
ALGEBRAIC DEFORMATIONS OF

POLARIZED VARIETIES

T. MATSUSAKA*)

Introduction. Let F b e a projectively embeddable complete non-singular

variety of dimension n > 1 . Let f be a projective embedding of 7, U a non-

singular variety, W a non-singular variety and φ a morphism of W onto U

such that φ^iuo) = f{V) for some point u0 of U. Denote by ΣffO the set

of all those complete non-singular fibres φ~ι(u), u e ί/, as we consider all

possible (f, U, W). Suppose that we call members of 2(7) (algebraic) defor-

mations of V and propose to study Σ(7) from the stand point of algebraic

geometry, as a generalization of the case of curves. This has been taken

up at least locally by Kodaira, Spencer, Kuranishi and others in the case

of characteristic 0 from a little more general point of view of complex mani-

folds (cf. [9] and references given in [16]).

Within the frame work of algebraic geometry, one could ask if (a) there

is a subset % of ΣGO which is an algebraic family (of finite type, of course) of

non-singular varieties in a projective space, containing every member of ΣOO UP t° an

isomorphism. Or we could consider a suitable equivalence relation in Σ(7)

and consider (a') the problem (a) replacing "isomorphism" by "equivalence relation".

But we shall consider here only (a) and not the problem (a'). When (a)

is affirmative, to study ΣOΠ modulo the equivalence relation defined in

terms of isomorphisms is reduced to study % modulo the equivalence relation.

Then we could ask if (b) the abstract quotient space % of Σ(F) modulo

the equivalence relation has a structure of an algebraic variety. If (a) and (b) can

be solved affirmatively, we would then propose to study (c) various properties

of the algebraic variety %. The first major difficulty one encounters along this

line of approach is that (a) is false even for well-known types of algebraic

varieties. When V is an Abelian variety, it is impossible to find % in (a),

and if one insists on finding something similar to %, then it would have to

be an infinite union of irreducible algebraic families. Moreover, % in this
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case would have to be an infinite union of algebraic varieties, if the solution

of (b) is possible at all. At least in the case of characteristic 0, this diffi-

culty can be avoided in the case of Abelian varieties by introducing the

concept of polarization (cf. [14], [25]) because of a theorem of Lefschetz

which states that 3X is ample if X is a non-degenerate divisor. Therefore,

we reformulate the definitions and problems accordingly in terms of polarized

varieties. This still does not eliminate one more major difficulty in the

case of characteristic p, since an example of a polarized Abelian variety

V shows that the self-intersection numbers of basic polar divisors, i.e. the

ranks or the degrees, of members of ΣOΌ niay not be bounded. This means

that the solution of (a) and (b) are not possible within the frame work of

algebraic varieties of finite types.

Therefore, we reformulate again the definitions and problems in terms of

polarized varieties of ranks bounded by a positive integer d and write

Σ(^> d) for 2(V). Then, when n = 2, (a) has a solution, as we have shown

essentially in [16] (cf. Theorem 3). When n>2, (a) is still an unsolved

problem except for some special cases. In general, if (a) has a solution $,

we shall call g a universal family of 2(F, d). Let 2 be a subset of Σ(F, d)

which admits a solution of (a) relative to Σ We shall call it an admis-

sible subset of Σ(F, d) (a precise definition will be given later). Consider

now the problem (b) with respect to Σ > using a universal family %. Very

little is known about the solution of (b) in general, except for some special

cases, notably the case of polarized Abelian varieties and the case of

polarized Abelian varieties with complex multiplications (for references, see

[17], in particular works of Siegel, Baily, Shimura and Mumford). In order

to see if the solution of (b) is possible, we try to find a "good" universal

family g? of Σ . Regarding members of % as points on a Chow-variety or

a Hubert scheme, we get a locally closed algebraic variety F of finite type

from %. Then we regard % as a "good" universal family, which we shall

call a typical universal family, if, among other things, (i) the equivalence rela-

tion on Σ induces on F a closed equivalence relation, (ii) the orbits are

equi-dimensional and the dimensions remain constant throughout F and if

(iii) special orbits are specializations of generic orbits over some field of

references (a precise definition will be given later). We shall show (Theo-

rems 5, 6, 7) that such a good universal family exists for 2 if we remove

some ruled varieties from 2 . This removing process is technically not

https://doi.org/10.1017/S0027763000012733 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012733


ALGEBRAIC DEFORMATIONS OF POLARIZED VARIETIES 187

easy, but we can accomplish it by letting some good ruled varieties to remain.

Then we shall show that (b) has a solution if we allow % to be a Q-variety

(cf. [15]) or a Q-space, which is a generalization of a locally closed algebraic

set where the components are Q-varieties. Whether a solution of (b) is

possible or not for Σ within the frame work of algebraic varieties is an

unsolved and, probably, a very difficult problem.

§1 is preliminary. In §2, we redefine the concept of polarization, a

slightly different one from [14], [25] and prove the existence of a basic polar

divisor and the field of moduli. The latter is a useful concept as a first

approximation to the moduli question, especially when (a) and (b) have no

solutions. In §7 we consider, as an example, the case when V is a polarized

variety of rank d, and is a generic complete intersection U — Hmι Hms

of hypersurfaces of degrees mt in the projective space PN. First we

show that a small deformation of V (in the sense of algebraic deformation)

is also a complete intersection of the similar kind as V as long as its rank

is d (cf. Theorem 18.5 of [9] in the case of hypersurfaces). Then we consi-

der the set Σ of members of Σ0^> d) which are of rank d and are complete

intersections of the same type as V. We show that Σ is an admissible

subset of Σ (V, d) and that (b) has a solution in which % is a Q-variety.

Further we show that dim % = Σ h°(U, D^m*)) - s - dim PGL{N) + dim aut(E7),

where Qv is the sheaf of local rings on U and aut (U) the algebraic group

of automorphisms of U (cf. [14]; U is considered as polarized). Moreover,

we show that dim aut (U) = 0 if Σ wit ~ N — 1 > 0 and, in the case of

characteristic 0, that % is a Q-manifold which is similar to a non-singular

variety (cf. [15]).

Notations, Conventions and Terminology. Basically we shall follow those of

[23], As to cohomological conventions and terminology, we shall follow

[3], [20] and [26]. As to results on specializations, we shall follow [21]. For

the convenience of the reader, we first list some of the basic notations which

do not require detailed explanation.

fίι(X) (resp. ®i(X)+) The set of divisors (resp. positive divisors) which are

linearly equivalent to X.

&a(X) (resp. (£α(X)+) The set of divisors (resp. positive divisors) which are

algebraically equivalent to X.

&n{X) (resp. ©W(X)+) The set of divisors (resp. positive divisors) which are

numerically equivalent to X.
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©ί(F) The group of divisors which are linearly equivalent to 0 on F.

&a{V) The group of divisors which are algebraically equivalent to 0

on F .

©n(F) The group of divisors which are numerically equivalent to 0

on V.

©ί, ®α, © u will be used for the above when there is no danger of confusion.

t(V) The order of the torsion group &n / ®α of divisors of V.

Γg The graph of a rational map g.

Λ(X) The complete linear system determined by a divisor X.

L{X) The module of rational functions on a variety V, satisfying

div(/) + X > 0 with respect to a F-di visor X.

~ Linear equivalence of divisors.

2{X) The (invertible) sheaf determined by a divisor X.

2{V; X) The sheaf on V determined by a F-divisor X.

H\V, 2(X)) The i-th cohomology group of V with coefficients in S(X).

H\VyX) The same as above.

h\V, 2(X)) The dimension of H\V, 2{X)).

WiVyX) The same as above.

1{X) The dimension of L{X), = h'(V, 2{X)) = dim Λ(X) + 1.

£}π The sheaf of local rings on a variety U.

PN The projective space of dimension N.

X(V,2(X)) The Euler-Poincare characteristic of 2{X).

X(V,X) The same as above.

c(F) The Chow-point of a positive cycle Y in a projective space.

Cv A hyperplane section of a subvariety V of a projective space.

X->X'ref.£). X r is a specialization of X ' over £).

Let V be a complete variety, non-singular in codimension 1, and X a

F-divisor. L{X) is a finite dimensional vector space (cf. [23]). Let fQ,...,fr

be a basis of L{X) and f the map of V into a projective space determined

by $c->(/o(#) :• : / r (»)). When f is a projective embedding of F and

when Λ(X) has no fixed point, we shall call X an ample divisor on F (very

ample in the sense of Grothendieck) f will be called a non-degenerate projective
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embedding of V determined by X and will be denoted by fx\ Λ(X) will be

called an ample complete linear system. When a F-divisor X has a property

that a positive multiple of X is ample, it will be called non-degenerate (ample

in the sense of Grothendieck).

Suppose that a F-divisor X satisfies the following conditions: (i) X' is

ample whenever X'ed£a{X); (ii) hι(V, 2(mXf)) = 0 for such X' whenever

i > 0, m > 0. Then we shall call X sufficiently ample.

Let U be a set of F-divisors. Denote by φ(F, U) the set of all possible

fχ{V) for ample divisors I in II. Denote by p[V,U) the set of Chow-points

of members of *β(F, U).

Suppose now that V is non-singular in codimension r and that it is

embedded in a projective space. By an algebraic family $ of positive r-

cycles on V, we understand a set of positive cycles of dimension r on V such

that the set of Chow-points of them forms a locally closed algebraic set F in

a projective space. When F is absolutely irredusible (i.e. the point set

attached to a variety), g will be called an irreducible algebraic family F will

be called the Chow-variety of %. Let, in general, %t be a subset of % such

that the set of Chow-points of members of it forms a component F* of F.

Then %i will be called a component of £?. When F is normally algebraic

over a field k, % will be said to be normally algebraic over k. This is equi-

valent to say that S is normally algebraic if F is a ^-closed set minus a k-

closed set. When Ft is defined over a field k, we shall say that & is

defined over k. Further notions on algebraic varieties can be carried over

to the families %i9 gί by identifying cycles with their Chow-points which

would not require detailed explanation.

Let V be again a complete variety, non-singular in codimension 1 and

$1 an algebraic family of positive F-divisors. Let XQ be an arbitrary but

fixed member of %. When the class of X — Xo with respect to linear

equivalence exhaust the points of the Picard variety of F by varying X in

9Ϊ, we shall say that 21 is a total family. When 1{X) is constant throughout

$ϊ and when Λ(X) c 9Ϊ for every X in %, we shall say that % is a complete

family. As one can see easily, using the concept of the Picard variety, a

complete total family is an irreducible algebraic family (cf. [12]).

Known basic results which will be used quite often, but scattered in the

literature, will be stated as Theorem A, B, C, . . . , Proposition A, B, C,

. . . , Lemma A, B, C, . . . , with references.
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§1. Preliminaries.

THEOREM A. Let V and V be non-singular subvarieties of protective spaces, X

a V-divisor, X' a V1-divisor and £) a discrete valuation-ring such that (V, X') is a

specialization of {V, X) over £). Then χ{V, X) = X(Vf, Xf). When V = V and

X^Xr mod %a , then X{V, X) = x(V, Xf).

This can be found in [7], [3].

PROPOSITION 1. Let Vn and V/n be subvarieties of projective spaces having no

singular subvarieties of codimension 1, X a V-divisor, X1 a V-divisor and £) a

discrete valuation-ring such that (V7, Xr) is a specialization of (V, X) over £). Then

we have the following results:

(a) When X^O, thenX'^0;

(b) When I Ξ O mod ® α , then I ' Ξ O mod ©α;

(c) When V and Vf are non-singular and I Ξ O mod ®n, then X ' = 0 mod ® n ;

(d) When V and V are non-singular , X^ = Xf(n\ i.e., the self-intersection numbers

are invariant by specializations.

Proof, [a] is contained in [21]. (b) follows from the definition of algebraic

equivalence, fundamental properties of Chow-forms (cf. [2]) and from the

extended Zariski connectedness theorem (cf. [1] and [4]). (c) follows from

the definition of numerical equivalence, (b) and from the finiteness of ί{V)

(cf. [13]). There is a positive integer m such that X + mCv, mCv (resp.

Xr + mCvr, mCVf) are ample and that their higher cohomology groups vanish.

Then l{X+mCv) = l{Xf + mCVf) and l{mCv) = l(mCvr) by Theorem A. De-

note by G(*) the support of the Chow-variety of the complete linear system

A(*). Then G(Xf + mCvr) is the uniquely determined specialization of

G(X+mCv) over D over (7, X) -> (V, Xf) ref. £>. The same is true for

G{mCγ) and G{mCv/). Hence, when (x[, . . . , xu), (y[, . . . , y'Ό) are sets

of points in G{mCv), G{X; + mCv!) respectively, there are sets {%l9 . . . , xu),

(Vi, , Vv) in G{mCy), G{X + mCv) such that (V7, Xf, (xr), {y')) is a special-

ization of {V, X, (x), (y)) over £). Expressing X~ {X + mCv) — mCv,

X' ~ (X' + mCγ) — mCy, and combining the above remark with the

compatibility of specializations with intersection-product, we get (d) easily.

PROPOSITION 2. Let V be a non-singular subvarietγ of a projective space and

X a sufficiently ample divisor on V. Then the set ©α(X)+ is a complete total

family of divisors.
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Proof l(X) is constant throughout (£α(X)+ by the definition and Theorem

A. Let Xo be a fixed member of Kα(X)+ and Z an arbitrary divisor on F,

algebraically equivalent to 0. By the definition of a sufficiently ample

divisor, Z + Xo is sufficiently ample and there is a member X of ©α(X)+

such that Z 4- Xo - X-0. It follows that the class of X- XQ, I G (£α(X)+ ,

exhaust the points of the Picard variety of V. From these two facts and

from (a) of Proposition 1, our proposition follows easily.

PROPOSITION 3. Let V and V be non-singular subvarieties of projective spaces,

X a V-divisor, Xf a Vr-divisor and £) a discrete valuation-ring such that (Vf, Xr) is

a specialization of (F, X) over £). Suppose that X1 is sufficiently ample on V.

Then X is sufficiently ample on V and 1{X) = 1{X') = X(V,X) = X{V',X').

Proof This follows at once from the definition of a sufficiently ample

divisor, the upper-semi continuity (Proposition 2.3 of the Appendix) and

from Theorem A.

THEOREM B. Let V and Vf be non-singular subvarieties of projective spaces

and £) a discrete valuation-ring such that Vr is a specialization of V over D . Then

the Picard variety of V and that of V have the same dimension.

This is a result due to Grothendieck (cf. [6], p. 14).

PROPOSITION 4. Let V and V be subvarieties of projective spaces which are

non-singular in codimension 1. Let X (resp. X') be a positive divisor on V {resp.

Vf), belonging to a complete total family % {resp. W) of positive divisors on V {resp.

V) such that 1{X) = l(X'). Let £) be a discrete valuation-ring such that {V, Xf)

is a specialization of (F, X) over D. Then, when A {resp. A!) is the support of

the Chow-variety of % {resp. W), A! is the uniquely determined specialization of A

over £> over the given specialization.

Proof This proposition follows easily from the definitions, Theorem B

and (a), (b) of proposition 1.

THEOREM C. Let V be a complete non-singular variety. Then the group

®n I ®a ^ finite. Let V and V be non-singular subvarieties of projective spaces, £)

a discrete valuation-ring such that Vr is a specialization of V over £> and p the

characteristic of the residue field of £). Let (©JF) / ®α(F))β {resp. {®n{V) /Φα(F'))?)

be the q-primary part of the torsion group of divisors on V {resp. Vf) for a prime

q φ 0 mod p. Then the specialization induces a canonical isomorphism between

{®n{V)l®a{V))q and {%n{V')l%a{Vf))q.
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Proof. The first part is contained in [13]. As to the second part, see

[6], Remark. 3. 10.

THEOREM D. Let Ώ be a discrete valuation-ring with the quotient field k; let

V and W be non-singular subvarίeties of protective spaces and T the graph of an

isomorphism between V and W such that V, W, T are defined over k. Let X

(resp. Y) be a non-degenerate divisor on V (resp. W), rational over k, such that

Y = T(X). Let (V, Wr

9 X
f, Y'', V) be a specialization of (V, W, X, Y, T) over D

and assume that V, W are non- singular and that Xr (resp. Yf) is also non-degenerate

on V {resp. Wf). Then Tr is the graph of an isomorphism between V and Wr if

one of Vr, W is not a ruled variety.

This is the Theorem 2 of [16].

THEOREM D'. Using the same notations and assumptions as in Theorem D,

except that Vr,Wr may be both ruled varieties, assume that V contains a component

T" whcih is a birational correspondence between Vr and Wr. Then Tf is the graph

of an isomorphism between V and W.

Proof. The proof of Theorem D given in [16] is in fact a proof of this

theorem. When V or Wr is not a ruled variety, Tr contains a component

Tπ as described in the above theorem (cf. Theorem 1 of. [16], which is

essentially due to Abhyankar). Then we established Theorem D in (16) by

proving our Theorem Dr.

§2. Polarized varieties. Let V be a complete non-singular variety. Let

Tt be a subset of the ring of integers and 1 a set of K-divisors satisfying

the following conditions:

(Pi) There is a finite set of prime numbers (pl9 . . . , pr) such that 9K

consists of 0 and the integers ± ϊίtpf9 where the et are non-negative integers,

Pi ψ 1 for all i and at least one of the et is positive;

(̂ 2) (Pi > > Pr) consists of the characteristic of the universal domains and

the prime divisors of t(F)1^;

(P3) 36 contains an ample divisor X;

χ) When we deal with geometry involving specializations over discrete valuarings of
unequal characteristics, then we shall be dealing with the characteristic 0 and the fixed
characteristic p in this paper. In such a case, even when V is defined over a field of charac-
teristic 0, we include p in the set (pt,..., pr). Otherwise, we shall be dealing with varieties
over fields of the fixed characteristic, and there shall be no ambiguity in this definition.
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(P4) When Y is a F-divisor, it is contained in 36 if and only if there is a

member Z of 36 and a pair (r, s) of integers, not in TO, such that rY Ξ= S Z

mod ®a .

When there is a pair (TO, X) satisfying (PJ — (P4), 36 will be called a structure

set of polarization of type TO. When that is so, the pair (V, 1) will be called

a polarized variety of type TO. A member of 36 will be called a polar divisor.

A class of F-divisors determined by a polar divisor is called a polar divisor

class. A polarized variety (F, 36) of type TO is said to be defined or rational over

a field k if V is defined over fc and if there is a rational polar divisor over

k. From now on, polarized varieties will be denoted by a bold faced letter.

