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A CALCULATION OF THE PERFECTOIDIZATION OF
SEMIPERFECTOID RINGS

RYO ISHIZUKA

Abstract. We show that perfectoidization can be (almost) calculated by using

p-root closure in certain cases, including the semiperfectoid case. To do this,

we focus on the universality of perfectoidizations and uniform completions, as

well as the p-root closed property of integral perfectoid rings. Through this

calculation, we establish a connection between a classical closure operation “p-

root closure” used by Roberts in mixed characteristic commutative algebra and

a more recent concept of “perfectoidization” introduced by Bhatt and Scholze

in their theory of prismatic cohomology.

§1. Introduction

Let p be a prime number. The method of perfectoidization, introduced by Bhatt and

Scholze in [8], is an application of the theory of prismatic cohomology to commutative

algebra. This yields a universal integral perfectoid ring over a ring, such as a semiperfectoid

ring, which is a derived p-complete ring that can be written as a quotient of an integral

perfectoid ring. This method can be seen as a generalization of the perfect closure of positive

characteristic rings. See Section 2 for an explanation of the terminology used in perfectoid

theory.

Perfectoidization has various applications to commutative algebra, such as a new theory

of almost mathematics (see [8, §10.1]), a general version of the almost purity theorem (see [8,

Th. 10.9]), much simpler proof of some previously known theorems in commutative algebra

([8, Rem. 10.13] and [19, Appendix A]), and a mixed characteristic analog of Hilbert–Kunz

multiplicity and F -signature (see [10]).

In contrast to these applications, they are not yet widely used in commutative algebra.

One problem is that many abstract theories, including homotopy theory, have been used,

and therefore perfectoidization has a mysterious ring structure. To the best of the author’s

knowledge, perfectoidization has only been explicitly calculated in [22, §2.3.1] and in the

proof of [12, Th. 4.4].

1.1 p-root closure

In this paper, we give an explicit description of the perfectoidization of semiperfectoid

rings by using p-root closure. Before explaining our first main theorem, we recall the notion

of p-root closure.

Definition 1.1 [23]. Let R be a p-torsion-free ring. We say that R is p-root closed in

R[1/p] if x ∈R[1/p] satisfies xpn ∈R for some n≥ 1, then x ∈R holds.

Received May 22, 2023. Revised October 13, 2023. Accepted February 2, 2024.
2020 Mathematics subject classification: Primary 14G45, 46J05.

Keywords: perfectoid rings, perfectoidization, p-root closure, uniform completion.

© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical

Journal. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://doi.org/10.1017/nmj.2024.2 Published online by Cambridge University Press

http://dx.doi.org/10.1017/nmj.2024.2
https://orcid.org/0009-0006-7692-683X
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2024.2&domain=pdf
https://doi.org/10.1017/nmj.2024.2


A CALCULATION OF THE PERFECTOIDIZATION OF SEMIPERFECTOID RINGS 743

The p-root closure C(R) of R in R[1/p] is the minimal p-root closed subring of R[1/p]

containing R. Focusing on the case of “in R[1/p],” Roberts provided an explicit description

of the p-root closure C(R) as follows:

C(R) = {x ∈R[1/p] | ∃n≥ 1,xpn ∈R}.

The term “in R[1/p]” is omitted in this paper because only this case is considered.

Here is a brief mention of the history of (p-)root closure. The notion of p-root closure is a

special case of total n-root closure introduced in commutative algebra by Anderson, Dobbs,

and Roitman [2]. Previously, n-root closedness was used, for example, by Angermüller [5],

Anderson [1], Watkins [26], and Brewer, Costa, and McCrimmon [9]. Furthermore, its origin

can be traced back to Sheldon’s definition of root closedness in [25].

In the context of commutative algebra in mixed characteristic, Roberts provided the

above explicit description of p-root closure and applied this even before perfectoid rings

appeared. Most recently, (total) p-root closure has been renamed p-integral closure by

Česnavičius and Scholze in [11] and is found to be more closely related to the perfectoid

theory.

1.2 Main theorem

Under this notation, our main theorems can be stated in the following forms. For

simplicity, we only state the theorems in the case of p-torsion-free rings. Readers interested

in the general cases may refer to the referenced statements in each theorem, in conjunction

with Section 1.5.

Theorem 1.2 (Theorem 5.7; p-torsion-free case). Let R be a p-torsion-free ring which

satisfies the following conditions:

1. The p-adic completion R̂ of R has a map from some integral perfectoid ring.

2. The perfectoidization (R̂)perfd of R̂ is an (honest) integral perfectoid ring.1

3. The p-adic completion Ĉ(R) of the p-root closure C(R) is an integral perfectoid ring.

Then we have an isomorphism

(R̂)perfd ∼= Ĉ(R).

This result clarifies the ring structure of perfectoidization by using p-root closure, which is

a quite explicit closure operation. The left-hand side is constructed abstractly by homotopy

theory, but it can be described as a p-root closure followed by a p-adic completion, which

are only ring-theoretic operations.

