qX)>1 by our
choice of ¢g. It follows that ¢X ~Y where Y is a positive W-divisor. Since
7Y ~grX=qCy mod ®,, W is a member of I, and Fr)c U, Let ¢ be
another positive integer similar to ¢’. Then §r)cU,nu,. Take ¢ and
¢’ so that they are relatively prime. When V is in U, N U,, there is a
positive divisor Y (resp. Y’) on V such that #Y =qC, (resp. Y’ =¢'C,) mod
®,. When that is so, there is a V-divisor Z such that »Z=C, mod &,.
It follows that &) =1U,N U, and our proof is reduced to a proof of the
fact that the set of Chow-points of members of U, is a closed subset of
that of &.

By our choice of ¢, every divisor in €,(¢C,) is sufficiently ample for
every V in § and 2°(V,qC,) does not depend upon V (cf. Proposition 3).
Moreover, &,(Cy)* is a complete total family of divisors on V by Proposition
2.  Let us assume that V 1is a generic member of & over £ and V' a
member of § Let G,G” be respectively be the supports of the Chow-
varieties of ©,(¢Cy)*, €,(gCy)*. Then G’ is a unique specialization of G
over k over the specialization V —V’ ref. k by Proposition 4. Moreover,
when K is a field of definition of V over £, G is the support of a variety
defined over K (cf. Theorem D). Therefore, there is a subvariety T of
F x P, where F is the Chow-variety of § and P a projective space, such
that y x PNT=0vXG, v XPNT=v xXxG if we set ¢V)=uv, ¢V') =10
(cf. [23], Chap. VIII, Theorem 6). Moreover, since T is defined over £,
the first intersection is proper on F x P. Let A be the projection of T on
P. The set of points of A which represents cycles of the form »Z in the
ambient projective space of F forms a closed subset A, of A. Then the
set T, of points on 7 which projects into A, is a closed subset of T.
Clearly, a member V' of & is in U, if and only if there is a point (v/,a’)
in T, such that ¢(V’) =v’. Denote by F, the projection of T, on F and
by U, the set of Chow-points of members U, U, is contained in F,
and F, is the closure of U, on F. But the relation 7Y’ =¢Cy, mod ®, is
preserved by specialization on F. Thus F,= U, and our proposition follows
from this easily.

§ 5. On locally closed subsets. Let U be an abstract variety. As is
well-known, a locally closed subset of U in the sense of Zariski topology
is given in the form F' =F—Fn X, where F and X are closed subsets
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of U. Let the F, be the components of F and set F,=F,— F, N X.
Then F’ is the union of the F;. The F, are called the components of F’.
As usual, we take on F’ and on the F, induced topology.

ProrosiTioN 5.1.  Let U be an abstract variety, F a locally closed subset of
U and the F, the components of F. Let k be a common field of definition for U
and for the F,. Then (a) when Z is a subvariety of U, defined over k, such
that a generic point z of Z over k is contained in F,, the restricion Z' =Z N F
of Z in F is contained in F,. Moreover, (b) when Y s a subset of F, Y is a
closed subset of F if and only iof Y, =Y N F, is closed on F, for all e.

Progf. When F is the closure of F on U, there is a closed subset X
of U such that F=F—X. U—X is an abstract variety. Therefore, it is
enough to prove our proposition when F is a closed subset of U.

(a) follows easily from the definitions. In order to prove (b), first
assume that Y is closed on F. Then Y is a finite union of subvarieties Z
of U which are contained in F. Hence Y is closed on U and the Y, =
Y n F, are closed on the F,. Conversely, assume that the Y, are closed
on the F,. Y, is a finite union of subvarieties Z,; of U, contained in F,.
Since Y is the union of the Z,,;, it is closed on U and hence on F.
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