Automorphisms and isomorphisms of polarized varieties are defined as usual.

A projective embedding f of a polarized variety V is a projective embedding

of the underlying variety V of V, determined by an ample linear system

containing a polar divisor. f{V) will then denote a polarized variety of the

same type as V, whose underlying variety is f(V) such that a hyperplane

section of f{V) is a polar divisor. The definition of $(F,U), ρ(F,U) can be

extended to the case of polarized varieties in the obvious manner, allowing

only projective embeddings as polarized varieties in the definitions.

Remark 2.1. The definition of polarized varieties given here is some-

what different from the previous definition given in [14], [25]. The old

definition is modified in this manner so that it is more suitable to algebraic

varieties, other than Abelian varieties. It is possible to consider a subset TO7

of the ring of integers, containing TO in (Pα), (P2), to define polarizations.

But this will not add anything further. On the contrary, if TO7 is contained

in TO and we consider the structure of polarization of type TO', slightly

different phenomena will occur. But as long as TO' contains the character-

istic of the universal domain, results will not be substantially different from

those which will be developed in this paper.

Let (F, 36) = V, (F7,36r) = V be two polarized varieties of the same type.

Let k be a field of definition of V. Assume that there is a discrete

valuation-ring £> of k with the following properties: (i) Vf is a specialization

of V over £) (ii) when X is a fc-rational polar divisor of V and X' a special-

ization of X over £), then Xr is in 36'. Then we shall say that V is a

specialization of V over jD and denote this fact by V-+V ref. D. When £>;
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is a discrete valuation-ring which is dominated by £), we shall say also that

V is a specialization of V over £)'.

The absolute values of the self-intersection numbers X^, n = dim V,

of polar divisors of V attain the smallest positive value d. d will be called

the rank or the degree of the polarization. Let XQ be a polar divisor of V

and assume that it satisfies the following conditions: (i) A F-divisor Y is in

1 if and only if Y = rX0 mod ®α with r φ 2JΪ, where 2ft is the type of V;

(ii) when Z is an ample polar divisor, then Z Ξ= SX0 mod ®« with a suitable

positive integer s, not in 9ft. When such a polar divisor XQ exists, it is

called a basic polar divisor. A basic polar divisor class of V with respect to

algebraic equivalence is uniquely determined. Moreover, the rank is given

by X?\

PROPOSITION 5. Let V be a polarized variety. Then there is a basic polar

divisor.

Proof. Let © be the additive group of K-divisors, where V is the

underlying variety of V. The group @/®α is finitely generated (cf. [19]).

Therefore, it is possible to find a set (A, . . . , Du, T1, . . . , Tv) of gene-

rators of © modulo %a such that the Ts are torsion divisors and that

Σ α* A + Σ bjTj ΞΞΞ 0 mod ®a if and only if at = 0 and &y = 0 mod tj, where

the tj denote the order of Ty modulo ®a. Let Y be a polar divisor and

Y = Σ fliA + Σ δjTj rnod ®α . Let e be the G. C. D. of the at, fy in Z— Wl,

where Tt is the type of polarization of V, and set Σ #*A + Σ b/Γj = ± eZ.

The signature is so determined that a positive multiple of Z is algebraically

equivalent to an ample divisor. When that is so, the self-intersection num-

ber of Z is positive. Let X be an arbitrary polar divisor. There are two

integers r and s, not in 9ft, such that rX^sZ mod © α . We may assume,

without loss of generality, that (r, s) = 1 since r and 5 are relatively prime

to t{V). Set X Ξ Σ CiDt + Σ rfyTy mod @α and Z s= Σ a'tA + Σ ^ mod @α .

Then we get rci — sar

t and rdj Ξ= S£^ mod ^ . From the first we get

a\ = ra[ where the a'l are also integers. The tj are divisors of t(V). Hence

they are relatively prime to s. It follows that there is an integer x such

that sx = 1 mod tj. We then get rxdj ΞΞ b) mod /; from the second relation.

Thus z s r(Σ β?A + Σ xd/Γj) mod ©α . Set Z' = ± (Σ «^ΐ + Σ arf/Γy), where

the signature is so chosen that a positive multiple of Z' is algebraically

equivalent to an ample divisor. Clearly Z' is a polar divisor and the self-
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intersection number of Zr is strictly less than that of Z when r ψ ± 1. This

process leads us to find a basic polar divisor.

Let V be a polarized variety and kQ a fixed field. Consider the set S

of fields K, containing kQ, having the following properties: (i) When W is

isomorphic to F , a generic specialization of W over K is still isomorphic

to V\ (ϋ) There is a polarized variety U, isomorphic to F , defined over a

separably generated extension of K. When S is not empty and contains

the smallest field Ko, KQ will be called the field of moduli of V over k0. The

existence of the field of moduli of V over kQ can be proved almost exactly

the same way as in [14] with a few trivial modification of the proofs. The

definition of the field of moduli in [14] is different in appearance from the

present one which is due to Shimura [22]. But they are clearly the same,

which will become clear also in the following context. One different aspect

of our present situation than that of [14] is that we can establish the exis-

tence of the field of moduli always, whereas we needed an assumption (valid

for characteristic 0 or for curves and Abelian varieties in general) to establish

it in [14]. Because of this and because of the fact that we shall need some

of the results of [14], we shall reestablish the existence of the field of moduli

here.

We proved in [12] that when V is a complete non-singular variety and

Z an ample divisor on it, there is a positive integer m0 such that &a(mZ)+

is a complete total family for m>m0. However we shall need later a more

precise result than this. Therefore we shall begin proving it.

THEOREM 1. Let Vn be a complete non-singular variety, C an ample divisor

and X an arbitrary divisor on V. Set X{V, mC) = g(m), X{V, X + mC) = gx(m).

Then (a) there is a constant cλ, depending only on g{x), gx{x) and the intersection-

numbers I(X(f>. C(n~fi) such that every divisor Z in &n{X + tC) is ample and that

hx(y,Z) — 0 for i > 0 if t>cx\ {b) Let rX^=C mod &n for some positive integer

r, then there is a constant c2, depending only on g(x) and r, such that every divisor

in <&n{tX) is sufficiently ample for t >c2.

Proof There is a constant c\, depending only on g{x), gx(x) and the

intersection-numbers I{X^\ O-Λ), such that hi{V,X+ tC) = 0 when i > 0 ,

t > c\ by Proposition 3.5 of the Appendix. Let Z be an arbitrary member

of ®n(X + tC). Then Z-tC=X' s X mod &n and χ(7, X + mC) =χ(7, X1 + mC)

by Proposition 3. 2 of the Appendix. Moreover, various intersection numbers
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of X with C and those of X' and C coincide. Therefore, whenever t > c\,

every Z in ®n{X + *C) satisfies F(7,Z) = 0 for i > 0 and A°(V,Z) = X{V,Z) =

χ(7,-Y+ ίC) = &°(F,X+ ίC). Since #x(α) is a polynomial by Proposition 3.1

of the Appendix, there is a constant c'i, depending only on gx{x), such that

9x(t) > 1 when t > c". This is because gx(x) > 1 when x is sufficiently large.

Set max (c'l9 c") = c* - 1. Set J o = /{O-D (X + c*C)} (C» - 2) + O > . When

Z is an arbitrary member of ©n(X + c*C), Z + dC is ample for d>d0 (cf.

[23], Chap. 7X, Corollary of Theorem 13). Set cx = cϊ + d0. This Cj

satisfies the requirements of (a).

Suppose now that rX^C mod © Λ . When 5 is a non-negative integer,

we have X(V, sX + mC) = X{V, s'X + (m + q)C) iΐ s = s' + q-r and 0 < s' < r (cf.

Proposition 3. 2 of the Appendix). Set x{V, sX+mC) = gsX{m) for 0 < s < r.

Set also x{V, mX) = h(m). We have gsX{m) = k(s + mr) and h{rm) = g{m) by

Proposition 3.2 of the Appendix. h(m) is a polynomial in m when m is

positive by Lemma 3.1 of the Appendix. It follows that gsX{x) depends only

on g(x) and s. The same is true for various intersection-numbers of sX

with C, since these are given by the (s / r)j C^. Therefor, for each 5

such that 0 < s < r , there is a constant c l f,, depending only on g{x) and

5, such that every divisor Z in K J 5 I + mC) is ample and satisfies /^(F, Z) = 0

for i>Q if m>cltS. Let c;

2 be the maximum of the clti. Then every

such Z is ample and satisfies hι{y, Z) = 0 for / > 0 if m > c r

2 . Set c2 =

c'2 (r + 1). Every divisor in &n(tX) has then these two properties too when

t > c2. This proves (b).

THEOREM E. Let V be a complete non-singular variety and $ϊ a complete total

family of positive divisors on V, consisting of ample divisors. Then *β(F, %) has a

structure of an algebraic variety. When % is defined over a field Jc of definition of

V,ρ{V,yi) is defined over Jc. Moreover, p(F,9t) has the smallest field of definition

and this field is also the smallest field of definition of its closure.

This is Theorem 3 of [14].

THEOREM F. Let V be a polarized variety and aut{V) the set of automorphisms

of V. Then aut(V) is an algebraic group.

This is Theorem 6 of [14].

As an immediate corollary to Theorems E and F9 we get the following

result:

COROLLARY. Let V be a polarized variety, q the dimension of the Picard
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variety of V and $ϊ a complete total family of positive polar divisors of V, consisting

of ample polar divisors. Let X be a member of % and l(X) = J V + 1 . Then

dim »(F,«) = q + dim PGL(N) - dim aut (F).

THEOREM G. Let V be a non-singular subvariety of a projective space and 2ί

a complete total family of divisors on V. Let k be a field of definition of V over

which 21 has a rational member. Then % is defined over k.

This is [11]-II, Proposition 1.

LEMMA A. Let V be a polarized variety and Z a basic polar divisor of V.

Let m and r be two positive integers such that &a{nιZ)+, &a(rZ)+ are complete total

families, consisting of ample polar divisors. When p{V, ^a{mZ)) is defined over a

field K, then p(F, ©α(rZ)) is defined over an algebraic extension of K.

LEMMA B. Let the notations and assumptions be as in Lemma A. When

${V,&a{mZ)) is defined over afield K, #(V,$a[smZ)) is defined over K whenever s

is a positive integer such that &a(stnZ)+ is also a complete total family consisting of

ample polar divisors.

LEMMA C. Let U be a non-singular subvariety of a projective space, X a

positive U-divisor and m a positive integer which is prime to the characteristic p.

Assume that (£α(X)+, E α ( m l ) + are both irreducible algebraic families. Let AyAm

be respectively the Chow-varieties of them. Then, when k is a common field of defi-

nition for U and Am, A is defined over a separably algebraic extension of k.

These Lemmas A, B, C are respectively Lemmas 8, 9, 10 of [14]. As

a consequence of Lemma C, we get the following result.

LEMMA 1. Let V be a non-singular subvariety of a projective space and X a

non-degenerate V-divisor. Let r be a positive integer, φ 0 (p), and assume that

©α(X)+, &a(rX)+ are both complete total families of divisors, consisting of ample

divisors. When k is a field of definition of p{V, <&a(rX)), p{V, &a{X)) is defined

over a separably algebraic extension of k.

Proof. Since p(F,(£α(rX')) is defined over k, it has a rational point w

over a separable algebraic extension K of k. Let W be the variety co-

rresponding to w and f an isomorphism between V and W such that

f(rX)^Cw mod® α . By our assumptions, ©α(f(Z))+, ©α(rf(χ))+ are complete

total families, consisting of ample divisors. Moreover, the latter contains a

rational divisor over K. Hence it is defined over K by Theorem G. When
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that is so, the former family is defined over a separable algebraic extension

of K by Lemma C. Our lemma follows then from Theorem E.

THEOREM 2. Let V be a polarized variety of type W and k0 a fixed field.

Then the field of moduli of V over kQ exists. When Z is a basic polar divisor of

V and m a positive integer, not in Wl, such that &a{nιZ)+ is a complete total family

of ample polar divisors the smallest field K of definition of p{V,%a{mZ)) over k0 is

the field of moduli of V over k0.

Proof Denote by 9ΐ the set of positive integers s, not contained in ffll

such that gα(sZ)+ is a complete total family of ample polar divisors. By

Theorem 1, a positive integer s, not contained in ffll, is contained in %l

whenever it is sufficiently large. Therefore, when r is a large integer not

in Wl, then rm is also in ϋft. Let r be such a large positive integer. De-

note by k, kr respectively the smallest fields of definitions of ))(F, Sα(wίZ)),

P(F, ©α(rmZ)) over kQ. By Lemma B and Lemma 1, kr is contained in k and

k is a separable algebraic extension of kr.

We contend that k — kr. For this, it is enough to show that jj(F, QLa(mZ))

has no other conjugate than itself over kr. Let V be an element of

Φ(F, &a{rwiZ)). Let f be an isomorphism between V and V and Z' = f(Z).

Clearly «β(F, Sa(mZ)) = φ(F', ®a(Cr)) = W > <$,a{rmZ')). Let a be an auto-

morphism of kr over kr and K a field of rationality of V, Zf, Cy over

kr. Extend a to an isomorphism of K into the universal domain and de-

note it by the same letter a . We have p{V, &a(rmZ))a = \>(V, ^a(rmZ)) and

^(F/,©α(mZ/))α = p(F/α,@α(mZ/α)). From the first equality we see that F / t t is

in p{V,(^a(rmZ)) and, when that is so, there is an isomorphism g between

V and V*. This shows that ^(V'ΛAmZ')) = ^{V/(",(ίa(mg{Zf))). On the

other hand, rmZ' == Cψ mod ®a and this implies rmZ/ot Ξ= Cy mod © α .

Since g is an isomorphism of polarized varieties and since hyperplane sec-

tions of Vf, F / t t are polar divisors, it follows that rmg(Zf) = g{rmZf) Ξ= g(Cy) =

Cy« mod ® α . Thus, we have mZ/<x = mg{Zf) mod %a since r is not in 501.

Consequently, φ(F',Eα(mZ')) = ^S(F/α, gα(mZ/α)). When we combine this with

the second equality we have established, we see that p(V,(^a(mZ)) has no

conjugate than itself over kr.

Since p{V,&a(nιZ)) is defined over k, k belongs to S, the set of fields

which enter in the definition of the field of moduli of F over kQ. We con-

tend that every field in S contains k. Let L be an element of 5. There is a
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polarized variety V" defined over a separably generated extension U of L

and isomorphic to V. Let X" be a rational polar divisor of V" over U

and u a positive integer such that um is also in N. umX" is rational over

L'. &a(unϊXf/)+ is a complete total family of ample polar divisors and con-

tains a rational divisor over L'. Hence this family is defined over U by

Theorem G and p(F", S J M M P O ) is defined over V by Theorem £ .
si$(F", &a(unιXff)) = Sβ(V,&a(umtZ)) for some positive integer ί, not contained

in TO. Therefore, Z/ contains &M* and &M* = k as we have proved. Let a

be an isomorphism of U into the universal domain over L . By the definition

of L, F / / α is isomorphic to F . Replacing V", U by F / / c c, Z/*, we see that

L/α contains & by the above result. Since this is so for all possible a and

since Lf is separably generated over L, it follows that U contains k. Our

theorem is thereby proved.

COROLLARY. Let m be a positive integer such that mZ is a sufficiently ample

polar divisor of V . Then, when Kf is the smallest field of definition of p{V, &a{mZ)),

kQ Kf is the field of moduli of V over k0.

§ 3. Polarized varieties (continued). A main purpose of this paragraph is

to show that specializations of polarized varieties can be realized in projec-

tive spaces up to isomorphisms. In order to do this, we shall begin with a

few lemmas.

LEMMA 2. Let Vn be a complete abstract variety, non-singular in codimension

1 and A an arbitrary linear system of positive dimension on V. Let k be a common

field of definition of V and A and (xλ, . . . , xr) a set of independent generic points

of V over k. Then there is a member X of A which goes through the points xt if

and only if dim A>r. If such X exists and the set of such X forms a finite set,

X is the only element of the set, dim A = r and X is rational over k(xλ, . . . , xr).

This is well known and easy to prove.

LEMMA 3. Let Vn {resp. V/n) be a complete abstract variety, nonsingular in

codimension 1 and X {resp. X') a F-(resp. Vf-) divisor. Let k be a common field of

rationality of V and X, £> a discrete valuation-ring of k and assume that {V, X) ->

(F', X') refi D and that l(X)=l (X>). Let kf be the residue field of £> and X\, . . ., Xr

m

m independent generic members of A{Xf) over kr. Then there is a set of m in-

dependent generic members Xl9 . . . , Xm of A(X) over k and a discrete valuation-ring

£)* of a common field K of rationality of the Xt over k such that £)* dominates £>

and that (V',X',X'l9 . . . ,Xr

m) is a specialization of (V,X,Xl9 . . . , XJ over D*.
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Proof. Set dim Λ{X) = dim^X') =r. Let the xai(l < i < > ; 1< α < m)

be independent generic points of F over fc. By Lemma 2, there is a uni-

quely determined divisor XΛ in Λ((X), for each a, such that Xα goes through

the xai for all i moreover, Xα is rational over the field k{x). Denote by

F ( s ) the product of V by itself s-times. Then there is a positive divisor W

on F(mr)XF(m), rational over k, such that W {{x) X F(m)) = (α) xAΓjX x Xm

(cf. [23], Chap. VIII, Theorem 6).

By Lemma 2, there are mr independent generic points x'ai of V over

k' such that Xa goes through α^ for 1 < i < r. When that is so, (#') is a

specialization of (cc) over D, over the specialization (V, X)-+{V9 X
f) ref. D.

There is a discrete valuation-ring £)* of ft(sc), dominating £), such that

(V, X, (x)) -> (7', X', (a')) ref. D* Let (F ( m r ) , F ( w ), W) -> (F'(mr>, V'(m), W") ref. jD* be

an extension of the above specialization. Since W is rational over k and

since £)* dominates D, it follows that T^/ is rational over kr. Then W(#') is

the uniquely determined specialization of W[x) over D* over these speciali-

zations, since specializations and intersection-product are compatible. Wf{xf)

is of the form X" x x X'ή where the X'i are ^-divisors. Since linear

equivalence is compatible with specializations, X* is a member of Λ(Xf).

Since Xα goes through the xai for all /, X'ά goes through the x'9i for all z.