1.3 Applications

Let R be a p-torsion-free ring such that its p-adic completion R̂ is a semiperfectoid ring,

that is, R̂ is a quotient of some integral perfectoid ring. In applications of Theorem 1.2, it

is crucial that R satisfies the assumptions of the theorem:

1. The semiperfectoid ring R̂ has a surjective map from some integral perfectoid ring by

the definition of semiperfectoid rings.

1 As explained in the rest of Section 2, the perfectoidization of an algebra over some integral perfectoid
ring is only a complex. So this assumption states that ( ̂R)perfd gives an honest ring (see Theorem 2.9).
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2. The perfectoidization (R̂)perfd of R̂ is an (honest) integral perfectoid ring by [8, Cor. 7.3

and Prop. 8.5] or the rest of Section 2.

3. The p-adic completion Ĉ(R) of the p-root closure C(R) is an integral perfectoid ring by

virtue of [11, Prop. 2.1.8] (see Remark 5.8).

So we can provide an explicit description of the perfectoidization of such R as follows.

Theorem 1.3 (Corollary 5.9; p-torsion-free case). Let R be a p-torsion-free ring such

that its p-adic completion R̂ becomes a semiperfectoid ring. Then we have an isomorphism

(R̂)perfd ∼= Ĉ(R). In particular, any p-torsion-free and (classically) p-adically complete

semiperfectoid ring S has an isomorphism Sperfd
∼= Ĉ(S).

In the study of commutative rings in mixed characteristic, semiperfectoid rings often

appear as in [16]. An application of Theorem 1.3 is as follows.

Theorem 1.4 (Construction 6.1 and Corollary 6.2). Let (R0,m,k) be a complete

Noetherian local domain of mixed characteristic (0,p) with perfect residue field k, and let

p,x2, . . . ,xn be any system of generators of the maximal ideal m such that p,x2, . . . ,xd forms

a system of parameters of R0. Choose compatible sequences of p-power roots

{p1/pj}j≥0,{x1/pj

2 }j≥0, . . . ,{x1/pj

n }j≥0

inside the absolute integral closure R+
0 , the integral closure of R0 in the algebraic closure of

the fraction field of R0. Set a subring R∞ of R+
0 as

R∞ :=
⋃
j≥0

R0[p
1/pj

,x
1/pj

2 , . . . ,x1/pj

n ]⊆R+
0 .

Then the p-adic completion R̂∞ of R∞ becomes a p-torsion-free semiperfectoid ring by

Cohen’s structure theorem (see Construction 6.1 for details). Then (R̂∞)perfd is isomorphic

to the p-adic completion Ĉ(R∞) of the p-root closure C(R∞).

1.4 Strategy of proof

Let us comment on the strategy of the proof of Theorem 1.2. Our proof is attributed

to some universalities and the following principle of “rigidity lemma” that makes sense in

certain situations (for example, Lemma 5.2).

Lemma. Let f : R→R be an endomorphism of a ring R. Assume that R has a “good”

map S → R from some ring S. Then if f is a map of S-algebras, f is exactly the identity

map.

In the proof of Theorem 1.2, two maps of rings ϕ : Ĉ(R)→ (R̂)perfd and ψ : (R̂)perfd →
Ĉ(R) are obtained through the universality of uniform completions and perfectoidizations,

respectively. By using the lemma mentioned above, we can show that ψ ◦ϕ and ϕ ◦ψ are

identity maps. The former is a consequence of the universality of uniform completions

(Proposition 3.7), while the latter is a consequence of the use of “almost elements,” which

is a concept from almost mathematics (Definition 4.3 and Lemma 5.2).

1.5 p-torsion case

While the aforementioned theorems only deal with p-torsion-free rings, we can show that

similar statements hold in general.
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For this purpose, we introduce the following symbol. Let R be a ring. The p-torsion-free

quotient Rptf is defined as the quotient ring

Rptf :=R/R[p∞]∼= Im(R→R[1/p]),

where R[p∞] is the ideal of all p∞-torsion elements of R, which is the kernel of the

canonical map R→R[1/p]. Then Rptf is a p-torsion-free ring and we have a canonical map

R�Rptf ↪→R[1/p].

The general case of main theorems are obtained by substituting C(R) and (R̂)perfd for

C(Rptf) and ((R̂)perfd)
ptf , respectively. Furthermore, the symbols (−)perfd and (−)ptf are

often interchangeably because of Corollary 5.3.

To show the general version of Theorem 1.2 (i.e., Theorem 5.7), we need to pass from

the possibly p-torsion case to the p-torsion-free case as in [4]. With this in mind, we show

that any integral perfectoid ring can be canonically modified into a p-torsion-free integral

perfectoid ring (see Theorem 4.9) by using pre-perfectoid pairs as defined in Section 4.