Consequently, X'a = X^ by Lemma 2. Our lemma is thereby proved.

LEMMA 4. Z*tf V, V, X, Xr, D*, #, ίfe -ϊβ «̂rf ίfe X'a be as in Lemma 3

and Kf the residue field of £)*. Z ί̂ ίÂ  g'Λ be functions on V, defined over K',

such that div(g'Λ) = I ά — X\ (setg[ = l). Then there are functions gΛ on V, defined

over Ky such that div {ga) = Xa — Xu gx = 1, and that (V, Xr, (X/

α)i<α<m, (^)i<β<m)

ij <2 specialization of (V, X> (Xα)i<α<m, (0α)κ«<*») oz ̂ r D*.

Let P be a generic point of V over if and Pr a generic point

of V over iΓ such that Pr is a specialization of P over £)*. When DΛ is

the specialization-ring of the specialization, it is integrally closed since V is

irreducible; it is then a discrete valuation-ring since άimκ (P) = dim K,(P')

(cf. [21], Proposition 5, Theorem 15). Moreover, when ^5* is the maximal

ideal of £)*, ψ£>f is the maximal ideal of £)' (cf. [21], Corollary 2 of Theo-

rem 15). Let the ht be the functions on V, defined over K, such that hx —

1, div {h^ =Xi — Xv Let t be a generator of $*. Since ί generates the valua-

tion-ideal of Dr, there is an integer et such that t^h^P) is a unit in £)'.

Setting them as h't{P)y we see the existence of the functions g" on V,
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defined over K>', such that h\{P) ->g {P;) ref. £)'. By the definition, the tf[

are specializations of the h\ over £)' and div(gϊ) = X't — X\ (cf. [21], Theo-

rem 20). Hence, there are constants c\ in K! such that g\ = cΊg'l. Let the

d be elements of D* such that Cf-X:'* ref. £)*. When we set gi = Cih'u the

& satisfy our requirements.

PROPOSITION 6. Let Vn (resp. V/n) be a complete non-singular abstract variety,

X{resp.Xf) an ample divisor on V (resp.V) and assume that l(X) = l(X'). Let k

be a common field of rationality of V and X, £) a discrete valuation-ring of k and

assume that (V, Xr) is a specialization of (F, X) over £>. Let f1 be a non-degenerate

projective embedding fXr of V. Then, there is a field K which contains k, a discrete

valuation-ring D' of K which dominates £) and a non-degenerate projective embedding

f = fχ ofV such that (F', X', Γ?) is a specialization of (F, X, Γi) over £)'.

Proof Let kr be the residue field of £). Since Xf is rational over k\

A{Xf) is defined over kr. Set l(X) = l{Xf) = N and let the X'a be N+l

independent generic members of Λ(X') over k!. Let the g'Λ be the functions

on V, defined over k\ such that div (g'a) = X'a — Xr

Q (we set g'o = 1). We

apply Lemmas 3 and 4 to our situation. Then there is a field K which

contains k, a discrete valuation-ring £)' of K which dominates D, a basis

9o> - - > 9N of the module L{X) over K such that {V\ X', {g')) is a specializa-

tion of (F, X, (flf)) over £)'. (g) (resp. {g')) determines a projective embedding

f (resp. f) of V (resp. F7), Let Γ (resp. ΓO be the graph of f (resp. f)

and 7 a specialization of Γ over D'. We contend that T = Γ' + T' where

<priT' = 0, ^rgT7 = 0. In fact, dim T = dim Γ ; and, from the definition of

specializations of functions, it easily follows that Γf is contained in the

support of T. Hence Γf is a component of T. The rest of the assertion

follows from the compatibility of specializations with algebraic projection.

Next we contend that T ; = 0. A divisor on F is in Λ(X) if and only if

it is of the form f~ι{H) for a suitable hyperplane H and the same is true

for F', f and Λ(X'). Let K' be the residue field of O' and Hl9 . . . , Hr

(resp. H'u . . . ,Hf

r) independent generic hyperplanes over K (resp. Kf).

Then (H') is a specialization of {H) over £)' and the same is true for

φrx(T (yr xH[' H'r)) and f"ι{Hx Hr) by the compatibilities of speciali-

zations with intersection-product and algebraic projection. If Tr has a

component which projects to a variety of dimension r >0, it would follow

that pr^T fK'xffΊ -/Γr)) - Γ " 1 ^ ; ff;) ^ 0 . The first term is a speciali-
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zation over £)' of the intersection-product of r properly intersecting members

of Λ(X). The second term is the intersection-product of r properly intersec-

ting members of A{X'). Then the strict inequality leads to a contradiction

since specializations are compatible with specializations. If a component of

T' projects to a point on the second factor, it must be of the form V x

(a point) which is against to the fact that ιpr(Γ' = 0. Hence we have proved

our assertion.

Thus we have shown that there is a non-degenerate projective embedding

f(resp. f) of V (resp. V) determined by X (resp. Xr) such that f is defined

over K and that [V,X,Γf)-+(V',X',Γf) ref. £)'. There is a projective trans-

formation h' (of the ambient space of f'W)) such that ff = h'o f. hf is

uniquely determined by a defining matrix (c^j) and we can find a matrix

(Cij), with the c^ in some extension of K, such that (c^) is a specialization

of (dj) over £)'. Let h be the projective transformation (of the ambient

space of f (F)) determined by the matrix (c^ ). Then it is easy to see that

Γh' is a specialization of ΓΛ over £)'. When that is so, (V7, X', TV o f) is a

specialization of (V, X, Γh o f) over £)' by the compatibilities of specializations

with intersection-product and algebraic projection (cf. [23], Propositions 10

and 11 of Chapter VIII too). Our proposition is thereby proved.

Proposition 6 allows us to change embeddings in specializations. To

supplement this we shall have the following proposition.

PROPOSITION 7. Let V, V9 X, Xr, k, £) be as in Proposition 6. Let f be a

non-degenerate projective embedding of V determined by X. Then there is a projective

transformation h in the ambient space of f(V) and a non-degenerate projective embed-

ding f of Vf determined by Xr such that (V, X', Γr) is a specialization of {V, X,

Γh o f) over £).

Proof Since X' is ample, there is a non-degenerate projective embed-

ding f of Vf determined by X'. By Proposition 6, there is a non-degenerate

projective embedding f* of V, determined by X, having the property

described in that proposition. / and /* differ by a projective transforma-

tion. Hence we have our proposition.

Before we pass to the next paragraph, we shall add one definition. Let

V be a polarized variety, Z a basic polar divisor and V the underlying

variety of V. X(V, mZ) is a polynomial in m by Proposition 3.1 of the

Appendix. We shall denote this polynomial also by X(V,mZ). It is indepen-
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dent of the choice of Z by Proposition 3. 2 of the Appendix and is uniquely

determined by F. We shall call this polynomial the Hubert polynomial or

Hubert function of F.

§ 4. Deformations and universal families. Let F be a polarized variety.

A polarized variety W will be called a deformation of V if the following

conditions are satisfied. There is a finite set (Fo, . . . , Vt) of polarized

varieties such that (a) F o = V, Vt = W, that (b) either Vt is isomorphic to

Vi-ι or Vi (resp. F ^ ) is a specialization of F ^ (resp. FJ over some discrete

valuation-ring. We shall denote the set of deformations of F by Σ(F).

Remark 4.1. Our definition, in the case of characteristic 0, is narrower

than that of Kodaira-Spencer (cf. [9]) in the following two points. We are

restricting all the fibres which enter into their definition to be algebraic.

Also we are considering algebraic varieties with extra structure, the structure

of polarization.

Remark 4.2. When the characteristic is 0 and all the discrete valuation-

rings contain the field of rational numbers, Σ(F) has the property that

every member of it has one and the same rank as polarized varieties. This

follows from the well-known theorem of Lefschetz on a criterion of a

topological cycle to be an algebraic divisor (cf. [8], Chap. IV). On the

other hand, when the universal domain is of characteristic p, a specialization

of a polarized variety sometimes change ranks which was illustrated to the

author by Nishi in the seminar at Brandeis, 1962. His example illustrates

moreover that, when F is a suitably polarized Abelian variety in the

universal domain of characteristic p >0, the set of equivalence classes of

S (F) defined in terms of isomorphisms of members of 2 (V) *s n o t a finite

union of algebraic varieties2).

Because of the above remark, we shall consider the following subset of

2 (F). Let d be a positive integer such that d > rank (F). We shall denote

by Σ (V, d) the subset of 2 (V), consisting of those polarized varieties whose

ranks are at most d. We shall also denote by Σo (V, d) the subset of 2 (F, d),

consisting of polarized varieties of rank d. When the universal domain is

of characteristic 0 and when the deformations are always over the field of

2) The author understands that Nishi intends to publish his example elsewhere.
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rational numbers, then Σ (F) = Σ (F, d) = Σo (F, d) by the quoted theorem

of Lefschetz.

From now on, we shall assume that the underlying varieties of polarized

varieties we shall consider are non-singular subvarieties of projective spaces. By doing

this we shall loose no generality by virtue of Proposition 6.

Before we proceed to introduce some other fundamental concepts, we

shall discuss briefly about deformations and Hilbert polynomials.

LEMMA 5. Let Vl9 . . . , F f be polarized varieties such that either F£_i and

Vi are isomorphic or F$ {resp. F ^ ) is a specialization of F ^ {resp. F J over some

discrete valuation-ring. Let the Zt be basic polar divisors of the Vt and n the common

dimension of the F f . Then there are positive integers si9 st such that s1

nZf}= st

nZT

and that X{VU msιZx) = l{Vt, mstZt) for all integers m. If rank (Fx) = rank {Vt)9

then Si = st.

Proof. Vi-ι and Vt are related by an isomorphism or by a specialization

and algebraic equivalence is preserved by either one. Therefore, such an

operation induces a map &a(mZi-u -+&a{mrίZi) or &a{mZi)--±ϊίia{mri-ιZi-ύ of

algebraic equivalence classes, where m is an integer and r^ί9 rt are some

positive integers which are independent of m. Since the Euler-Poincare

characteristic relative to divisors is invariant by an isomorphism or by a

specialization (cf. Theorem A), it follows that X(Vi-l9 mZ^i) = X{Vί9 mViZi)

and Z^l^rfZT or χ(F,-x, mr^Z^) = x(Vi} mZ%) and ZT = U-fZgl

From these and from Lemma 3.2 of the Appendix, our lemma follows

easily.

PROPOSITION 8. Let V be a polarized variety of rank d and W a member of

Σo {V> d). Then V and W have the same rank and the same Hilbert polynomial.

Proof. This follows at once from the definition and from Lemma 5.

We shall assume, from now on, that the discrete valuation-rings which enter in

the definition of deformations contain one and the same basic field k0. k0 will be referred

to as the basic field of deformations. Every field we shall consider will be assumed

to contain kQ.

We shall introduce two more subspaces of Σ (V). Let Σ ; / (V> d) be the

set of polarized varieties V of ranks at most d, satisfying the following

condition: There is a finite set of polarized varieties (Fo, . . . , Vt) such that

F o = Y', Vt — V and that either Vt is a specialization of F ^ over some
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discrete valuation-ring or Vt and F^i are isomorphic. Let Σ ' (F, d) be the

set of polarized varieties V of ranks at most d, satisfying the following

condition: There are two sets (Fo, . . . , Fm), (Um+1, . . . ,Ut) of polarized

varieties such that Fo = F, Ut = V, F m = Um+1 and that either F ^ (resp.

Uj) is a specialization of Vt (resp. £7/_i) over some discrete valuation-ring or

they are isomorphic. We further set Σ ' (F, d) Π Σo (F, d) = ΣΌ (F, d),

Σ"(F, d) = Σ " (F, d) Π Σo (F, d). Clearly, we have the following inclusion

relations:

Σ " (F, d) c Σ ' (F, ί c Σ (F, d) c Σ (V)

Σo (F, d) c Σo (F, d) c Σo (F, d).

Sometimes, we shall call Σ ' (F, d) and Σo (F, d) fo^rf spaces of deformations at

F and Σ " (F, d), Σo (F, d) quasi-local spaces of deformations.

In order to introduce the concept of a universal family, we shall consider

one more definition. Let g be an algebraic family of non-singular subvarieties

of a projective space. Let Wl be a multiplicatively closed set of integers such

that every member of gί is the underlying variety of a polarized variety of type

3Jί where hyperplane sections are polar divisors. For a given g, there is

always such Wt by virtue of Theorem C. When we identify members of 3

with such polarized varieties of type SK, we shall denote the resulting set by

($, SK) and call it an algebraic family of polarized varieties of type Wt. When

there is no danger of confusion, we sometimes denote (g, 9Ή) simply by %.

Let F be a polarized variety of type Wί and of rank at most d. Let

(3f,2R) be an algebraic family of polarized varieties of type Tl and Σ a

subset of Y\{V,d). Assume that (3ί,3ft) satisfies the following conditions:

(UΊ) Every member of Σ is isomorphic to a member of (gf, 3K)

(U2) When it is a common field of definition of the components of 3?, a

generic member of each component of gf over & is a member of Σ

Then we shall call (gf, 3ft) a universal family of Σ When Σ is a subset of

Σo(F, d), (& 3ft) will be called a universal family of Σ if it satisfies {Ux\

{U2) and (U3) Every member of (g, 3ft) has the rank d.

Sometimes, when @, 3ft) is a universal family, we shall say that g is a

universal family if there is no danger of confusion. In this case, the identifi-

cation of members of 3? with members of (g, 3ft) are assumed to have been

done already.
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Remark 4. 3. In the case of Σ (F, d), the above definition can be stated

in the following equivalent form:

(U[) Every member of Σ (F, d) is isomorphic to a member of (f?, 2K);

(*7i) Every member of (g, SJΉ) is a member of Σ (F, d).

The same is true for Σ ' (^ Ô

Unfortunately, the existence of a universal family for Σ (^ d), Σo (̂ > Λ

2 ' (F, d), ΣΌ (^ ^) is not known in general. But there are some important

cases where the existence of a universal family can be established and we

shall comment on this briefly here. First, clearly Σ {V, d) is a finite union

of the Σo {V, dt) with d > dt. The same is true for Σ ' (^ ^) Therefore, it is

enough to discuss the problem for Σo {V, d), Σo (f> 0̂ Moreover, we may

assume without loss of generality that F is of rank exactly d. By Proposi-

tion 8, members of Σo (V, d) have one and the same Hubert polynomial.

When that is so, the existence of a universal family of Σo {V, d) and that

of ΣΌ (V> d) follows from Proposition 4. 3 of the Appendix if the following

conjectural statement is true.

(*) Let V be a non-singular subvariety of a projectwe space and Z a non-degenerate

divisor on V. Set χ(V, mZ) = g(m). Then there is a constant c, depending only on

the polynomial g(x) such that mZ is ample for m>c.

When dim V = 1, (*) follows easily from the Theorem of Riemann-

Roch. In fact, g(x) determines the genus g uniquely, and when that is so,

it is enough to take c to be 2g -f 1.

When dim V — 2, (*) has been verified in [16].

When V is an Abelian variety, 3Z is always ample whenever Z is a

non-degenerate divisor on V (a theorem of Lefschetz, generalized to the

arbitrary characteristic case by Nishi, cf. [17]).

THEOREM 3. Let V be a polarized variety of dimension n and a positive

integer such that rank (F) < d. If (*) is true for dimension n, a universal family of

Σo {V, d) and hence of Σ {V, d) exists.

If Σ (V, d) has a universal family, it is clear that all the other spaces of

deformations admit universal families (cf. Proposition 4.3 of the Appendix). On

the other hand, we can establish the following theorem without much

difficulty.

THEOREM 4. Σ " (V, d) and Σo (V, d) always admit universal families.
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Proof. Let dQ = rank (F). d > d0 by our definition. In general, when

a polarized variety U is specialized to a polarized variety ZJ! over some

discrete valuation-ring, a basic polar divisor is specialized to a polar divisor.

Therefore, rank (U) is always a multiple of rank (Uf)9 which shows that the

rank of a member of Σ " (F, d) is bounded by d and is a multiple of d0.

Set e = Tlidi, where the dt are positive multiples of dQ but are bounded

by d. Then, for any positive integer r, re has a property that the rank of

a member of Σ " Ĉ> ^) divides r#.

When I is a basic polar divisor of V, there is a positive integer r

such that reX is sufficiently ample by Theorem 1. Let W = Fo, . . . , Ft_i,

Vt = V be a finite set of polarized varieties such that W is in Σ " (F, d)

and that either F* is a specialization of F$_i over some discrete valuation-

ring or they are isomorphic. Then rank(FJ divides re and rank (F*) divides

rank (Vi-J. Since algebraic equivalence is preserved by isomorphisms and

specializations, we can find a polar divisor Yt on each F* such that Yt Έ= rnX

mod %a, that either the specialization V^-^-^Vi extends to a specialization

Yi_1-±Yί or an isomorphism between V^x and Vt transforms Yt_x to Yv and

that Fo is a basic polar divisor of F o = FT. Then mntf0 divides re when n =

dim V and every F έ is sufficiently ample on F* by Proposition 3.2 of the

Appendix. Hence W has a non-degenerate projective embedding determined

by Yo, which maps W into the projective space of dimension l(mX) — 1 with

the resulting non-singular variety of degree mnd0 (cf. Proposition 3). Fix r

now once for all. Since mndQ divides re, the possibilities of m is finite. Our

theorem now follows easily from the fundamental results on Chow-forms

(cf. [2]) and from Proposition 4. 3 of the Appendix.

COROLLARY. Let % be a universal family of Σ " (F, d). Consider the equiva-

lence relation on % in terms of isomorphisms of members of % as polarized varieties.

Let F be the set of Chow-points of members of % and R the equivalence relation

defined on F by that of %. Then there is a locally closed set W in a projective

space, an open subset Ff of F and a continuous map β of F' on W such that the

following properties hold: (a) β induces on each component of F1 a morpkism; (b) W is

the quotient space of Fr with respect to R and β the canonical map in the sense of

topological space; (c) When k is a common field of definition of the components of

F and W and when u is a point of Ff, corresponding to a member U of g, k{β(u))

is the field of moduli of U over k; (d) When u is a generic point of a component

of F over k, u is contained in Ff. When F' is given, β and W are uniquely
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determined up to a homeomorphίsm which induces a one-to-one birational correspondence

on each component of W.

Proof It is not hard to prove this corollary from Theorem 1, Theorem

2, Theorem E and Theorem G, using the usual technique of eliminating

undesirable points. Therefore we leave a proof for an exercise of the reader.

From the above corollary, it. follows that the number of components c(V, d)

ofW and the dimensions of the components ofW are uniquely determined by Σ " (V, d).

c[V, d) could be called the number of local moduli components at F. When

c{V,d) — 1, we shall denote by n{V,d) the dimension of W and call it the

number of local moduli at F, which is at most the number m{V) in the case

of characteristic 0 defined in (9).

Let V be a polarized variety of rank at most d and Σ a subset of

Σ (F, d) (resp. Σo {V, d)). An algebraic family % of polarized varieties will

be called a smooth universal family of Σ if the following hold:

(SUi) S is a universal family of 2 ;

(SU2) When U is a member of %, Cσ is sufficiently ample;

(SU3) When U is a member of & φ{U,&a(Cσ)) is contained in g;

(SUA) No member of g is contained in a hyperplane and the set of

hyperplane sections forms a complete linear system on each member of fj;

{SU5) CβP is a constant, independent of a member U of F if dim F = n.

We shall say that 2 is an admissible subset of Σ(^> d) (resp. Σo(^> d))

if: (a) There is a universal family of Σ> contained in Σ> and a member

of ^Σl{V,d) (resp. Σo(F, d)) which is isomorphic to a member of Σ is in 2 ;

(b) When WlyW2,Wz are members of Σ(F,d) (resp. Σo(^,^)) such that

W1 -* TF2 ref.fcβ, TF2 -> TF3 ref. kQ and that ϊF l f TF3 e Σ, then TF2 e Σ When

Σ ( F , ^ ) , Σo(^,rf), Σ'(F,rf), HΌ(V,d) admit universal families, they are

admissible subsets of Σ(^\ d) and Σo (̂ > ̂ )> ΣΌ (Ί̂ > ̂ ) a r e admissible subsets

of Σo (F, rf).

THEOREM 5. Z,#ί F 7 1 έ^ a polarized variety of rank at most d, Σ ^^

admissible subset of 2 (F, fi?) (r̂ j&. Σo (F, rf)) and assume that § w a universal

family of 2 wλzVλ ύ contained in Σ ?"%#& Σ admits a smooth universal family

%, contained in Σ If ea>ch component of § is defined over a field k, then % can

be chosen so that every component of it is also defined over k.

Proof We shall assume that Σ c Σ(F, d) since the other case is

https://doi.org/10.1017/S0027763000012733 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012733


ALGEBRAIC DEFORMATIONS OF POLARIZED VARIETIES 209

similar. Let Wl be the type of polarization of V. We may assume, without

loss of generality, that V is contained in Σ We shall identify members of

§ with their underlying varieties. Let Z be a basic polar divisor of V and

Zw a basic polar divisor of a member W of §. By Lemma 5, there are

positive integers e, ew such that enZ00 = ew

nZp and χ{V, meZ) = χ(W, mewZw).

Moreover, we have e — ew if rank (F) = rank (W). ξ) can be written as a

finite union of algebraic families ξ>{di) such that ξ)(JJ consists of polarized

varieties of rank dι by Proposition 4.3 of the Appendix. Therefore, it is easy

to see that e can be fixed throughout ξ) and that ew can be taken from

a finite set / of positive integers. Let rw be defined by Cw=rwZw mod

&a. The set Γ of these rw is finite since CV(7l) is bounded. Set r = Π7/?v.

(rlrw)ewCw

 Ξ rewZw mod ®α. Then X(F, mreZ) = Z(VF? m (r/?v) eψCw) for

all W by Proposition 3.2 of the Appendix. Set Tw = (rlrw)ewCw and #(m)

= X(W, mTw). Applying Theorem 1 to W, Tw and g(m), we see an existence

of a constant c, depending only on (/(i.e. on ξ>) with the following proper-

ties: (a) mTw is sufficiently ample on W when m>c; (b) l(mTw) = g(m)

= 1{X) = χ(W,X) when X is in ©α(m7V), m>c. Let us fix m such that m>c,

We reembed every member f of § into the projective space of

dimension g(m) — 1 by non-degenerate embeddings determined by divisors

in (£α(m7V). Images are non-singular subvarieties of degree mnTw

{n) =

{mre)nZ{n). We have to analyse the set of images carefully. Let the ξ>α be

the components of § and the HΛ the Chow-varieties of the φΛ. Let w be

a generic point of HΛ over ft, representing W. &a{πιTw)
+ is a complete total

family defined over k{w) (cf. Proposition 2 and Theorems E, G). Let X be

a generic divisor of this family over k(w)9 L a field of rationality of X over

k(w) and let fx be defined over L. Let τ be a generic projective transfor-

mation of the ambient space of fx{W) over L and set f = τ o f Xy f(W) = U,

c{U) = u, t = c(Γf). Let fa = loc^w, w, f)> F β = loc ί̂w), Λ = ^oc^t). Then fβ,

F β, / α are defined over ft by Lemma 4.1 of the Appendix. The set F*

of points in Fa which represents non-singular varieties, not contained in any

hyperplane, is ft-open on Fa and the set JΛ of points on /α, which represents

irreducible cycles in the multiple projective space, is ft-open on Ja by the

same lemma. Hence F* = U ^F^ and / = U α / α are locally closed sets over

ft in their ambient projective spaces. Let TΛ be the restriction of r β on

Hax F* X Λ and set T = UαTα, /ί = Uα#cc
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We contend that the set-theoretic projection F of T on F* is k-open on

F*. In order to prove this, we apply Proposition 4.1 of the Appendix,

taking K to be k. The condition (c) is clearly satisfied. The condition (b)

is satisfied by Lemma 4.2 of the Appendix and by the fact that ξ) is a

universal family of our admissible subset 2 of 2 (F, d). When A is a

subvariety of F'a9 defined over a field kf containing k, and when a generic

point of A is a projection of a point of T, then T' = HxAxjΓιT is a

finite union of locally closed subvarieties of the multiple projective space,

containing a component To which has the projection A on F*. Hence the

projection of Tf on A contains a non-empty &'-open subset of A (cf. [24]).

Thus (a) is verified and our assertion is proved.

When % is the family of polarized varieties of the same type as F,

determined by F, each component of g is defined over k. Thus g is a

smooth universal family of 2 which is contained in 2 q.e.d.

COROLLARY. Using the same notations and assumptions as in our theorem, let

% be a smooth universal family contained in 2 Let U be a member of % and g0

a component of % containing U. Then S${U, &a{Cu)) c 3?0.

Proof Let k be a field of definition of g0 and W a generic member

of g0 over k. (£α(CV)+ and &a{Cu)+ are complete total families by Proposition

2. Then, when F is a divisor in ©α(C^)+, there is a divisor X in (£α(CV)+

such that (IF, X) -> (*7, F) ref. * by Proposition 4. F and X are sufficiently

ample and 1{X) = l(Y) by Proposition 3. *β(JF, ®α(CV)) is contained in g by

the definition of gf and it has a structure of an algebraic variety by Theorem

E. It also contains IF. Hence it is contained in So since it is a component

of %. Then our corollary follows from the compatibility of specializations with

algebraic projection and from Proposition 6, applied to (IF, X) and [U, Y).

§ 5. Equivalence relations. Let % be an algebraic family of polarized

varieties in a projective space. By the equivalence relation on %, we understand

always an equivalence relation on % defined in terms of isomorphisms. Let

F be the set of Chow-points of members of %. The equivalence relation on

% defines an equivalence relation on F, which we shall call the equivalence

relation on F. We shall say that the equivalence relation thus defined is

k-closed if F is normally algebraic over k and if the set @ of pairs of

equivalent points on F is a A -closed subset of F x F. We shall say that it is

closed if there is a field k such that it is A -closed. The equivalence relation
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will be called strongly k-closed if it is A -closed and if the relation which defines

the equivalence of two members of 2? is stable by specializations over k.

By this we understand the following. Let V, W, V, W be members of %

such that V and W are isomorphic by an isomorphism f and that (F, W)

-+(y',Wf) ref. k. Then an extension Γf^Γf ref. k of the specialization to

Γf is such that Γf is the graph of an isomorphism between V and W.

When there is a field k such that the equivalence relation is strongly /en-

closed, we shall say that it is strongly closed.

THEOREM 6. Let V be a non-ruled polarized variety of rank at most d and

Σ an admissible subset of Σ (V, d), containing V. Let % a smooth universal family

of Σ which is contained in Σ Then there is an algebraic family S3 of polarized

varieties with the following properties:

(a) The set of Chow-points of members of 53 is a closed subset of that of %\

(b) S3 is a subset of % and is stable by the equivalence relation on g ;

(c) A non-ruled member of Σ ^ isomorphic to a member of % — S3

(d) The equivalence relation on §ί induces on % — S3 a strongly closed equivalence

relation.

Proof Let F be the set of Chow-points of members of %. Let k be

an algebraically closed common field of definition of the components of F.

Express F as a union of components as follows: F — (U α FJ U (\JβFβ),

where generic points of the FΛ (resp. Fβ) over k represent non-ruled (resp.

ruled) varieties. Fa exists by Theorem 1.1 of the Appendix.

Step I. We shall identify polarized varieties with their underlying

varieties for the sake of simplicity. Let u be a generic point of Fa over k,

representing U. By the definition of g, Cπ is sufficiently ample. Then ©α(CC7)
+

is a complete total family defined over k{u) by Proposition 2 and Theorem

G. Let X be a generic divisor of it over k(u)9 K Ά field of rationality of X

over k(u) and f — f'x a non-degenerate projective embedding of U, deter-

mined by X, defined over K. Let τ be a generic projective transformation

over K of the ambient space of f(U) and set W = τ o f (£/). Let w = c(W),

t = c(Γ) where Γ = Γτ o f, P the ambient projective space of the locus of t

over k and the ^4tf the locus of (t, u, w) over k on P x F X F. Let Λ be

the union of the Aa9 which is clearly closed on P x F x F. Denote by B'

the set of points (t',u',wf) in A such that t' represents a reducible cycle. Br
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is a proper closed subset of A. Let B be the closure on F of the set-theoretic

projection of Bf on the second factor of the product P x F X F. B defines

an algebraic family of polarized varieties. We shall show that this family

satisfies our requirements.

Step I I . A point (t',u',w') is in Aa—B' if and only if u1 represents a member

Uf of Fa, V represents a non-degenerate projective embedding f χ ι of Uf with

X'£gα(Q+ and wr represents W =fX!{Uf).

This follows from Lemma 4.2 of the Appendix.

Step III . (a) is clearly satisfied by B. In order to prove (c), it is enough

to show that a generic point uf of a component of B over k represents a

ruled variety by virtue of Theorem 1.1 of the Appendix. There is a generic

point [tf, uf, wr) of a component of B! over k. When it is in Aa, it is a

specialization of (t, u, w) over k. Since u\ wf represents members of % and

since V represents a reducible cycle, uf, wr must represent ruled varieties by

Theorem D and by Propositions 2 and 4.

Next we shall prove (b). Let u" e B, u"* e F representing U"9 U"*,

such that U"* is isomorphic to U" by an isomorphism h" (as polarized

varieties). Let uf be a generic point of a component of B over k such

that uf -> u" ref. k. By Propositions 4 and 6 and by the definition of F,

there is a point ur* in F, representing £/'*, and an isomorphism h! between

U'* and Ur

9 which is represented by uf, such that {Uf, Uf*, Γv) -> {U", U"*, Γh")

ref. A:. Therefore, it is enough to prove that u'* is in B since B is ^-closed

on F. Since ^7 is a generic point of a component of B over &, there is a

point (ί;, ur

y w') of 5 r . Without loss of generality, we may assume that it is

in A.. Since {t, u, w) -> (/', ί/7, w') ref. k, there is a discrete valuation-ring £>

of k(t, u, w) such that (t,u,w)-±(t',uf,wf) ref. D. Then u-+uf ref. D, i.e.

U -»Uf ref. £). Applying Proposition 6 to this and to U'*, h'9 we see the

existence of a member U* of S and an isomorphism Λ of C7* and ί7 such

that (E7, E7*, ΓΛ) -> {Uf, Uf*, Γhr) ref. D. g = T © f o h~x is an isomorphism between

ί/* and TF, and we see easily that an extension Γg -> Γ7* ref. £) of the above

specialization over D is such that Γ7* is a reducible cycle on t/7* X TF7. Set

c(£7*) = «*, c(Γ )̂ = ? and c(Γ7*) = f7. Then {t,u*,w)->{t',u'*,wf) ref. fc. Since

U = /z(ί/*) and since £/* is a member of 3?, M* is a point of gα by our choice

of u (cf. Corollary to Theorem 5). Then (f, M*, M;) G Aα by the result of

Step II . When that is so, (ί7, w7*, wr) e AΛ and consequently it is in £ 7 since
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t' represents a reducible cycle, (b) is thus proved.

Finally we shall prove (d). Let uf, wr be two points of Fy representing

two isomorphic varieties U', W, isomorphic by the map hf. If u1 e FΛ, then

(Γ, [/, W) -> (ΓA', U', W) ref. k by the result of step II . Hence {u>\ w1) is in

the projection of A on F x F.

Let uπ, w" be points of F — B, representing U", W" and ur, wf be now

points of F, representing U'9 Wf and assume that Uf, W are isomorphic

by an isomorphism h' and that (Uf, Wf) -> (U", Wπ) ref. k. Assume that uf

is in Fa. Then (Γ, ί/, W) -> tfV, £/7, TF7) ref. k by step II. When (TV, £/', T^;)

-> (Γ;/, ί/7/, T^/;) ref. i, (Γ", ί/77, T777) is a specialization of (Γ, t/, T7) over k.

Hence Γ" is irreducible by the choice of U". Then Γ" is the graph of an

isomorphism between Uπ and W777 by Theorem Df, Propositions 2,4 and by

the sufficient ampleness of hyperplane sections, (d) follows from these

observations at once.

Remark 5.1. Theorem 6 is valid to 2 0 (F, d) too.

Remark 5.2. A non-singular surface in a projective space is ruled if and

only if P12 = 0 according to the theorem of Enriques-Kodaira, the first

complete proof of which was given by Kodaira in 1961 (unpublished).

According to an unpublished work of Mumford, it is so if and only if

Pm = 0 for all positive m for characteristic p. When we combine this with

our Theorem 1.1 and Proposition 2.1 of the Appendix, every member of

2 (V) is a ruled surface if and only if V is a ruled surface. Therefore,

if V is a non-ruled surface, 2 (V, d) admits a universal family and $8 in our

theorem is empty. When dim V > 2, every little seems to be known in this

line. Therefore, we shall mention here some problems, affirmative solutions

of which would enlighten the situation.

Let V and V be complete non-singular varieties such that V is a

specialization of V over some discrete valuation-ring. If V is not a ruled-

variety, is it true that V is not a ruled variety?

When V is a ruled variety, all the Pm vanish at least in the case of

characteristic 0. Is this fact invariant of the deformations?

Since the general situations are as above, we shall introduce the follow-

ing definition. Let V be a polarized variety of rank at most d and 2 an

admissible subset of 2 (V, d). Let U be a member of Σ and assume that

there is a smooth universal family g of Σ contained in Σ a nd an algebraic
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family S3 of polarized varieties, which satisfies the four conditions of Theorem

6 such that U is isomorphic to a member of % — S3. Then we shall say that

U is a solid polarized variety of 2 . We shall use the similar definitions for

admissible subsets of 2o {V, d). Let % be a smooth universal family of 2

contained in 2 a ^ d S3 an algebraic family of polarized varieties, satisfying

the four conditions of Theorem 6, such that a solid polarized variety of 2

is always isomorphic to a member of gf — S3. Then we shall say that % — S3

is a typical universal family of 2

PROPOSITION 9. Let V be a non-ruled polarized variety of rank at most d and

2 an admissible subset of 2 (V> d) {resp. 2o (V, d))9 containing V. Let % and gί'

be two smooth universal families of Σ> U and U' be members of gί and gί' respectively

and assume that they are isomorphic by an isomorphism gf. Let k be a common field

of definition of the components of gί, gί' and consider the following property:

(#) Let L, My W be members of gί such that L and M are isomorphic by an

isomorphism f and that (L, M) —>• (U, W) refi k. When Γf is a specialization of

Γf over k over the specialization above, Γ' is the graph of an isomorphism between

U and W.

When (##) denotes the corresponding property for Uf', replacing % by g', then (#)

and (##) are equivalent.

Proof Assume that Ur satisfies (##). By Propositions 6,7 and by Theorem

5, there are members V, Mf, W of %f and isomorphisms g between L and

Z/, h between M and Mf and hf between W and W such that

(Z/, M7, Γg, Γh) -> (ϋ7, W, Γg<> /V) ref. k over the specialization (L, M, Γf) ->

(U, Wy Γ
r) ref. k. When we extend our specializations further to a specializa-

tion of Γhfg-ι over k, it specializes to the graph of an isomorphism between

Uf and W by (##). Hence Γ' is easily seen to be the graph of an

isomorphism between U and W. Thus U satisfies (#). In the same way, (#)

implies (##).

PROPOSITION 10. Let V be a non-ruled polarized variety of type Wl and of

rank at most d. Let 2 be an admissible subset of 2 (V> d), containing V, gί a

smooth universal family of 2 and S3 an algebraic family of polarized varieties which

satisfies the four conditions of Theorem 6 relative to %. Let s be a positive integer

not in fflt. Let (gv,S3r) be either one of the following (a), (b): (a) r = s, gv =

Όue$£(U9®a{rCu)) and S3r = \Ju^^{U^a{rCu)); (b) r = 1/s and gv, S3r as in

(a) if every U in gί contains a sufficiently ample divisor X such that sX = C
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@α. Then %r is a smooth universal family of Σ ond 58 r is an algebraic family,

satisfying the four conditions of Theorem 6 relative to %r.

Proof Since % is a smooth universal family, %, 58 and r satisfy the

requirements of the Corollary of Proposition 4.2 of the Appendix (cf. also

Corollary to Theorem 5). Therefore, %r and 58 r are algebraic families

of polarized varieties of type Wl such that the hyperplane sections are

polar divisors. From the definition of g r, it is clear that g r is a smooth

universal family. When A; is a common field of definition of the com-

ponents of gί, 58,3 ,̂58,. and when A is a member of 58r, a specialization

A! of A over ft in §v is also a member of 58r. This follows from the

definition of 58r, (a) of Theorem 6 (satisfied by 58) and from Proposition

7. Therefore, the set of Chow-points of members of 58 r is closed on that

of 3v From the definition of 58r, it is clearly closed by the equivalence

relation o n g r and a non-ruled member of Σ is isomorphic to a member of

g r - 5 8 r .