1.6 Notation

A Tate ring is a topological ring A which has an open subring A0 ⊆ A and an element

t ∈ A0 such that the relative topology on A0 coincides with the t-adic topology and

A = A0[1/t] as abstract rings. Such an open subring A0 is called a ring of definition of

A and such an element t is called a pseudo-uniformizer of A. This pair (A0,(t)) of a ring

and its ideal is called a pair of definition of A. Note that a ring (resp., pair) of definition

of A is not necessarily unique.

Conversely, for a ring A0 and an element t ∈ A0, the ring A0[1/t] becomes a Tate ring

by taking {tn(A0/A0[t
∞])}n≥0 as a fundamental system of open neighborhoods of 0. The

Tate ring A0[1/t] has a pair of definition (A0/A0[t
∞],(t)). When referring to a ring A0[1/t]

as a Tate ring, we refer to the Tate ring that arises from the pair (A0/A0[t
∞],(t)).

For a Tate ring A, the symbol A◦ means the set of all power-bounded elements. This

gives an open subring of A. A subring A+ ⊆ A is a ring of integral elements if it is open

and integrally closed in A and A+ ⊆A◦.

§2. Perfectoid rings

In this section, we recall and fix some definitions of perfectoid objects.

Definition 2.1 [7, Def. 3.5]. Let S be a (non-zero) ring. Then S is an integral perfectoid

ring if the following conditions hold:

1. There exists an element π ∈ S such that S is π-adically complete and πp divides p in S.

2. The Frobenius map F : S/pS → S/pS is surjective.

3. The kernel of θ : Ainf(S)→ S is principal, where Ainf(S) :=W (S�).

This π ∈ S is called a perfectoid element in this paper. Here, we do not require that π is a

non-zero-divisor in S.

Recently, integral perfectoid rings are simply called perfectoid rings. To avoid confusion

with perfectoid Tate rings defined later in Definition 2.5, we do not use the term perfectoid

rings, but only integral perfectoid rings and perfectoid Tate rings.
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Lemma 2.2 (see [7, Lem. 3.9]). Let S be an integral perfectoid ring, and let π ∈ S be

a perfectoid element. Then S has compatible sequences of p-power roots {(uπ)1/pj}j≥0 and

{(vp)1/pj}j≥0 of uπ and vp where u and v are unit elements in S.

We fix the element � := (vp)1/p of S. Then � becomes a perfectoid element of S. Without

loss of generality, we can assume that a perfectoid element π has a compatible sequence of

p-power roots {π1/pj}j≥0.

Proof. The first statement follows from [7, Lem. 3.9].

We next check that � is a perfectoid element of S. Note that the conditions (2) and

(3) in Definition 2.1 are independent of the choice of a perfectoid element. Since �p = vp

divides p in S, it suffices to show that S is p-adically complete and this is also clear (see

[11, §2.1.2] or [13, Prop. 2.8]).
Remark 2.3 [15, Th. 3.52]. Let S be a ring, and let π be an element of S. Then S is

an integral perfectoid ring with a perfectoid element π ∈ S if and only if π ∈ S satisfies the

following:

1. S is π-adically complete and πp divides p in S.

2. The pth power map S/πS
a �→ap

−−−−→ S/πpS is an isomorphism of rings.

3. The multiplicative map

S[π∞]−→ S[π∞]

s 	−→ sp

is bijective, where the symbol S[π∞] is the ideal of all π∞-torsion elements of S, which

is defined as

S[π∞] = {s ∈ S | ∃n ∈ Z>0,π
ns= 0 ∈ S}. (2.1)

We recall the definition of semiperfectoid rings.

Definition 2.4 [8, Notation 7.1]. A ring S is a semiperfectoid ring if it is a derived

p-complete ring that is isomorphic to a quotient of an integral perfectoid ring.

We next explain perfectoid Tate rings. See Notation (Section 1.6) at the end of the

Introduction for the basic terminology of Tate rings.

Definition 2.5 [7], [14]. Let A be a complete Tate ring (more generally, let A be a

Banach ring). Then A is a perfectoid Tate ring if the following conditions hold:

1. A is uniform, that is, the set of all power-bounded elements A◦ is bounded in A.

2. There exists a pseudo-uniformizer π ∈A such that πp divides p in A◦ and the Frobenius

map on A◦/πpA◦ is surjective.

This π ∈A is again called a perfectoid element.

The following lemma establishes the connection between integral perfectoid rings and

perfectoid Tate rings.

Lemma 2.6 (see [7, Lem. 3.20]). Let A be a Tate ring, and let A+
0 be a ring of integral

elements in A. If A is a perfectoid Tate ring, then A+
0 is an integral perfectoid ring. In

particular, A◦ is an integral perfectoid ring.

Conversely, if A+
0 is an integral perfectoid ring and bounded in A, the Tate ring A is a

perfectoid Tate ring.
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Remark 2.7. Let A be a perfectoid Tate ring, and let π ∈ A be a perfectoid element.

Then π is a non-zero-divisor in A. In general, an integral perfectoid ring is not necessarily

isomorphic to the set of all power-bounded elements in some perfectoid Tate ring.