Finally, we shall show that the equivalence relation on 3v induces on

3v — 58r a strongly closed equivalence relation. Let W be a generic member

of a component of %r over k and if a field of definition of p(ΪF, Kα(CV)) over

ft. Let ΪF* be a generic member of $(TF,(£α(CV)) over K IF* is contained

in 3v by the definition of a smooth universal family. Let W be a member

of 3v, contained in the same component of %r as W and IF'* a member

of 3v which is isomorphic to Wf. There is a member W of 5β(TF, &a(Cw))

such that (IF, ΪP) -> (IF7, IF7*) ref. ft by Proposition 6. By Proposition 2 and

by Theorems E and G, we may take K to be a field of definition of W

over K. When this is done, (W, W) is a specialization of (W, TF*) over K

Hence (W, ΪF*) -> (IF7, TF;*) ref. ft. Let F r be the set of Chow-points of

members of gίr. Then the above shows that the set of pairs of equivalent

points on Fr is contained in a ft-closed subset of Fr X Fr such that generic

points of the components of the closed subset over ft are pairs of equivalent

points. When that is so, our assertion follows easily from Propositions 6 and

9 and from (d) of Theorem 6 which is satisfied by 58.

THEOREM 7. Let V be a non-ruled polarized variety of rank at most d and

2 an admissible subset of J] (F, d)9 containing V. Then 2 admits a typical universal

family. When f? is a smooth universal family of 2 , contained in ]>]> and S3
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the intersection of algebraic families which satisfy the conditions of Theorem 6 relative

to %, % — 93 is a typical universal family contained in 2

Proof It is easy to verify that 93 satisfies also the conditions of Theorem

6. Let U be a solid polarized variety of 2 By our definition, there is a

smooth universal family %' contained in 2 a nd an algebraic family 93',

satisfying the conditions of Theorem 6, such that U is isomorphic to a

member of %' — 93'. Let Tt be the type of polarization of F and r a

positive integer not in ffll. Define 93'r, g'r as in Proposition 10, (a). Wr is a

smooth universal family, 93'r satisfies the conditions of Theorem 6 relative to

Wr and U is isomorphic to a member of %r

r — 93'r. From the definitions, it is

possible to find a pair (r, u) of positive integers, not contained in 9ft, such

that %'r = g u where gίtt is defined as in Proposition 10, (a). When 23U is

defined similarly, our theorem will be proved if we show that 93W is the

intersection of algebraic families which satisfy the conditions of Theorem 6

relative to f$u. This is because 93 satisfies those conditions relative to g and

because of Proposition 10, since this implies that 93M satisfies also those

conditions relative to gtt.

Let now 93' be the intersection of all those algebraic families of polarized

varieties which satisfy the conditions of Theorem 6 relative to gtt. As we

remarked, 93' also satisfies those conditions relative to gίtt. Set t = l\u. When

we apply Proposition 10, (a) and (b), we get (gίj, = g and (93 J c = 93 and

Wt is contained in 93; moreover 93\ satisfies the conditions of Theorem 6

relative to g. It follows that 93; = 93 and consequently 93' = (S3i)tt = 93W. Our

theorem is thereby proved.

Remark 5.3. Proposition 10 and Theorem 7 are valid for 2o (F, d) too.

Before we discuss the significance of a typical universal family, we have to

settle the following proposition.

PROPOSITION 11. Let V {resp. V) be a polarized variety, X {resp. Xf) a

sufficiently ample polar divisor of V {resp. V) and D a discrete valuation-ring such

that V and X are rational over its quotient field and that (F, X) -> (F', X') ref. £).

When we denote by A, A! the closures of p(F, (£α(X)), p(F', $a{X')) in their ambient

projective spaces and when A->L ref D, every component of A' is contained in a

component of L.

Proof Let Wf be a member of φ{V'9&a(X')) and W its underlying
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variety. Denote also by V, Vr the underlying varieties of V, Vr. There is a

divisor Y' in &a{X') such that W = fγ,{V). Since X and X' are sufficiently

ample, there is a divisor Y in ©α(X) such that (ΛF) -> (L, Γ') ref. © by

Propositions 2 and 4. Moreover, we have l(Y) = /(F;) by Proposition 3.

Therefore, there is a fγ such that (V, X,A,Y,Γfγ) -+(V',X', L,Y',Γfγf) ref. D

by Proposition 6 (replace Q by a discrete valuation-ring dominating it, if

necessary). When that is so, fYf{Vf) — Wr is such that its Chow-point is in

L by virtue of the compatibility of specializations with algebraic projection.

Our proposition is thereby proved.

COROLLARY. Using the same notations and assumptions as in the proposition,

assume further that V satisfies the following condition: When W is a member of

?β(F, ®αCX")), Γ the graph of an isomorphism between V and W, W a polarized

variety which is not contained in a hyperplane and when {V, W, Γ) —>• {V, Wf, Γf)

ref £), then Γ' is the graph of an isomorphism. Then L —fc(F', ©αCX7)) consists

of the Chow-points of those positive cycles which are either singular or contained in a

hyperplane and every component of A' is a component of L. Moreover, aut (F)

and aut(Vf) are algebraic groups of the same dimension.

Proof Let us use the notations and conventions of the proof of our

proposition. Let Wr be a non-singular subvariety of a projective space,

not contained in a hyperplane, such that c(W) e L. There is a member W

of 5β(F,eα(;0) such that {V,X,A,W)-*{V'9X
r,L,W') ref. D. Let / be an

isomorphism between V and W determined by a divisor Y in &a{X) and

{Γf, Y) -> {Γf, Y') ref. D be an extension of the above specialization. By our

assumption, Γr is the graph of an isomorphism between V and W. Yf is in

QLa{Xr) since algebraic equivalence is preserved by specialization. Hence Y1

is sufficiently ample and Γf is a non-degenerate projective embedding

determined by Yr by virtue of Proposition 3, since specializations are

compatible with intersection-product and algebraic projection. Thus Wf is

a member of %(Yf, &a{Xf)). From this and from our proposition, the first

and the second assertions follow immediately. The last assertion follows from

the above results, Theorem B, Proposition 3 and from the Corollary of

Theorem F.

Remark 5.4. Let V be non-ruled and Σ an admissible subset of Σ {V> d)

(resp. Σo {V, d)), containing V. Then it admits a typical universal family

contained in 2 by Theorem 7. Let F be the set of Chow-points of
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members of g and E the set of pairs of equivalent points on F. E is closed

on F x F and when w is a point of F, representing W, then

w x F Γ\ E = wx \p(W, &a(Cw))\ by the definition of equivalence relation. Let

A; be a common field of definition of the components of F and E, u a point

of F representing U and assume that u ~±w ref. k. Then \p(U,&a{Cu))\ has

the unique specialization |ρ(ΪF, (£α(CV))| over k, over this specialization.

These follow from the definitions, Theorem 7 and from Proposition 11.

§ 6. Q-varieties of moduli. We shall here briefly review the concept of

Q-varieties. For details, see [15]. Let U be an abstract variety and E a

closed subset of U x U. Assume that every component of E has the

projection U on either side of the product and that the components of E

have the same dimension. Moreover, assume that E defines an equivalence

relation on U. When E satisfies these conditions, we shall say that a field

k is a field of rationality of (U, E) or a field of definition of it if U is defined

over k, E is ^-closed on U x U and if every component of E is defined over

a separable extension of k. We shall say that (JJ, E) is an unmixed equivalence

pair if it satisfies further the following conditions:

(£Ί) Let x be a generic point of U over k, x1 a point of U and E{x}

(resp. E{xf}) the set of points of U which are equivalent to x (resp. xf).

Then E{x'} is the unique specialization of E{x} over k, over the specializa-

tion x -+ x' ref. k;

(E2) When a; is a generic point of U over k, every component of E{x} is

defined over a separable extension of k(x).

Let <%/ be the abstract quotient space of U by the equivalence relation

defined by E if (U,E) is an unmixed equivalence pair. Let / be the

abstract canonical morphism of U on ^ . We defined on ^/ the concept of

a Q-variety, and, with this structure, / is a rational map of U on ^/. We

have shown that ( ^ , /) can be treated as if it is a pair of an abstract

variety and a rational map in many cases from the qualitative point of view

in algebraic geometry. When the Et are components of E, we set 2£=Σ*£ί

where each Eι appears with the coefficient 1. When xr is simple on U, f(xf)

is called a regular point of ^/. When E{xf), defined as usual by the

intersection-product, contains a component whose coefficient is prime to the

characteristic p of the universal domain, f{x') is called a p-regular point

of "̂ Λ We have shown that a p-regular point can be treated as if it is a

https://doi.org/10.1017/S0027763000012733 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012733


ALGEBRAIC DEFORMATIONS OF POLARIZED VARIETIES 219

simple point on an algebraic variety from quantitative point of view in

algebraic geometry. If <%s consists of p-regular points, it is called a Q-

manifold. When {U, E) is defined over k, k is called a field of definition or

rationality of <%/ and U is called a covering variety of <^/.

For the sake of convenience, we shall introduce the following definition.

Let J^~ be a topological space. We shall say that j ^ ~ is a Q-space if the

following conditions are satisfied: (a) j ^ ~ is a finite union of Q-varieties ^ ^

(b) A subset Y of J?~ is closed on J?~ if and only if every Fα = ^ ^ n F is

closed on ^ ^ (the topology on ^ ^ is the quotient topology). A field k will

be called a field of definition of j ^ ~ if every J^l is defined over k.

When j ^ ~ and j ^ 7 " 7 are ©-spaces, a continuous map / of an open subset

of J7~ into J7~r will be called a rational map of ^~ into j?~' defined over a field k,

if A; is a common field of definition of the component Q-varieties of ^

and if / induces a rational map fa of a component ©-variety J7~a of

defined over k for each a. Let f0 be a point of j ^ 7 " and / the set of indices

a such that ί0 e ^ ^ . Then we shall say that / is single-valued at tQ with the

value £'o when t'Q is a unique specialization of / ( O over fc over the speciali-

zation ta-±tQ ref. ft of a generic point tΛ of ^ ^ over k for α e /. / will be

called a birational map if / - 1 is defined and is a rational map of ^ ' into

_^7 A birational map / between ^~ and ^ ' will be called a one-to-one

birational map if / and Z"1 are everywhere single-valued rational maps.

PROPOSITION 12. Let V be a non-ruled polarized variety of rank at most d

and XI an admissible subset of 2 (V, d), containing V. Let % be a typical universal

family of ^ F the set of Chow-points of members of F and the F* the components

of F. Let E (resp. EΛ) be the set of pairs of equivalent points on F [resp. Fa), ^

the abstract quotient space of F by the equivalence relation on it and f the abstract

canonical morphism of F on ^". Then:

(a) (Fα, EΛ) is an unmixed equivalence pair and E^. is the support of a subvariety

of Fa X FΛ; (b) Ea is the restriction of E on F α x F* and E = Uα.Eα

(c) When u is a point of Fa, representing U, E Π {F x u) = EΛ Π {Fa x u) =

#{U,&ΛCu)) x u\ (d) E is closed on F x F; (e) When fa is the restriction

of f on Ft and J^l = fa(Fa), ^ a can be identified with a Q-variety (Fa,fa);

(f) When we introduce the quotient topology on J?~l J^~ is a Q-space such that

J?~ ~ U ^ and that f is an everywhere single valued rational map of a Q-space F

onto T; (g) When uf is a point of F representing V and when k is a common
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field of definition of the Fa, J?Z ond the /β, k{f{uf)) is the field of moduli of Ur

over k.

Proof Equivalence relations on F and Fa are determined by iso-

morphisms of polarized varieties. Then (c) follows at once from the defini-

tions and from the Corollary to Theorem 5. Let now u be a generic point

of Fa over k, representing U. &a(Cu)+ is a complete total family defined

over k{u) by Proposition 2 and Theorem G. Hence p{U9^a(Cu)) is defined

over k(u) by Theorem E. There is a subvariety Ea of F α x F*

defined over k and having the projection FΛ on the first factor, such that

E* {u x F9) = u x Ea(u) = u x p{U,&a{Cu)) (cf. Corollary of Theorem 5; [23],

Chap. VIII, Theorem 6). Since u is a point of Ea{u), it follows that Ea

has the projection FΛ on the second factor of the product. When {ur,wf)

is in EΛ, it follows easily from Proposition 6 that it is in E*. When

{ur, wf) is in Ea, it is in Ea since the equivalence relation on F is strongly

closed (cf. Theorems 6 and 7). It follows that Ea = Ea and (a) follows from

these and from the Corollary of Proposition 11.

(b) follows from the definition of our equivalence relation and from

the Corollary of Theorem 5. (d) follows from Theorems 6 and 7. (e)

follows from the definition of a Q-variety and from what we have proved

above. ^ is clearly the union of the ^~Λ% Let S be a subset of ^ : When

we consider the quotient topology on ^ y S is closed on J7~ if and only if

f~KS) is closed on F. f~ι{S) is closed on F if and only if f~ι{S) Π F« =

f~ι(S)Λ is closed on F* for each a (cf. Proposition 5.1 of the Appendix).

f"1{S)ϋί is stable by the equivalence relation on Fa by the Corollary of

Theorem 5. Therefore, /"1(5)α is closed on FΛ if and only if fΛf^iS)*) is

closed on the Q-variety ^ ^ since the topology on ^ ^ is the quotient topology

of FΛ with respect to the equivalence relation. By the definition of /

and / α and using the Corollary of Theorem 5, it is easy to verify that

/•(/•"H S)*) = Sίl ^l. Therefore, J^ is a Q-space. Then / is an everywhere

single-valued rational map by (e). (g) follows from the definition of a typical

universal family, Proposition 2 and from Theorem 2.

Remark 6.1. Our proposition is valid for Σo {V, d) too.

Remark 6.2. In order to define F, Fa, we have used the concept of

Chow-points for the sake of convenience. But this is not essential. For
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instance, the Fa may be replaced by those algebraic varieties F'a such that

(a) UαFά is a locally closed subset of a protective space, that (b) there

is a one-to-one birational correspondence between ΌaFa and UαFi as Q-

spaces and that (c) when k is a common field of definition of the Fa, the

F'Λ and the birational correspondence /, then k(x) = k{J(x)) for any point

of UαFα.

Let V be a non-ruled polarized variety of rank at most d and Σ a n

admissible subset of Σ (F, d), containing V. Let ^ ^ be a Q-space with

the component Q-varieties ^Z. Suppose that ^ satisfies the following

conditions:

There is an abstract morphism β* of Σ on ^ U oo and β*(U) ψ oo

if and only if Z7 is a solid polarized variety of ΣI

(M2) When U and U' are solid polarized varieties of Σ> then j3*(IT) =

β*(Z7') if and only if U and *7' are isomorphic;

(M9) When ϊ is a typical universal family of Σ> the gΛ the components

of g, the F α the Chow-varieties of the gβ and when F = U cχFtf, ̂ S* induces

a surjective map of F on ^ a surjective and everywhere single-valued

map β of jp on ^ and (^7 /3) is the quotient space of the topological

space F with respect to the equivalence relation on F\

(M4) β induces on F α an everywhere single-valued rational map βay

mapping Fa onto ^ ^ after rearrangement of indices is made if necessary;

moreover, there is a common field k of definition of the ^Z such that

when u is a point of F α representing U9 k(β(u)) is the field of moduli of U

over k.

When ^ satisfies these conditions, we shall say that ^~ is a Q-

space of moduli of Σ defined over k and β* the canonical morphism of Σ We

shall use similar definitions for admissible subsets of ^Q(V,d).

THEOREM 8. Let V be a non-ruled polarized variety of rank at most d and

Σ an admissible subset of Σ (V, d), containing V. Then it admits a Q-space of

moduli ( ^ 7 β*), which is uniquely determined up to a one-to-one birational

correspondence. When there is a typical universal family of Σ suc^ that every

component of it is defined over a field k, there is a Q-space of moduli defined over k

and vice versa.

Proof By Theorems 5 and 7, Σ admits a typical universal family g.
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Let the gα be the components of gί, the Fa the Chow-varieties of the 3fΛ,

F = UαFα and (^ β) as in Proposition 12 relative to F (using β for /).

Let A; be a common field of definition of the Fa. The Q-variety ^l =

(F*> βa) is defined over k by Proposition 2 and by Theorems E and G since

£<* is a variety defined over k (cf. Proposition 12, (a) and (c)). When U

is a solid polarized variety of Σ, isomorphic to a member ϊ/7 of % and

#' the Chow-point of U', we set β*(J7) =β(uf). Otherwise, we set β*(U) = oo.

Let gp be another typical universal family of Σ and L^""',/3'*) the corres-

ponding pair. There is a map ψ such that βf*{U) = ψ(β*{U)) between ^ ~

and t_^7~/. By the definitions, Proposition 12 and by the Corollary of

Proposition 11, ψ is canonically determined and is a one-to-one birational

correspondence between ^~ and ^ Γ t . It follows from this that (,̂ 7/3*) is

a Q-space of moduli of J] defined over k and that it is determined up to

a one-to-one birational map.

Let now (^7 β*) be a Q-space of moduli defined over a field k and

the J7Z the component ©-varieties of ^ 7 Let gί' be a typical universal

family of 2 , Z a common field of definition of the components ffa of %r

over k and ί7 a generic member of Si over ϋΓ. Set β*{U) = t. t is a generic

point of a component of ^ r ~ over K Since it is defined over k, t is a

generic point of it over k. Since K(t) (resp. k(t)) is the field of moduli

of U over K (resp. k), it is the smallest field of definition of \)(U,(^a{Cu))

over K (resp. k) by Proposition 2 and Theorem 2. By the Corollary of

Theorem 5 and by Theorem 7, it follows easily that u = c{U) is a generic

point of ${U,(ίa(Cu)) over K[t). Then it is so over k(t). From these, it

follows at once that u has the same locus over k as over K, which is the

closure of the Chow-variety of 3v Let Fr be the union of these. The

correspondence u -> β*(U) = t is a rational map of the Q-space Ff into the

Q-space ^ 7 Since k{u) contains k(t) by Theorems E, G, 2 and by Proposi-

tion 2, the rational map is defined over k. When Γ is the closure of the

graph of the rational map on Ff x ^ 7 it is fc-closed and the set of Chow-

points Ff of members of %f is the set-theoretic projection of Γ on Fr. Hence

%f has to be normally algebraic over k, i.e. locally ^-closed. Our theorem

is thereby proved.