Lemma 2.8 (see [7, Lem. 3.21]). Let S be an integral perfectoid ring, and let π ∈ S be

a perfectoid element. Assume that π is a non-zero-divisor in S. Then the Tate ring S[1/π]

defined by the pair (S,(π)) is a perfectoid Tate ring. Additionally, S ⊆ (S[1/π])◦, and its

cokernel is annihilated by any fractional power of π.

For convenience, we summarize a brief overview of the properties of perfectoidization

(see [8], [10] for more details).

Let S be an integral perfectoid ring, and let R be a derived p-complete S -algebra. The

perfectoidization Rperfd of R is defined by using the prismatic cohomology ΔR/S . Note that

Rperfd is typically a commutative algebra object in D≥0(S) and has a map R→ Rperfd in

D(S). The complex Rperfd is concentrated in degree 0 in the following cases:

• If char(S) = p > 0, Rperfd coincides with the usual perfect closure Rperf of R.

• If R can be written as a quotient of S, that is, R is a semiperfectoid ring, then Rperfd is

an integral perfectoid ring and furthermore the map R→Rperfd is surjective.

• If S →R is an integral map, Rperfd is an integral perfectoid ring.

Furthermore, the following property plays an essential role in this paper.

Theorem 2.9 (see [8, Cor. 8.14]). If Rperfd is concentrated in degree 0, it becomes an

integral perfectoid ring. In this case, the map R → Rperfd is the universal map to integral

perfectoid rings. Namely, every map R → R′ to an integral perfectoid ring R′ uniquely

factors through R→Rperfd.

§3. Uniform completion

We use the notion of the uniform completion of Tate rings. In this section, we review the

uniform completion outlined in [16].

Definition 3.1. A Tate ring A is uniform if the set of all power-bounded elements A◦

is bounded.

Any Tate ring has the structure of a seminormed ring as follows (see [20, Def. 2.26] for

more details).

Definition 3.2. Let A := A0[1/t] be a Tate ring. Fix a real number c > 1. Then, we

can define a seminorm ‖·‖A0,t,c : A→ R≥0 by

‖f‖A0,t,c := inf
m∈Z

{cm | tmf ∈A0}.

The seminorm defines a seminormed ring (A,‖·‖A0,t,c). The topology of the seminormed

ring (A,‖·‖A0,t,c) is equal to the topology of the Tate ring A = A0[1/t]. In particular, the

topology induced from the norm ‖·‖A0,t,c does not depend on the choices of A0, t, and c.

So we write the seminorm ‖·‖A0,t,c as ‖·‖ for simplicity.

The spectral seminorm attached to this seminorm ‖·‖ is defined as

‖f‖sp := lim
n→∞

‖fn‖1/n.

By Fekete’s subadditivity lemma, we have ‖f‖sp ≤ ‖f‖.
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Lemma 3.3 (see [20, Lem. 2.29]). Let A= A0[1/t] be a uniform Tate ring. Then A◦ is

equal to the unit disk A‖·‖sp≤1 by the spectral seminorm in A.

Next, we define the uniformization and uniform completion of Tate rings as in [6, Exer.

7.2.6] and [17, Def. 2.8.13].

Definition 3.4. Let A be a Tate ring. Fix a pair of definition (A0,(t)) of A and a ring

of integral elements A+
0 of A such that A0 ⊆A+

0 . We define the following terminology.

1. The uniformization of A with respect to (A0,(t)) and A+
0 is the Tate ring A+

0 [1/t].

2. The uniform completion of A with respect to (A0,(t)) and A+
0 is the completion of

the Tate ring A+
0 [1/t]. This is in fact the Tate ring Â+

0 [1/t], where Â+
0 is the t-adic

completion of A+
0 .

Remark 3.5. At first glance, the above definitions depend on the choices of (A0,(t)) and

A+
0 . The motivation for these definitions is that we wanted to define them “functorially.”

Furthermore, even if we take a different pair of definition (A′
0,(t

′)) of A and a different

ring of integral elements A
′+
0 such that A0 ⊆ A

′+
0 , the uniformization of A with respect to

(A′
0,(t

′)) and A
′+
0 is isomorphic to the uniformization of A with respect to (A0,(t)) and A+

0 .

Its isomorphism is obtained by the identity map on the abstract ring A=A
′+
0 [1/t] =A+

0 [1/t]

(see [16, Lem. 5.5] and [20, Lem. 2.3]). In particular, the same statement is true for the

uniform completion. So the next definitions are well-defined.

Definition 3.6. Let A be a Tate ring. The uniformization Au of A (resp., uniform

completion Aû of A) is the uniformization (resp., uniform completion) of A with respect to

a pair of definition (A0,(t)) and a ring of integral elements A+
0 of A such that A0 ⊆ A+

0 .

By the above Remark 3.5, these definitions are independent of the choices of (A0,(t))

and A+
0 .

Recall that the canonical map of Tate rings i : A→Au →Aû has the following universal

property.

Proposition 3.7 (see [16, Prop. 5.6]). Let A be a Tate ring. Then the uniform

completion Aû is a uniform complete Tate ring. Furthermore, the canonical map i : A→Aû

is the universal map to uniform complete Tate rings. That is, every map of Tate rings

h : A→B, where B is a uniform complete Tate ring uniquely factors through i : A→Aû.

We record some lemmas as follows.

Lemma 3.8. Let A be a Tate ring. Then, the completion Âu◦ of the set of all power-

bounded elements Au◦ of Au is isomorphic to the set of all power-bounded elements (Aû)◦

of Aû as topological ring.

Proof. Fix a pair of definition (A0,(t)) of A and a ring of integral elements A+
0 of A such

that A0 ⊆ A+
0 . By [20, Lem. 2.3], we have an inclusion t(A+

0 )
∗
A ⊆ A+

0 , where (A+
0 )

∗
A is the

complete integral closure of A+
0 in A. By [20, Prop. 2.4], the canonical map Aû = Â+

0 [1/t]→
̂(A+
0 )

∗
Au [1/t] is an isomorphism of Tate rings and this map induces an isomorphism of

topological rings
(
Â+

0

)∗
Aû

→ ̂(A+
0 )

∗
Au . Since Aû (resp., Au) has a ring of definition Â+

0 (resp.,

A+
0 ) and the complete integral closure is equal to the set of all power-bounded elements by

[20, Lem. 2.13], we have an isomorphism of topological rings (Aû)◦
∼=−→ Âu◦.
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Lemma 3.9 (see [16, Prop. 5.6]). Assume that a Tate ring A=A0[1/t] has a compatible

sequence of p-power roots {t1/pj}j≥0 of t. The inclusion map (Aû)◦ ↪→ ((Aû)◦)∗ :=

t−1/p∞
((Aû)◦) is an isomorphism of rings.

Proof. For any f ∈ ((Aû)◦)∗, we have t1/p
n

f ∈ (Aû)◦ and then tfpn ∈ (Aû)◦ for any

n ∈ Z>0. Since (Aû)◦ is a ring of definition of Aû, we have ‖fpn‖ ≤ c for a fixed c > 1 by

Definition 3.2. In particular, ‖fpn‖1/pn ≤ c1/p
n

for any n ∈ Z>0. Taking the limit n→∞,

we have ‖f‖sp ≤ limn→∞ c1/p
n

= 1. This shows the inclusion ((Aû)◦)∗ ⊆ (Aû)‖·‖sp≤1 = (Aû)◦

by Lemma 3.3.

§4. Some ring-theoretic properties of pre-perfectoid pairs

Let R be an integral perfectoid ring, and let π ∈ R be a perfectoid element. Our goal

in this section is to convert a situation where π is a zero-divisor into a situation where

it is a non-zero-divisor, following the approach of [4, §2.3.2]. Our argument is based on

[3], [4] and is similar to [6], [24]. If it is sufficient to consider only π-torsion-free rings

(resp., p-torsion-free rings), the symbol (−)πtf defined in Definition 4.1 (resp., (−)ptf) can

be removed.

For the sake of generality, we define pre-perfectoid pairs as follows.

Definition 4.1. Let (S,π) be a pair such that S is a ring and π is an element of S which

has a compatible sequence of p-power roots {π1/pj}j≥0 in S and πp divides p in S. If the

pth power map S/πS
a �→ap

−−−−→ S/πpS is isomorphism, we call such a pair (S,π) pre-perfectoid

pair.

For a pre-perfectoid pair (S,π), the π-torsion-free quotient Sπtf of S is defined as the

quotient ring

Sπtf := S/S[π∞]∼= Im(S → S[1/π]),

where S[π∞] is the ideal of all π∞-torsion elements of S. Note that S � Sπtf is an

isomorphism if and only if π is a non-zero-divisor of S. In the case of S[1/π] = S[1/p],

Sπtf is equal to the p-torsion-free quotient Sptf of S defined in Section 1.5.

For example, an integral perfectoid ring R and a perfectoid element π of R form a pre-

perfectoid pair (R,π) because of Remark 2.3(2).

Definition 4.2. Let (S,π) be a pre-perfectoid pair. An S -module M is called (π)1/p
∞
-

almost zero if π1/pn ·M = 0 for any n∈Z>0. A map of S -modules N →M is called (π)1/p
∞
-

almost injective (resp., surjective) if its kernel (resp., cokernel) is (π)1/p
∞
-almost zero. If

a map of S -modules N →M is (π)1/p
∞
-almost injective and surjective, we call the map a

(π)1/p
∞
-almost isomorphism.