Remark 6.3. This theorem is valid for admissible subsets of Σo {V9 d)

too.
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THEOREM 9. Let V be a non-ruled polarized variety of rank at most d and

2 an admissible subset of Σ ( F, d), containing V. Let g0 be a universal family of

2 , contained in Σ and ( ^ 7 β*) the Q-space of moduli of 2 defined over a field

k. Let F be an open subset of the Chow-variety of a component of g?0, ^ ' a Q-

space and 7 an everywhere single-valued rational map of F into ^ f satisfying the

following conditions:

(a) There is a component Q-variety J^ of ^ such that β* induces on F a

generically surjective map β to ^ ^ (b) If u, uf are points of F which represent

isomorphic polarized varieties of g0, then 7(u) — 7{u')\ (c) When K is a common

field of definition of F,T and the components of ^~' over k and when u is a point

of F representing U, K{β(u)y 7(u)) = K{β*(U), 7{u)) is a separable extension of K(β(u))

= K{β*(U)). Then there is a rational map h of j ^ into ^7~f such that h is

defined over K, single-valued at every β*{U) = β{u), u e F, and that T = h o β on

F.

Proof Clearly there is an abstract morphism h of β(F) c ^ ^ into

such that T = h o β on F. By our assumption, when u is a generic point

of F over K, β{u) is a generic point of ^ ^ over K. Let /' be a generic

specialization of β(u) = t over K{β(u)) and {t, u) -> {f, ur) an extension of

this to a generic specialization of {t, u) over K{β{u)). Since K{β{u)) =

K{β*(U)) is the field of moduli of U over K, ur represents a member V of

g0 which is isomorphic to U. Since ur is also in F, it follows that 7{u) =

T(ur). Consequently, t = V and t is rational over K{β(u)). Our theorem

follows at once from this, Theorem 8 and from the definitions.

Remark 6.4. Our theorem is valid for admissible subsets of Σo {V, d)

too.

Remark 6.5. The condition (c) is necessary. One can construct an

example where h is not a rational map and K{β*{U), T{u)) is a pure

inseparable extension of K{β*{U)).

The following theorem is an easy exercise of the results we have established

and a proof will be left to the reader.

THEOREM 10. The notations and assumptions being those of Theorem 8, there

is the smallest normal extension k of the basic field k0 of deformations, which has the

following properties: (a) There is a Q-space of moduli (T,β*) defined over k;
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(b) When σ is an automorphism of k over fc0 and when ^ l is a component of

is also a component of

§ 7. An Example. Let Vn be a polarized hypersurface. By this we mean

that V is isomorphic to a hypersurface of the projective space Pn+1. In the

case of characteristic 0, we have l(V,d) = 1 and n(V,d) = n +i+mCm — (n+2)2

if n > 2, m > 3, excluding the case n = 2, ft = 4 where m is the degree

of the hypersurface in P w + 1 , isomorphic to F (cf. [9]). In the case of

characteristic p, the same is true if we take for d the rank of V and assume that

V is isomorphic to a generic hypersurface over kQ in Pn+1.

Let Vn be a polarized variety and set n = N — s. Suppose that there

is a non-degenerate projective embedding f of V into PN such that f(V)

is the intersection-product of 5 properly intersecting hypersurfaces of degrees

mi. Arrange the mi so that m^x < πii. Then we shall say that Vn is a complete

intersection of type (mu. . . ,tns). The following facts are well-known (cf. [20]):

Let U be the intersection-product of s properly intersecting hypersurfaces

Hmi of degrees mt in PN, then H\U, DuM) = 0 for 1 < i < N— s —I

and HN-S{U, £V(m)) = HQ{U, £>u{p - m))* where ^ = Σ »«< — ΛΓ—1, m is an

arbitrary integer and * indicates the dual.

It is well-known that a non-singular generic hypersurface has the

irregularity 0, i.e. its Picard variety is of dimension 0. Also a generic

hypersurface section of a non-singular subvariety of dimension n > 2 of a

projective space has the same irregularity as the ambient variety (cf.

Matsusaka, "On the Theorem of Castelnuovo-Enriques", Nat. Sci. Rep.,

Ochanomizu Univ., 1953). When that is so, a complete intersection Vn

of type (ml9. . . , ms) has the irregularity 0 by Theorem B if n > 2.

Consequently, algebraic equivalence and linear equivalence on V coincide.

Throughout this paragraph, we shall fix the following notations. Vn will

denote a complete intersection of type {mlf. . . , ms). d will denote the rank

of V. We assume that V is isomorphic to the intersection-product Hmx Hms

of independent generic hypersurfaces over kQ in PN. This assumption is not

necessary when the characteristic is 0. Furthermore, we set (mu. . . , ms) —

((mi,. . . , mi), > (#*i>. . . , wti),. . . , (mly. . . , mt))9 where mt ψ wij if / ψ j

and the mi are repeated ^-times. We shall be mainly interested in the

spaces JXί(V,d) and ΣΌ (F, d). Our immediate goal is to show that every

member of So (V> d) is also a complete intersection of the same type as V.
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Essentially, this corresponds to Theorems 14.1 and 18.5 of [9] within the

frame work of abstract algebraic varieties, when V is a hypersurface. As a

matter of fact, we can conclude easily from this that the set of non-

singular subvarieties of dimension n, degree Πlnii in PN, which are specializations

of the intersection-product of s independent generic hypersurfaces of degrees nii over

kQ, is a universal family of So (F\ d), regarding it as a subset of S (F, d).

Since V is a complete intersection, there is a non-degenerate projective

embedding f of V such that f(V) can be expressed as the intersection-

product of s properly intersecting hypersurfaces. Denote by C* a hyper-

surface section of f{V) by a hypersurface of degree r and set f~ι(C*) =

Cr. Let W be a member of Σo (̂ > d) such that V is a specialization of

W over a discrete valuation-ring £). There is a polar divisor Dr on IF

such that {W, Dr) -> (F, C'r) ref. £), where C r — C'r. We have the following

relations: h\W, Dr) = A* (F, Cr) = 0 for 0 < ί < w = JVr-s;

χ (IF, Dr) = χ(F, Cr) = c r (cf. Theorem A); ^ ( F , C r )> c r - (-l)nAn(F, Cr),

Aβ(lF, Z)r) = c r - (-D A'ffF, 2>r) hn(W, Dτ) < ^W(F, Cr).

LEMMA 6. Wfen n ύ even, h°{V, Cr) = A°(TF, £>r) αnrf AW(F, C r) =

hn(W,Dr).

Proof If n is even, h\V, Cr) = cr - hn(V, Cr) and h*{W, Dr) = c r-/^w(TF, J9r).

By the upper semi-continuity, we have h°{W, Dr) < hQ{V, Cr). Hence

hn{W,Dr) > hn{V,Cr). Our lemma follows at once from this.

LEMMA 7. Assume that h°(V, Cr) = h°(W, Dr) for all positive integers r.

Then W is a complete intersection of the same type as V.

Proof Dr is ample by Proposition 2.2 of the Appendix. By Proposi-

tion 6, there is a non-degenerate projective embedding g determined by

A such that {W,Γg)-^{V,Γf) ref. D. Identifying F, W with f{V), g(W), we

may assume that F, W are already in the projective space of dimension

N. Let Λ(V, mi) be the linear system of hypersurfaces of degree miy consis-

ting of those hypersurfaces which contain F. We have dim Λ{Cm?) =

dim Λ{niiH) — dim Λ(V,nii) and a similar formula for W, where H denotes

a hyperplane. Then we get dim A{V, mi) — dim Λ{W, mt) from our

assumption.

Denote by Zij7 1 < i < /, 1 < j < tiy independent generic members of

the Λ(V, mi), 1 < i < /, over some field of definition of F. Then the Z^
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intersect properly on the ambient projective space and their intersection-

product is precisely F. Denote by Gίy GΊ the supports of the Chow-varieties

of the Λ(W,nii), Λ{V,mi)9 we have (W, (G<)) -> (F, (G'<)) ref. £). Therefore,

there are members Ti3- of A{W, m) such that (IF, (Γ^)) -> (F, (Z^ )) ref. D.

The T^ intersect properly, contains W, and their intersection-product

specializes to F over £) by the compatibility of specializations with intersec-

tion-product. Clearly, F and W have the same degree as positive cycles

and this proves that W is the intersection-product of the T^ . Our lemma

is proved.

PROPOSITION 133). Let V and W be polarized varieties of rank d such that

V is a specialization of W over a discrete valuation-ring £). If dim V = n > 1

and V is a complete intersection of type (mlf. . . , ms), W is a complete intersection

of the same type as V. There is a non-degenerate projective embedding h (resp. g)

of V (resp. W) such that h(V) = Vr {resp. g{W) = W) is the intersection-product

of s properly intersecting hypersurfaces of the degrees mi and that T F ' - > F ' ref £).

Moreover , h°{Vr, rCr) = h°(W, rCW

f) for all integers r.

Proof. When n is even, our proposition follows from Lemmas 6 and 7.

Therefore, we assume that n is odd and that n > 2. Using the same

notations as in Lemmas 6 and 7, take r so large that Dr and Cr are both

sufficiently ample. When we denote by Gr, G'r the supports of the Chow-

varieties of Λ(Dr), Λ{Cr), we have {W, Dry Gr) ->(F, Cr

r, G
r

r) ref. £), Cr~Cr,

since l{Dr) = l{Cr) by Proposition 3. Then, when xr is a given point of

Gr

r, there is a point of Gr which specializes to xr over the above specializa-

tion with reference to £). Therefore, we may assume, without loss of

generality, that (W,Dr) ~^{V,Cr) ref. D and that Dr,Cr are non-singular

varieties. Since Cr = f~ι(C*) and since hι{U, DuM) = 0 for any non-singular

intersection-product of dimension at least 2 of properly intersecting hypersur-

faces, the set of hyperplane sections of C* is complete. This implies that

C r, together with the induced polarization, is a complete intersection of

type (ml9. . . , mS) r). Then Dr is a complete intersection of the same type

by Lemma 7.

hn(V, Cm) = h^iCr, (Cr + Cm)-Cr) and hn(W, D'm) = hn'\Dr> (D'r + D'm)-Dr)

for large r, where Cr~Cry D'r^Dry C'M~Cm, Dr

m~Dm and Cr,Dr,Cm, Dr

m

3) This proposition does not require our basic assumption that V is isomorphic to the
intersection-product of 5 independent generic hypersurfaces over kQ.

https://doi.org/10.1017/S0027763000012733 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012733


ALGEBRAIC DEFORMATIONS OF POLARIZED VARIETIES 227

are chosen so that the intersections involved are proper. h°{V,Cm) =h°(W,Dm)

follows from Lemma 6, h°{V, Cm) = cm — (— l)nhn(V, Cm) and the similar

formula for W and Dm. The rest of our proposition now follows from

Proposition 6 and Lemma 7.

Let us denote by %{N, w ; ^ ms) the set of non-singular varieties

in the projective space PN of dimension n = N — s which are specializations

of a generic complete intersection of the same type as F. We identify it

with an algebraic family of polarized varieties of rank d, having the

same polarization type as V. Then, as we have remarked, Proposition

j.3 and the definitions imply that %(N9 n ;mlf. .. . , ms) is a universal family of

Ho(V>d) and l(V9d) = l. Next, we shall compute the number n(V9d).

LEMMA 8. Let W be a member of %(N, n; mu . . . , ms) and a complete

intersection of type (m1 }. . . ,ms). Let Λ(nti) be the complete linear system of

hypersurfaces of degree mi in PN and Λ{W, mi) the linear subsystem of it, consisting

of those hypersurfaces which contain W. Then the smallest field of definition of W and

the smallest field over which the Chow-varieties of the Λ{W, mι) are defined coincide.

Proof Let K be the smallest field of definition of W and L the smallest

common field of definition of the Chow-varieties of the Λ{W, mi). First we

shall show that L contains K. There are members Hmi of the Λ{W,nii)

such that they intersect properly and that W = Hmi Hms. Hence, we

may assume that these Hmί are independent generic members of the

linear systems over L. Let U be a common field of rationality of the

Hm% over L. Then W is rational and hence defined over U. We may

take U to be regular over L. Taking an independent generic specializa-

tion of the Hmt over L, we see that W is also defined over a regular

extension L" of L which is independent over L with respect to U. Hence

TV is defined over L and L contains K.

Next we shall show that K contains L. For this it is enough to know

that the module of forms of degree m which vanish on W has a basis over K.

But this is an easy exercise. Hence we have our lemma.

LEMMA 9. Let dim A{m^) = vt and dim Λ{VQy m^) = Uι where F o is a member

of %(N,n;mu. . . ,ms) and is a complete intersection of type (mlf. . . ,ms). Then

dim %{N> n;ml9. . . , ms) = Σ vt — Σ u{.

Proof Let the Hmi be independent generic members of the Λ{nii) over
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a field of definition k of %(N, n;m19. . . 9 ms). Then clearly the ntersection-

product W of the Hmt is a generic member of this universal family over h.

Hence F o is a specialization of W over k in particular. By Proposition 13,

we have h\V,,V,-Hm) = fc° (IF, IF •#«,). Hence the formula *°(IF,IF S»t) - 1

= dim Λ(nii) — dim Λ(W, mi) and the similar formula for F o show that

dim Λ[VQ, wii) = dim Λ{W, mi) — uit

Let the G£ be the Chow-varieties of the Λ{m^ and F the Chow-variety

of %{N,n\mι>. . . ,ms). Set G = ΠiGt. Let the x̂  be the Chow-points of

the Hmt and w the Chow-point of W. Denote by T the locus of

(&i,. . . , ac,, w) over k. Since &(#!,...,».) is regular over k and since w is

rational over h[xl9. . . ,#,), T is defined over k and is the closure of the

graph of a rational map of G into F. The projection of T on F is F,

and the cycle T" 1^) which is defined by {G x w) T = T~ι(w) x w is prime

rational over fc(w ). From the definition of T and from Lemma 8, it is

then easy to see that \T'1(w)\ is the product of the supports of the Chow-

varieties of the Λ{W,nti). Our lemma is an immediate consequence of

these results.

COROLLARY, dim g(2V, n ml9. . . , ms) = Σ* hQ(VQ, V^ Hmt) — 5 .

PROPOSITION 14. Let W be a generic member of the universal family

d(N9n;rnl9. . . ,nιs) of^{Vyd) over afield h of definition of it. Then n{V,d)

= Σ i h°{U, U Hm) — 5 — {dim PGL{N) — dim aut (W)), where U denotes an arbitrary

member of the universal family.

Proof Our formula is an immediate consequence of the definitions and

of Lemma 9, Corollary of Theorem F.

PROPOSITION 15. The set ξ){N,n;ml9. . . 9ms) of members of f?(2V,n

ml9. . . , ms) which are complete intersections of type (ml9. . . , ms) is an

irreducible algebraic family such that its Chow-variety is an open subset of that of

%{N9 n;ml9. . . 9ms) over fc0. When p = Σ w t — N — 1 > 0, every member of

%(N, n;ml9. . . , ms) is not ruled, and, for such a member U, we have

dim aut (U) = 0.

Proof The first assertion in our proposition is an easy exercise.

As we remarked, every member of %{N, n;ml9. . . 9 ms) is a regular

variety by Theorem B. For the sake of simplicity, let us identify a member

https://doi.org/10.1017/S0027763000012733 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012733


ALGEBRAIC DEFORMATIONS OF POLARIZED VARIETIES 229

W of §(iV, n ml9. . . , ms) with its underlying variety W. A canonical divisor

of PN is a hypersurface of degree — N — 1 as is well-known and easy to prove.

In general, when Hmi,. . . , Hms are properly intersecting hypersurfaces such

that their intersection-product is non-singular, a canonical divisor of Hmι Hms

is given by Hmi -Hms'Hp, where p =^rnt— N — I (cf. [27]). Therefore,

when |t? is positive, a canonical divisor of W is an ample divisor. Since

the underlying variety U of a member of S(iV, n m^. . . , /w,) is a specializa-

tion of some W over ft0, it follows that £7 2ϊp is also a canonical divisor on £/

and that a canonical divisor on U is either ample or linearly equivalent to 0.

The connected component G of aut(C7) leaves every divisor class on U with

respect to algebraic equivalence fixed. Moreover, the irregularity of U is 0.

Hence G leaves every complete linear system of divisors on U invariant.

Consequently, G has a non-trivial representation as a linear algebraic group.

If U is a ruled variety, it is birationally equivalent to P1 x D11'1 where

D71'1 is a normal projective variety. A canonical divisor on this product

is linearly equivalent to K{Pι) x D + P1 x K{Dn~x), where K{*) denotes a

canonical divisor of *. This is well-known and easy to verify. Then it is

easy to see that the virtual geometric genus PgiP1 x Z)"~ι) is 0, and, when

that is so, the geometric genus pg{U) has to be 0 (cf. [27]). Therefore, U

cannot be a ruled variety.

If U cannot be a ruled variety, the connected component of aut (U)

containing the identity is an Abelian variety (cf. [16]). Hence it has to be

reduced to the identity as is well-known since it has a non-trivial represen-

tation as a linear algebraic group (cf. M.Rosenlicht, "Some rationality

questions on algebraic groups", Annali di Matematica, 1957; H. Matsu-

mura, "On algebraic groups of birational transformations", Rendiconti,

Accad. Naz. Lincei, 34, 1963). Our proposition is thereby proved.

PROPOSITION 16. There is a non-singular algebraic variety A and a subvariety

Z of A x PN with the following properties: (a) x x PN and Z intersect properly

on A x PN for every point x of A; (b) Z(x) which is defined by (x x P) Z =

x x Z{x) is a member of %>{N, n;ml9. . . , ms) when polarized suitably, and vice

versa; (c) A and Z are defined over the basic field kQ and ko(x) is the smallest

field of definition of Z(x) over JcQ.

Proof When A is a linear system of dimension r of divisors on a

complete variety B without singular subvariety of co-dimension 1, there is
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a positive cycle T on P r x B such that (i) y x B and T intersect properly

on Pr x B for every ?/ on P r , (ii) T(t/) is in A and conversely, and that

(iii) when h is a common field of definition of B and Λ, k{y) is the smallest

field of rationality of T(y) containing h. This fact is well-known and we

shall call it a Grassman parametrization of A (cf. [23], Chap. IX).

Denote by ξ> the family ξ>{N,n;ntu. . . ,ms) and let U be a member of

φ. Set dim Λ(»2t) = i>*, P* = P% P ' = ΠiPt and dim 4(£Γ, πii) = w<. «t is

independent of the choice of U by Proposition 13. Denote by {Pu Tt) the

Grassman parametrization of Λ{m£) and (xf) = (0^, . . . ,#, ) a point of Pr

such that cci is a point of P^. For the sake of simplicity, we shall identify

members of § with their underlying varieties.

Let P'o be the set of points (x) of P', such that the T^a^) intersect

properly on PN and that T^xJ Ts(#s) is non-singular, forms an open

subset of P ' which is easy to prove. When (x) is in P'o, T^α^) Ts(ίcs) =

£/(#) is a member of £>, and conversely, a member 17 of ξ) can be expressed

this way. For a point (a) of P'o, the linear system A(U{x), nti) is represented

by a subspace L{(x),Mi) of dimension #* in P$. Set L((x)) = ΠiL{{x)9mί).

We shall show that the L((x)) form an involutional family of positive cycles on

P', then apply a theorem of Chow ((2)) to construct A and Z.

In order to do so, we first observe the following basic properties are

satisfied by the L({x)). (i) For (05) e P'o, L((a?)) is uniquely determined,

dim L((α?)) — Σl^i a i*d ί/(a?) and L((flj)) have the same smallest common field

of definition over kQ (cf. Lemma 8). (ii) When (#), (xf) e P'o and {x) ~> (a;')

ref. Λo, L((x)) ~+L{(x')) ref. fc0 uniquely over this specialization, (iii) When

(x), (»') e P'o such that (xf) e L((a5)), then J7(a?) = £/(«') and vice versa.

(iv) When (x),(x')^PΌ and L({x))-+L{{xr)) ref. fc0, then [/(«)->£/(«') ref. kQ

uniquely over this specialization.

(i) and (ii) show that the L{(x)) form generically an involutional system

on Pr in the sense of Chow (cf. [2]). Let A be the set of Chow-points of

the L({x)) when (x) is in P'o. Then every point of A is simple on its

closure A by the theorem of Chow. A is the image of P'o by the canonical

rational map of Pr into A, and the map is defined at every point of P'o.

Since A contains always a non-empty open subset of A (cf. [24]), it is easy

to prove that A is actually open on A Then (i)-(iv) prove the existence

of Z as required in our proposition, which is an easy exercise of [23],
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Theorem 6, Chap. VIII and of the compatibility of specializations with

intersection-product.

P R O P O S I T I O N 17. Call ξ>d{N, n;ml9. . . 9 ms) the subset of ξ>(ΛΓ, n;mL,..., nts),

consisting of polarized varieties of rank d. Then $)d{N, n mί9. . . ,ms) is an irredu-

cible algebraic family defined over kQ. Moreover, Proposition 16 is valid for

ξ)d{N, n;ml9...,tfis) too if we take a suitable open subset of A which is defined over hQ.

Proof. This follows at once from Proposition 16 and from Proposition

4. 3 of the Appendix.

Let us denote by Σ * the subset of ΣΌ (Y> d) consisting of complete

intersections of type [ml9 . . . , ms). Then Propositions 15 and 17 show that

Σ * is an admissible subset of ^0{V,d), that ^d{N,n;mly. . . ,ms) is a universal

family of Σ * contained in it and that an arbitrary member of ΣΌ (V, d) can be

obtained by specialization over kQ from a member of Σ * (cf Proposition 13).

THEOREM 11. Let Vn be a polarized variety of rank d. Assume that it is a

complete intersection of type (ml9. . . , ms) and isomorphic to the intersection-product of

s independent generic hyper surfaces Hmt of degrees m-i over kQ in PN. Set U —

Hyyii - Hms. Then we have the following results {assume that mx > 1 and n > 1):

(a) 1{V, d) = 1, n(V, d) = Σ , h°(U, D (̂w<)) - s - {dim PGL{N) - t) where t =

dim aut (V)

(b) When p = ^mt — N — 1 > 0, every member of §(ΛΓ, n ml9. . . , ms) is not

ruled and dim aut (F) = 0;

(c) When 2 * is the set of members of 2 a (VJ d) which are complete intersections

of type (ml9. . . 9m8)9 it is an admissible subset of ^]Q{V9d);

(d) When p > 0, Σ * admits a Q-variety of moduli {^~, β*) defined over kQ and

J^ is a Q-manifold when the characteristic is 0.

Proof (a) and (b) follow from Propositions 14 and 15. We have settled

(c) already.

By Proposition 17, there is a non-singular algebraic variety A and a

subvariety Z of A x PN

9 both defined over hθ9 such that u x PN and Z

intersect properly on A X PN for every u on A and that the Z{u) exhaust

ξ>d(IV, n ml9. . . ,ms). ^d{Nyn;mly. . . ,ms) satisfies the following conditions:

(i) l{Cu) = constant for all members U; (ii) Every member U is not

contained in a hyperplane; (iii) C^ is constant for all U; (iv) The set
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of hyperplane sections of U is complete for all U; (v) ?β(U; Sα(Cϋ)) c:

$d{N,n\nιu. . . ,m9) for all U. In fact, (i) follows from Proposition 13.

(ii) is a part of our assumption, (iii) is obvious, (iv) follows easily from

hι(U, Όu{m)) = 0. (v) follows from (i) and (iv). Moreover, dim p(U9 &a(Cu))

= dim PGL{N) if p > 0. Assuming from now on that p > 0, Theorem D

shows that the equivalence relation on φd(iV, n;mlf. . . 9ms) defined in

terms of isomorphisms of polarized varieties is strongly fc0-closed. Denote

by EQ the set of pairs of equivalent points on A by the equivalence relation

induced by that of ξ>d{N, n ml9. . ,ms). Since there is a canonical one-to-

one birational correspondence between A and the Chow-variety of

φd{N,n;ml9. . . ,ms) defined over k0 by Proposition 17, EQ is fc0-closed on

A x A and the equivalence relation on A is strongly &a-closed. Hence (A, EQ)

defines a Q-variety ^ 7 defined over kQ, consisting of regular points. Let β

be the canonical map of A on j^7 β is a morphism defined over fe0 and

we extend β to a map β* of 2 * onto , ^ in the usual manner. Then it

will be easy to verify that (^7 β*) is a Q-variety of moduli defined over

&o if we show that kQ(β(u)) is the field of moduli of Z{u) for all u from A.

The set Eύ{u} of points on A which are equivalent to u is the transform

of p(U,©α(Ci7)) by the canonical birational correspondence, if we set Z{u) — U.

ko(β{u)) is by definition the smallest field of definition of the support of EQ{u}

over JcQ. Hence it is the smallest field of definition of p{U, &a{Cu)) over

kQ. Cu is ample and ©α(C^)+ is a complete total family since it is the

complete linear system determined by Cu. It follows that ko{β{u)) is the

field of moduli of U over k0. (cf. Theorem 2). Our theorem is thereby

proved.

Aρpendix*}

§ 1. Ruled varieties. A ruled variety V is by definition an algebraic variety

whose field of rational functions K contains a subfield L such that K is a pure

transcendental extension of positive dimension of L.

In this paragraph, we shall show that a non-singular variety in a

projective space, which is a specialization of a ruled variety, is also a ruled

variety. We shall begin with a rather obvious lemma, a proof of which will

be left to the reader.

LEMMA 1.1. Let V be a non-singular ruled variety in a projective space. Then

Most of the results here are not new. They are collected here for the sake of convenience.
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V x V carries an irreducible algebraic family © of positive cycles T with the following

properties: (a) The Chow-variety of © is complete; (b) When h is a common

field of definition of V and @ and when T is a generic cycle of © over k, T is a

birational correspondence between V and V; (c) © contains a cycle Ύr such that

every component of it is degenerate, i.e. no component H of Tr has the property

[H: VΊl lH: V2] Ψ 0, where Vt denotes the i-th factor of the product V x V.

We shall state briefly an idea of a proof and leave the rest to the reader.

There is a field fc of definition of V, a variety W defined over h and a

rational map / (not necessarily a morphism) of V defined over fc, generically

surjective on W, such that a generic fibre f~x{w) over h is birationally

equivalent to the projective line over k[w). One can find a family of

positive chains satisfying (a), (b) and (c) on f~ι{w) X f~ι{w). From this family

it is possible to construct a family of positive cycles on V XV we are

looking for.

THEOREM 1.1. Let V be a non-singular ruled variety in a projective space,

V a variety in a projective space and £> a discrete valuation-ring such that Vf is a

specialization of V over £). Then Vr is also a ruled variety.

Proof By our lemma, V XV carries an irreducible algebraic family ©

of positive cycles satisfying (a), (b), (c). Let G be the support of the Chow-

variety of © and (7, G) -> (V, G') ref. D. Since G is connected, G' is

connected by Zariski's connectedness theorem, extended by Chow and

Grothendieck (cf. [1], [3]).

Assume that Vr is not ruled. Let υr be a point of G'. There is a

point v oΐ G such that (V, G, v) -> [V, G', υ') ref. D and we may take υ to

be a generic point of G over a common field of definition of V and G. υ

is then the Chow-point of a birational correspondence between V and V.

When that is so, vr is the Chow-point of a positive chain on Vr x V,

which contains a component such that it is a birational correspondence

between Vr and Vr (cf. [16]). Since © contains a degenerate member by

(c), it follows that Gr contains the Chow-point of a degenerate chain on

Vτ x V'. This is against to what we have observed and Vr has to be a

ruled variety.

§ 2. Upper semi-continuity.

PROPOSITION 2.1. Let V, W be non-singular algebraic varieties in projective
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spaces, X a V-divisor, Y a W-divisor and D a discrete valuation-ring such that

(y,X)->(W',Y) ref. JD. Then

h\V, X) < hl{W, Y).

Proof. This is well-known and is a special case of a more general upper

semi-continuity (cf. [3]). But if a reader is interested in proving this case

as a simple exercise, he can proceed as follows. First observe that the case of

dimension 1 is an easy consequence of the Riemann-Roch theorem, the formula

l(X) < l(Y) and the invariance of canonical divisors by specializations. In

general, denote by Cm a hypersurface section of V by a hypersurface of

degree m so that Cm is a normal variety (cf. [18]). Then hί+1(V, X) =

hί{Cm,CΎίl*{Cm + X)) for / > 0 if m is large (cf. [26]). Then the general case

can be proved by induction, using the invariance of the Euler-Poincare

characteristic (cf. Theorem A), the duality theorem and l(X) < l(Y).

PROPOSITION 2. 2. Let V, W be non-singular subvarieties of protective spaces,

X a V-divisor and Y a W-divisor. Let D be a discrete valuation-ring and assume

that {W,Y) is a specialization of {V,X) over £> and 1{X) = 1{Y). Then, when Y

is ample, X is also ample.

Proof Let G(X) (resp. G(Y)) be the support of the Chow-variety of

A(X) (resp. Λ(Y)). Since linear equivalence is preserved by specializations,

it follows that (7, X, G{X)) -> {W, Y, G(Y)) ref. D. Therefore, when {vl9. . . ,vm)

is a set of points of G{Y), there is a set {ul9. . . , um) of points in G(X) such

that the specialization can be extended to (ul9. . . 9um)-±{vι,. . . ,vm) ref. D.

Since Y is ample, Λ{Y) has the property that (i) it separates points of

W and that (ii) for any given point Q of W there is a set Yl9...9Yn9 n ~

dim W, of members of Λ(Y) such that Q is a proper component of multi-

plicity 1 of Γ)iYi on W. Conversely, since (ii) implies that Q is simple on

the Yi and that the tangent linear spaces to the Yi at Q form a set of n

independent hyperplanes on the tangent linear space to W at Q, (i) and

(ii) imply the ampleness of Y. Using this remark and also the above remark

for specializations, we can verify easily that X satisfies (i) and (ii) and hence

that X is ample on V. In order to do this, what we need is the compa-

tibility of specializations with intersection-product and a few fundamental

facts on specializations of cycles (cf. [21]). Details will be left to the reader.

PROPOSITION 2.3. Using the same notations and assumptions as in Proposition
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2. 2, assume further that Y is sufficiently ample. Then X is sufficiently ample.

Proof. This is an immediate consequence of Propositions 2.1 and 2.2

since algebraic equivalence is preserved by specializations.

§ 3. Some cohomological questions.

PROPOSITION 3.1. Let Vn be a non-singular subvariety of a projective space

and X, Z divisors on V. Then χ(V, X 4- mZ) is a polynomial in m.

This is a special case of a theorem of Snapper (cf. [22']) and a little

more general result is obtained in [8']. But it is also an easy exercise to

the readers. Note that χ(V, D) = (- l)n{pa(V) + pa{- D)) (cf. [26]), that V carries

an ample divisor and then make use of the formula for pa which is similar

to [46], § 12 in [27]. As a corollary of this, Theorem C and Theorem A,

we get the following result.

PROPOSITION 3.2. Let V be a non-singular subvariety of a projective space

and X, Y two divisors on V which are numerically equivalent on V. Then χ(V, mX)

= X{V, mY) for all integers m.

PROPOSITION 3. 3. Let Vn be a non-singular subvariety of a projective space,

A* an ample linear system on V and X a divisor on V such that Λ(X) is not

empty. Let C ( 0 be a non-singular subvariety of V of codimension i, which is the

intersection-product of i properly intersecting members of A*, such that X and the

C(i) intersect properly on V'. Assume that the following conditions are satisfied:

(a) Λ(X) induces on C{ί) the complete linear system Λt = A{X'C(ί)) for i >Q;

(b) Ar = Λ{X) — Λ* exists and induces on C(w~1) a complete non-special linear

system. Then the minimum sum of Λ* and Λ{X) is complete and Λ(X + C) induces

a complete linear system on C.

Proof We proceed by induction on n. A well-known lemma of

Castelnuovo states that when A* is a linear system without base points on

a complete non-singular curve and when a complete non-special linear

system A is such that A — A* exists and non-special, then the minimum sum

of A* and A is complete. When n = 1, our assumptions imply that these

conditions are satisfied. Hence the minimum sum of A* and A(X) is complete.

Assume now that our proposition is true up to dimensions n — 1. Set

C(1) = C. A{X) induces A{X C) on C and A* induces on C an ample linear

system AX. Moreover, A(X C) — A* exists and this induces Trc^-^{A{X) — Λ*).
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Therefore, the minimum sum of Λ{X C) and A* is complete by our

induction assumption. Let C be a member of A* such that C and C

intersect properly on V. Let M be the defining module of functions h of

A* on V such that div (Λ) + 0 0 . When the / are taken from L(X) and

the h taken from M, the functions /• h generate the module Mf of functions

which defines the minimum sum Λ*r of Λ{X) and A*. TrcA*r contains

clearly the minimum sum of TrcA{X) and TrcA*. Hence TrcA*' = A{C {X+C')).

It follows that M induces the module L{C-(X+C')) on C. M is a

submodule of L(X+C). Hence we can complete a basis of M to a

basis of L(X+C) by adding those functions g on V which induce 0 on C.

Since div (#) = Y — X — C, F >0, and since C is not a component of X

and C, it follows that C is a component of Y. Set Y = Y' + C. F' is a

positive divisor. Let h be a function in M such that div (A) = C — C .

Then flr/A is in L(X) and hence # is in ΛP. Our proposition is thereby

proved.

PROPOSITION. 3.4. Zέtf Vn be a non-singular subvanety of a projective space,

X a divisor on V and Y an ample divisor on V. Let F ( α ) be a non-singular subvanety

of V of codimension a, which is the intersection-product of a properly intersecting

members of A(Y) such that X and the F ( α ) intersect properly on V. When h\V, X)

= 0, h*(YiΛ\ X F ( α )) = 0 for i>0 and 1 < α < n - 1, then h\VyX+mY) = 0 for

ί > 0, m > 0.

Proof When n = 1, our result follows from the theorem of Riemann-

Roch. Therefore, we proceed by induction on n. Let F' be a member

of A(Y) such that Yr and the F ( α ) intersect properly on V. Setting

F ( 1 ) = F, our induction assumption and the cohomology exact sequence

from 0 -> 2(V, X+{m- 1)Y') -> S(F, X + mF') -> S(F, F (X + wF')) -> 0 imply

ht(V,X+(m-l)Y')>hi{V,X+fnY') for t >0, m > 0 . Since A*(F,X) = O for

i > 0 by our assumption, we get our lemma from this.

PROPOSITION 3.5. Let Vn be a non-singular subvanety of a projective spacey

A an ample linear system on V and X a divisor on V. Let C be a member of A

and set X{V,mC) = g{m), X(V,X + mC) = gx{m). Then there is a constant tOy

depending only on g{x), gx(χ) and the intersection numbers c3- = I{Xa) Cin'i))9 suck

that hi{V,X+ tC) = 0 for i>0 when t > tQ.

Proof Let C(α) be a non-singular subvariety of V of codimension a,
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which is the intersection-product of a properly intersecting members of Λ,

such that (X, C(ot)), (C(α), Cm) are pairs of properly intersecting cycles on V

and that C^-C^ = C(α+/3) provided a + β < n. Set C^ = C. 2(C(0°,

X-Cw + (w-l)C C(α)) + χ(C(α+1), X. C(<x+1) + wC C(*+1)) = χ(C(oι), X C(ot) + mC C{Λ))

implies that the polynomial gx.cw(m) = Z(C(ct), X C(α) + mC C(α)) can be

deduced from #x(m) for 1 < a < n — 1. In the same way, the polynomial

ga(m) = χ(C(α), mC Cw) can be deduced from #(m) for K α < n - 1.