Definition 4.3. Let (S,π) be a pre-perfectoid pair. We define the set of almost elements

of S (see, for example, [24, Lem. 5.3]):

S∗ := π−1/p∞
S := π−1/p∞

Sπtf := {s ∈ S[1/π] | ∀n ∈ Z>0,π
1/pn

s ∈ Sπtf ⊆ S[1/π]}. (4.1)

For any S -module M, the set of almost elements of M is defined as

M∗ := π1/p∞
M := {m ∈M [1/π] | ∀n ∈ Z>0,π

1/pn

m ∈Mπtf ⊆M [1/π]}, (4.2)

where Mπtf is the π-torsion-free quotient of M, that is, the image of M in M [1/π].
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Remark 4.4. Let (S,π) be a pre-perfectoid pair. Note that S[1/π] and S∗[1/π] are

isomorphic as abstract rings. Furthermore, as Tate rings, S[1/π] has a pair of definition

(Sπtf ,(π)) and S∗[1/π] has a pair of definition (S∗,(π)). Because of πS∗ ⊆ Sπtf ⊆ S∗, these

are isomorphic as topological rings.

Lemma 4.5. Let (S,π) be a pre-perfectoid pair. Assume that S is reduced (e.g., S is

an integral perfectoid ring, see [11, §2.1.3] or [13, Prop. 2.20]). Then, the canonical map

S → S∗ is a (π)1/p
∞
-almost isomorphism.

Proof. The kernel of S → S[1/π] is isomorphic to the ideal S[π∞] of all π∞-torsion

elements of S. Since S is reduced, S[π∞] is (π)1/p
∞
-almost zero. In particular, S → Sπtf is

(usual) surjective and (π)1/p
∞
-almost injective. Furthermore, the inclusion Sπtf ⊆ π−1/p∞

S

in S[1/π] is (usual) injective and (π)1/p
∞
-almost surjective by definition. This completes

the proof.

Lemma 4.6. Let (S,π) a pre-perfectoid pair. Then the p-th power map S∗/πS∗
a �→ap

−−−−→
S∗/π

pS∗ is injective and (π)1/p
∞
-almost surjective (later in Corollary 4.8, this will become a

(usual) surjective map). In particular, S∗ is p-root closed in S∗[1/π]. Namely, if x∈ S∗[1/π]

satisfies xpn ∈ S∗ for some n ∈ Z>0, then x ∈ S∗.

Proof. If π is a non-zero-divisor of S, this lemma is similar to [13, Prop. 2.16(b)]. We

only have to make the same proof as [24, Lem. 5.6], being careful that S is not necessarily

π-torsion-free in our case.

First, we show that S∗/πS∗
a �→ap

−−−−→ S∗/π
pS∗ is injective. Let t ∈ S∗ be an element in the

kernel of the p-th power map. There exists some t′ ∈ S∗ such that tp = πpt′ in S∗ ⊆ S[1/π].

By definition of S∗, multiplying π1/pn

by the equation for each n ∈ Z>0, we have

(π1/pn+1

t)p = π1/pn

tp = πp(π1/pn

t′) ∈ πpSπtf . (4.3)

Moreover, π1/pn+1

t and π1/pn

t′ are elements of Sπtf . Then, there exist some elements sn+1

and s′n in S such that sn+1/1 = π1/pn+1

t and s′n/1 = π1/pn

t′ in Sπtf ⊆ S[1/π]. By the

above equation (4.3), we have spn+1/1 = πps′n/1 in Sπtf ⊆ S[1/π] and thus, spn+1−πps′n is

in S[π∞]⊆ S, which is (π)1/p
∞
-almost zero. For any m ∈ Z>0, we have

S � 0 = π1/pm

(spn+1−πps′n) = (π1/pm+1

sn+1)
p−πp(π1/pm

s′n).

In particular, π1/pm+1

sn+1 is in the kernel of the p-th power map S/πS → S/πpS, which

is zero by assumption of (S,π), and so π1/pm+1

sn+1 is in πS. Passing to Sπtf ⊆ S[1/π], we

have

πSπtf � π1/pm+1

sn+1/1 = π1/pm+1

π1/pn+1

t

for any n,m ∈ Z>0. Then, t is in (πSπtf)∗, which is defined in Definition 4.3. The next

equality (4.4) shows the injectivity of S∗/πS∗
a �→ap

−−−−→ S∗/π
pS∗:

(πSπtf)∗ = π(Sπtf)∗ = πS∗ ⊆ S[1/π]. (4.4)

Proof of (4.4). By definition, we have (Sπtf)∗ = S∗ and then the second equality is

clear. Any element of π(Sπtf)∗ can be written as πt by using some element t ∈ (Sπtf)∗.

Because of π1/pn

(πt) = π(π1/pn

t) ∈ πSπtf for any n ∈ Z>0, we have πt ∈ (πSπtf)∗ and so

π(Sπtf)∗ ⊆ (πSπtf)∗.
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Conversely, take any element x ∈ (πSπtf)∗ ⊆ S[1/π]. Then, there exists tn ∈ Sπtf such

that π1/pn

x= πtn ∈ πSπtf for each n ∈ Z>0. Since S[1/π] is π1/pn

-torsion-free, we have

S[1/π] � π1/pn

(x/π) = tn ∈ Sπtf (4.5)

for any n ∈ Z>0. This shows that x/π ∈ S[1/π] is in (Sπtf)∗ and thus x = π(x/π) is in

π(Sπtf)∗.

Second, we show that S∗/πS∗
a �→ap

−−−−→ S∗/π
pS∗ is (π)1/p

∞
-almost surjective. Take any

element x ∈ S∗ ⊆ S[1/π]. For each n ∈ Z>0, we have π1/pn

x ∈ Sπtf and thus there exists an

sn ∈ S such that π1/pn

x= sn/1 ∈ Sπtf . Since S/πS
a �→ap

−−−−→ S/πpS is surjective, there exists

some s′n ∈ S such that (s′n)
p−sn is in πpS. Then, we have

π1/pn

x− (s′n/1)
p = sn/1− (s′n)

p/1 ∈ πpSπtf ⊆ πpS∗ (4.6)

and s′n/1 is in Sπtf ⊆ S∗. This shows that S∗/πS∗
a �→ap

−−−−→ S∗/π
pS∗ is (π)1/p

∞
-almost

surjective.

Finally, since S∗ is π-torsion-free and S∗/πS∗
a �→ap

−−−−→ S∗/π
pS∗ is injective as above, by

[11, (2.1.7.1)], we can show that S∗ is p-root closed in S∗[1/π].

Lemma 4.7. Let (S,π) be a pre-perfectoid pair. Then S∗[1/π] is a uniform Tate ring

which satisfies (S∗[1/π])
◦ = S∗. In particular, S∗ is isomorphic to the unit disk of S∗[1/π]

with respect to the spectral seminorm induced from the seminorm of S∗[1/π] as defined in

Definition 3.2.

Proof. Proceeding as in [24, Lem. 5.6], the p-root closedness of S∗ in S∗[1/π] proved

in Lemma 4.6 shows that (S∗[1/π])
◦ = S∗. In fact, any element x ∈ (S∗[1/π])

◦ makes a

topologically nilpotent element π1/pn

x for each n∈ Z>0. Thus there exists N =N(n) ∈ Z>0

such that (π1/pn

x)p
N ∈ S∗. This shows the equality above and thus S∗[1/π] is a uniform

Tate ring. Moreover, Lemma 3.3 shows that

S∗ = (S∗[1/π])
◦ = (S∗[1/π])‖·‖sp≤1 (4.7)

and we finish the proof.

Corollary 4.8. Let (S,π) be a pre-perfectoid pair. Stronger than Lemma 4.6, we can

show that the p-th power map S∗/πS∗
a �→ap

−−−−→ S∗/π
pS∗ is (usual) surjective.

Proof. This proof is similar to [16, Lem. 4.2]. Fix an element y ∈ S∗. Since the p-th

power map is (π)1/p
∞
-almost surjective by Lemma 4.6, there exist elements a and b in S∗

such that πy = ap+πpb ∈ S∗. Set z := a/π1/p ∈ S∗[1/π]. This satisfies

zp = ap/π = y−πp−1b ∈ S∗. (4.8)

Since S∗ is p-root closed in S∗[1/π] by Lemma 4.6, we can show that z ∈ S∗. The equality

πy = πzp+πpb ∈ S∗ and π-torsion-freeness of S∗ ⊆ S∗[1/π] show that y = zp+πp−1b ∈ S∗.

In particular, every element of S∗/π
p−1S∗ and S∗/πS∗ is a p-th power. The inclusion πS∗ ⊆

π(p−1)/pS∗ induces the commutative diagram
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0 S∗/π
1/pS∗ S∗/πS∗ S∗/π

(p−1)/pS∗ 0

0 S∗/πS∗ S∗/π
pS∗ S∗/π

p−1S∗ 0

·π(p−1)/p

·πp−1

where the rows are exact sequences and the vertical maps are the p-th power maps. Since

the right-most map and left-most map are surjective, the middle map is also surjective by

the five lemma.

Finally, we show the stability of pre-perfectoid pairs under taking (−)∗ and the

generalization of Lemma 2.8.

Theorem 4.9. For any pre-perfectoid pair (S,π), the induced pair (S∗,π) is again a

pre-perfectoid pair.

In particular, for any integral perfectoid ring R and a perfectoid element π ∈ R (not

necessarily a non-zero-divisor), R∗ = π−1/p∞
R is a π-torsion-free integral perfectoid ring

with a perfectoid element π.

Proof. By Lemma 4.6 and Corollary 4.8, the pair (S∗,π) is a pre-perfectoid pair.

Assume that R is an integral perfectoid ring. By the above paragraph of [11, (2.1.3.1)],

the image Rπtf of R in R[1/π] is a π-torsion-free integral perfectoid ring. In particular,

similar to the proof of [24, Lem. 5.6], R∗ = (Rπtf)∗ is also an integral perfectoid ring with

a perfectoid element π.

Remark 4.10. By Lemma 2.2, any integral perfectoid ring R has a compatible sequence

of p-power roots {�1/pj}j≥0 of � ∈R such that �p is some unit multiple of p in R. Then

R forms a pre-perfectoid pair (R,�). In particular, this pre-perfectoid pair (R,�) satisfies

all the statements in this section.