When n = 1, our result follows at once from the theorem of

Riemann-Roch. Therefore, assume that there is a constant t', depending

only on g(χ), gx{x) and the cί9 such that **(C(β°, C(β) (Z+/C)) = 0 for z > 0

and 1 < « < w — 1 when t > V. The exact cohomology sequence of

0 -+ S(7, X + (/ - 1)C) -> S(7, X + /CO -> S(C, C (X + tC')) -> 0 and the induction

assumption imply h1(V,X+ (t - 1)C) > ^(7, X + ίC) and ^?:(F, X + (ί - 1)C) =

A*(7,X+ίC) for f > Γ, / > 1 (C is a member of A such that C and C

intersect properly on V). Since hi(V,X+ tC) = 0 for ί > 0 and for large ί,

we see first of all that hi(V,X+ tC) = 0 for i > 1 and / > f. Suppose^ for

some t > t\ that h\V, X+(t- 1)C) = A1^, X + ίC) = A1^, X + (/ + 1)O). Then

the exact cohomology sequence we quoted above implies that Λ(X + tC) and

^1(X+(ί + 1)C) induce on C complete linear systems. When that is so,

these two complete linear systems on V induce complete linear systems on

C(α) by similar reasons as above and by our induction assumption. Therefore

A and Λ(X + {t + 1)C) satisfy the requirements of Proposition 3.3. It follows

that the minimum sum of these linear systems is A{X-\- (t + 2)C). The same

is true of the induced linear systems of A and Λ(X + {t Λ-1)C) on C, and

consequently the minimum sum of these two on C is also complete. It

follows that A(X+(t + 2)C) induces on C a complete linear system. When

we replace t by t + 2 in the above exact sequence of sheaves and apply

the induction assumption and this result to the exact cohomology sequence

derived from it, we see that h\V, X + {t + 1)C) - h^V, X + (t + 2)C). Repeating

this process, we get k1(V9X+{t-1)C) = h1(V,X+(t + l)C) for all non-

negative /. This is impossible unless hι{V,X+ (t - 1 + l)C) = 0 for all

non-negative /.

On the other hand, from what we have proved and from the definition,

we see that hQ(y,X+t'C) = gx(t') + h1(V,X+t'C). Moreover, we have

h*{V,X+ trC) < {X+ trC)(n) + n (cf. [16]). From this we get h\V,X+ t'C) <

(X+ t'C)(n) + n — gx{t') = s. Then it is now an easy exercise to show that
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hι(y, X + tC) = 0 whenever t > V + 2s + 1. Our proposition is thereby

proved.

§ 4. 0/z algebro-geometric conditions.

PROPOSITION 4.1. Let V be a closed subset of an algebraic variety A and

(P) a set of algebro-geometric conditions. Assume that the following properties are

satisfied by V and (P). (a) When W is a subvariety of A, contained in V and

defined over a field k of definition of A over which V is closed, and when there is a

generic point of W over k which satisfies (P), there is an open subset D of W,

containing this point, such that every point of D satisfies (P). (b) There is a

field K of definition of A over which V is closed with the property that, when

x, xf are points of V, x-+xr refi K and when x' satisfies (P), then x satisfies

(P). (c) A generic point of each component of V over K satisfies (P). Then the

set of points U of V which satisfies (P) is a K-open subset of V.

Proof It is easy to see that our proposition can be deduced from the

case when V is a subvariety of A defined over K. Therefore, we shall

assume that V is a subvariety of A defined over K.

Assume now that x satisfies (P) and let D be an open subset of V,

containing x, such that every point of it is a point of U. D exists by (a).

Let the W* be the components of V — D containing some points of U and

the Wβ the components of V — D which do not contain any point of U.

Set V — U βWβ = V and let D', Όr be the restrictions of D9 U on V. V is

open on V and D = D', U = Ur. Therefore, it is enough to prove that U

is open on Vr. When that is so, we may assume without loss of generality

that V = V'. By (a) and (b), there is a non-empty open subset DΛ of Wa

such that every point of it is contained in U. Let the W*tr be the

components of W^ — D^ and Z>(1) the open subset V— Uα,rTFα,r. D is

contained strictly in this open subset and every point of Z)(1) is contained

in U. When we continue this process, we get an increasing sequence of

open subsets of V which are contained in U. Moreover, this does not

terminate as long as points of U are not exhausted. Therefore, U is an

open subset of V.

When that is so, U is a K-open subset of V by the definition of U

and by our assumption (b). Our proposition is thereby proved.

In order to discuss the following lemmas and a proposition, we shall
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fix some notations and conventions. Let § be an irreducible algebraic

family of non-singular varieties in a projective space, k a field of definition

of ξ> and H the Chow-variety of ξ). Let 5 be a positive integer, which is

prime to the characteristic, such that s and t{Vr) are relatively prime for all Vr in

ξ>. We set r = s or 1/s. We denote by r(£a(Cvr) the class &a(sCVf) if r = s

and the class QLa{X') where Xr is a F'-divisor such that sX' Ξ= Cvr mod ®a

if r — 1/5. In Lemmas 4.1, 4.2 we shall assume that a sufficiently ample

divisor is contained in r&a(Cv,) for every V G ξ). When that is so, every divisor

in r(£α(CF/) is sufficiently ample and r(£α(C7/)
+ is a complete total family

defined over k(υr) if υr = c(V) (cf. Proposition 2 and Theorems E and G).

Let v be a generic point of H over k, representing F e § , X a generic

divisor of M£α(CF)
+ over fc(t ) and K a field of rationality of X over &(#).

Let fx be a non-degenerate projective embedding of V determined by X,

rational over K, and τ a generic projective transformation over K of the

ambient space of fx(V). Set Γ = Γτ o rA, u = c(τ o f X(V)\ t = c(Γ), G =

loc*(«), / = locjfc(/), T = loc*(t;, ί, ί).

LEMMA 4.1. (a) G, /, T are defined over h. (b) The set of points G in G

which represent non-singular varieties, not contained in any hyperplane, is k-open on

G. (c) The set of points J in J which represent irreducible cycles in the multiple

projective space is k-open on J. (d) The restriction T of T on H x G x / is

k-open on T.

Proof (a) follows easily from the fact that K can be taken as a regular

extension of k{v). (b) and (c) follows from the fact that those properties can

be described in terms of non-vanishing of finite sets of homogeneous poly-

nomials over k in the Chow-coordinates, (d) follows at once from (b) and (c).

LEMMA 4. 2. A point {v', ur, t') is in T if and only if υr represents a member

Vr of ξ>, V represents a non-degenerate projective embedding f Xl of Vr with

X' e r&a(Cv,)
+ and ur represents fχι(Vr).

Proof Let (υr, uf, tr) be a point of T. It is a specialization of {v, u91)

over k and, when that is so, υ\ ur, V are as described in our lemma by

Propositions 2, 4, Theorem Dr and by the compatibilities of specializations

with the operations of intersection-product and algebraic projection. Assume

now that Vr is in ξ>, ur represents fχf{V) and V represents the graph of

f χr with Xr G r@α(CF,)
+. Vr is a specialization of V over k and there is a
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divisor X in r&a(Cv)
+ such that (7, X) -±{Vr,Xr) ref. k by Propositions 2 and

4. Then (7, X) -> (7', X') ref. k by our choice of X. By Propositions 3 and

6, there is the graph Γ# of a non-degenerate projective embedding of 7,

determined by X, such that (7, X, Γ*) -> (7', X', Γ*,) ref. ifc. From the

definition of Γ, it follows easily that (7, X, Γ#) is a specialization of (7, X, Γ)

over fc(t ). Hence (υr, ur

y tr) is a point of T and our lemma is thereby

proved.

PROPOSITION 4.2. Z^ί § fo an irreducible algebraic family of non-singular

varieties in a projective space P. Let s be a positive integer which is prime to the

characteristic and to the order t{V) of a member V of § . Setting r = s or r — 1/s,

assume that the following conditions are satisfied: (a) For any member V of § ,

the set of hyperplane sections of V forms a complete linear system; (b) For such

V, (£α(CV) and r©α(CF) contain sufficiently ample divisors on V; (c) ξ) contains

,(Sα(CV)) for all V in £. Then, when we set φ r = U F E $5J$(7,r©a(CV)), § r

irreducible algebraic family. When § w defined over a field k, so is ξ) r.

/. By Theorem F, s is prime to ί(7) for every 7 in φ. Let /ί be

the Chow-variety of ξ) and let us use the same notations and conventions

of Lemmas 4.1 and 4.2. By Lemma 4.2, when we denote by Hr the set-

theoretic projection of T on G, i/ r is the set of points representing members

of § r . Therefore, we must show that Hr is a Λ-open subset of G. In

order to do this, we shall show that the conditions (a), (b), (c) of Proposition

4.1 are satisfied.

(c) is trivially satisfied in our case. Let G' be a subvariety of G such

that G' Π Hr contains a generic point of G' over a field L of definition of

G' containing k. Then by Lemma 4. 2, H x G' x / Π T contains a component

T" which has the projection G' on G. Hence G' Π # r contains an L-open

subset of G', containing the generic point of G' over L. (cf. [24]). Thus

we have verified the condition (a).

Next we shall verify the condition (b) with respect to the field k. Let

u*, uf be points of G, corresponding to non-singular varieties t/*, Ur such

that u*-^ur ref. k. Assume that U' is a member of ξ)r. There is a

member 7 ' of § and a non-degenerate projective embedding f of Vr such

that f'-^Cur) G r(£α(CF,). Set ro fx(7) = U and r o /^(CF) = Y. Let

07, F) -> (£/*, F*) ref. fc and (ί/*, 7*) ->• (C/', Fr) ref. fc. Since C^ e r©a(F) and

since algebraic equivalence is preserved by specializations, it follows that
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Cm <Ξ r(£α(F*) and Cw e r®α(F'). When that is so, rS^/"" 1^')) = r©α(CV,)

and consequently f'~ι{Yr) Ξ= CV, mod ©α by our choice of r. Hence Yr is

sufficiently ample and F* is also sufficiently ample by Proposition 2.3.

Moreover, 1{Y) = 1{Y*) = l(Y') by Proposition 3. Set fγ,{Uf) = Vf. By the

definition, we have fγ,{Y') Ξ= Cψ mod ®α. Hence gr = fγ, o f is a non-

degenerate projective embedding of Vr, determined by a divisor in Sα(CF,),

i.e. F'G$(F',Sα(C^)). It follows that F ' e | ) by our assumption. Applying

Proposition 6 to fγ, and to (£/*, F*) -> (£/', F') ref. k, we see the existence of

a non-degenerate projective embedding f* of i7*, determined by F*, such

that (tf^F*,/>)-*({7',F',/V) ref. fc. Doing the same to /> and to (£/,F)

—>• (£/*, F*) ref. ft, we see the existence of the graph Γ of a non-degenerate

projective embedding of U, determined by F, such that {U,Y,Γ)~^

(£/*, F*,/» ref. ft. [τ°fχ)~ι is a non-degenerate projective embedding of

U, determined by F. Therefore, when we put V = Γ(f/), F and F differ

by a projective transformation and V is a member of *β(F, ©α(CF)). When

we set f *(ί/*) = F*, we have V -> F* ref. yζ; and F* -»F r ref. k. Since

F, F ' G § as we have seen and since § is an algebraic family defined over

k, it follows that F* e φ. Since Γ"1 is determined by a divisor in r&a{Cy)y

it follows that Γf*'1 is defined by a divisor in r(£α(CF*) by the compatibility

of specializations with intersection-product and algebraic projection. This

shows, by Lemma 4.2, that t/* is a member of ξ>r. The condition (b) is

thus verified and our proposition is thereby proved.

COROLLARY. Let ξ) be an algebraic family of non-singular varieties in a

projective space. Let r be as in our proposition. Assume that § satisfies (a) and

(b) of our proposition and also the following condition: (c') When V is contained in

a component φ t f of φ , ξ>tt contains $ ( F , ©α(CV)). T%^, J Λ W Z#£ dfe/m* ξ>r β^ in

oz/r proposition, it is an algebraic family. Moreover, when ξ> is normally algebraic

over a field k, so is § r .

Proof Let the § α be the component families of <£). Then «ξ)r is the

union of the (φβ) r, which is an algebraic family defined over k by our

proposition. Let the {Ha)r be the Chow-variety of ( § J r and Sα the

complement of {Ha)r in its closure. Let <Sα be the algebraic family of

positive cycles in the projective space defined by S«. Our corollary will

follow easily if we show that @α Π ($^)r = ^ when α ̂  ^.

Assume that @α Π {&β)r contains U'. Let ί/* be a generic member of
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a component family of @tf over k which contains U\ Let U be a generic

member of (ξ>α)r over ίc. There is a generic member F of § α over k

and an isomorphism f between V and U such that f~ι(Cπ) e r(£α(CV). Set

f(CF) = F. Let (t/, F) -> (£7*, F*) ref. £ and (£/*, F*) -* (tΛ, F') ref. k. Since

algebraic equivalence is preserved by specializations, it follows that

CV e r(£α(F), C ^ e r W F * ) and C ,̂ e r©α(F'). Since Ur is a member of ($β)r,

there is a member Vf of φ/3 and an isomorphism f' between V and C/'

such that f'-KCur) e r(£α(CF,). When that is so, f "HF') = CVr mod ®α by

the definition of r and F' is sufficiently ample. Therefore, F* is also

sufficiently ample by Proposition 2.3. Then, as exactly the same way as

in the last part of the proof of our proposition, we can find the graphs

Γ, Γ*, Γ' of non-degenerate projective embeddings of U, £/*, Ur, determined

respectively by F, F*, F' with the following properties: (i) (U, F, Γ) -*

(ί/*,F*,Γ*) ref. jfc and (f/*, F*, Γ*) -> (t/', F', Γr) ref. fc; (ii) Ϋ = Γ{U) and F'

-Γf t/0 belong to § ; (iii) F e $(F, ®α(CF)) and consequently F e § α by

(c'). Set F* = Γ*(U*). Since specializations are compatible with intersection-

product and algebraic projection, it follows that V-^*V* ref. ϊc and F* -> F'

ref. fc. Since ξ) is an algebraic family, the set of Chow-points of members

of § is a locally closed subset of a projective space. Hence F* is a member

of ξ). Since JP*"1 is the graph of a non-degenerate projective embedding

of F*, determined by a divisor in r(£α(CV*), it follows that F* is not in ξ)α,

otherwise £7* would be a member of (§J r . Thus, F* is in §, in tbe

closure of ξ>α but not in § α . This contradicts to the fact that ξ> is an

algebraic family. Our corollary is thereby proved.

PROPOSITION 4.3. Let gί be an irreducible algebraic family of non-singular

varieties in a projective space and r a positive integer. Denote by %{r) the set of

those members V of % which carry a divisor X such that rX^Cv mod ®α. Then

%{r) is an algebraic family. When % is defined over a field k, g(r) is normally

algebraic over k.

Proof. Let cl9 c2 be the constants in Theorem 1 relative to a member

F of gf, a hyperplane section of F and to our integer r. g(x) in the

theorem is now the Hubert characteristic function of F, which is invariant

throughout gί by Theorem A. cx and c2 depend therefore on $ and r

only. Let q be a positive integer such that q > max (rclf c2) and Uρ the set

of members F of g which carry a positive divisor F such that rY ^=qCv
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mod ®α. Suppose that a member W of § carries a divisor X such that

rX=Cw mod ®α. Then hi(W,qX) = 0 for i > 0 and /z°(W,tfX)>l by our

choice of q. It follows that #X ~~ F where F is a positive IF-divisor. Since

rY ~ qrX^qCw mod ®α, TF is a member of VLq and g(r) c U,. Let q' be

another positive integer similar to qr. Then %(r) c H 3 ί l Uq,. Take # and

qr so that they are relatively prime. When V is in VLq Π U?,, there is a

positive divisor F (resp. F') on F such that rY~qCv (resp. rF 'Ξ^'C y ) mod

®α . When that is so, there is a F-divisor Z such that rZ^Cv mod ®α.

It follows that g(r) = Uq Π Uβ, and our proof is reduced to a proof of the

fact that the set of Chow-points of members of Uq is a closed subset of

that of &

By our choice of q, every divisor in (£α(#CF) is sufficiently ample for

every V in g and h°{V, qCv) does not depend upon V (cf. Proposition 3).

Moreover, @α(CV)+ is a complete total family of divisors on V by Proposition

2. Let us assume that V is a generic member of §ί over ft and F' a

member of g\ Let G, G' be respectively be the supports of the Chow-

varieties of ©α(#CV)+, &ΛqCvrY. Then G' is a unique specialization of G

over & over the specialization V-±V ref. fe by Proposition 4. Moreover,

when i£ is a field of definition of V over ft, G is the support of a variety

defined over K (cf. Theorem D). Therefore, there is a subvariety T of

F x P, where F is the Chow-variety of % and P a projective space, such

that v x P Π T = v x G, */ x P Π T = ι/' x Gr if we set c{V) = v, c(F') = v'

(cf. [23], Chap. VIII, Theorem 6). Moreover, since T is defined over ft,

the first intersection is proper on F x P. Let A be the projection of T on

P. The set of points of A which represents cycles of the form rZ in the

ambient projective space of F forms a closed subset AQ of A. Then the

set TQ of points on T which projects into AQ is a closed subset of T.

Clearly, a member V of g is in VLq if and only if there is a point (vf, af)

in To such that c(F') = ι/'. Denote by FQ the projection of To on F and

by Uq the set of Chow-points of members Uq. Uq is contained in FQ

and Fo is the closure of Uq on F. But the relation rYr Ξ= ̂ C7, mod ®α is

preserved by specialization on F. Thus F o = Uq and our proposition follows

from this easily.

§ 5. On locally closed subsets. Let U be an abstract variety. As is

well-known, a locally closed subset of U in the sense of Zariski topology

is given in the form F' = F ~ F Π X, where F and X are closed subsets
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of U. Let the F α be the components of F and set F'Λ - F α — F t t Π X.

Then F' is the union of the F*. The F'Λ are called the components of i*\

As usual, we take on F' and on the FΌ. induced topology.

PROPOSITION 5.1. Let U be an abstract variety, F a locally closed subset of

U and the F* the components of F. Let k be a common field of definition for U

and for the Fa. Then (a) when Z is a subvariety of U, defined over k, such

that a generic point z of Z over k is contained in Fa, the restriction Zr — Z Π F

of Z in F is contained in FΛ. Moreover, (b) when Y is a subset of F9 Y is a

closed subset of F if and only if Ya = Y Π Fa is closed on Fa for all a.

Proof When F is the closure of F on U, there is a closed subset X

of U such that F = F — X. [ / - ! is an abstract variety. Therefore, it is

enough to prove our proposition when F is a closed subset of U.

(a) follows easily from the definitions. In order to prove (b), first

assume that Y is closed on F. Then Y is a finite union of subvarieties Z

of U which are contained in F. Hence Y is closed on U and the Ya =

F ί l F s are closed on the Fa. Conversely, assume that the YΛ are closed

on the Fa. YΛ is a finite union of subvarieties ZΛti of U, contained in Fa.

Since Y is the union of the ZΛti9 it is closed on U and hence on F.
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