§5. Calculations of the perfectoidization

We next show the “universality” of uniformizations and uniform completions for pre-

perfectoid pairs and deduce our main theorem (Theorem 5.7). As in the previous section,

we can get rid of the symbol (−)ptf if we only consider p-torsion-free rings.

Proposition 5.1. Let A0 be a π-adically topological ring for an element π ∈A0. Set a

Tate ring A :=A0[1/π]. Let S be an A0-algebra such that the image of π in S is a non-zero

element. Assume that S is an integral perfectoid ring and π is a perfectoid element of S.

Then, there exists a unique map of topological rings (Aû)◦ → S∗ such that the following

diagram commutes:

A0 S

(Aû)◦ S∗.
∃!

Proof. Since the A0-algebra structure A0 → S is a continuous map with respect to the

π-adic topology, this can be extended to the map of Tate rings A→ S[1/π]. By Remark 4.4

and Lemma 4.7, the Tate ring S[1/π] is isomorphic to the complete uniform Tate ring

S∗[1/π].
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The universality of uniform completion (Proposition 3.7) gives a unique map of Tate rings

Aû → S∗[1/π] which extends A → S[1/π] = S∗[1/π]. Taking the set of all power-bounded

elements, we have a map of topological rings (Aû)◦ → S∗ such that the above diagram

commutes The uniqueness of this map is clear.

To prove our main theorem (Theorem 5.7), we state the next lemma which is in the form

of “rigidity lemma” as in Section 1.4.

Lemma 5.2. Let A0 be a derived p-complete algebra over some integral perfectoid ring

of characteristic 0.2 Assume that (A0)perfd is an (honest) integral perfectoid ring. Then any

A0-algebra map (A0)perfd,∗ → (A0)perfd,∗
3 is the identity map.

Proof. Take any map f : (A0)perfd,∗ → (A0)perfd,∗ such that the following diagram

commutes

(A0)perfd A0 (A0)perfd

(A0)perfd,∗ (A0)perfd,∗

c c

f

where the vertical maps are canonical ones. Since (A0)perfd,∗ is also an integral perfectoid

ring by Theorem 4.9 and (A0)perfd is a universal integral perfectoid ring over A0, the

composite f ◦ c is nothing but the canonical map c : (A0)perfd → (A0)perfd,∗. For any x ∈
(A0)perfd,∗, there exists an element a ∈ (A0)perfd such that c(a) = px in (A0)perfd,∗. Then,

we have pf(x) = f(px) = f(c(a)) = c(a) = px in (A0)perfd,∗. Since (A0)perfd,∗ is p-torsion-free,

we have f(x) = x and we are done.

As a consequence of this lemma, we can show the following relation between (−)ptf and

(−)perfd.

Corollary 5.3. Let A0 be a derived p-complete algebra over some integral perfectoid

ring. Assume that (A0)perfd and (Aptf
0 )perfd are (honest) integral perfectoid rings. Then the

canonical map (A0)perfd → (Aptf
0 )perfd induces the isomorphism

((A0)perfd)
ptf ∼=−→ (Aptf

0 )perfd.

Since the above isomorphism prevents confusion when ((A0)perfd)
ptf is written as

(A0)
ptf
perfd, we use this symbol (−)ptfperfd in the following.

Proof of Corollary 5.3. The canonical surjective map A0 � Aptf
0 induces a map

(A0)perfd → (Aptf
0 )perfd. Since (Aptf

0 )perfd is p-torsion-free by [19, Lem. A.2], we have a

unique map ϕ : ((A0)perfd)
ptf → (Aptf

0 )perfd which extends the map (A0)perfd → (Aptf
0 )perfd.

2 Note that any integral perfectoid ring does not contain Q. So a (p-adically complete) integral perfectoid
ring R is of characteristic 0 means that R contains Z as a subring and pR �=R. We do not assume that
R is p-torsion-free.

3 Recall that an integral perfectoid ring (A0)perfd has a compatible sequence {�1/pn}n≥0 of p-power
roots of � such that �p is a unit multiple of p in (A0)perfd (see Lemma 2.2 and Remark 4.10). So
(A0)perfd,∗ is the set of almost elements of the pre-perfectoid pair ((A0)perfd,�). That is, (A0)perfd,∗ =

�−1/p∞
(A0)perfd ⊆ (A0)perfd[1/�] = (A0)perfd[1/p].
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Conversely, by [13, Prop. 2.19], the p-torsion-free quotient ((A0)perfd)
ptf is also an

integral perfectoid ring over A0 and thus there exists a unique map Aptf
0 → ((A0)perfd)

ptf

which extends the structure map A0 → ((A0)perfd)
ptf . The universality of perfectoidization

(Theorem 2.9) shows that this map can be extended to a map ψ : (Aptf
0 )perfd → ((A0)perfd)

ptf

uniquely.

Then the Aptf
0 -algebra map ϕ ◦ψ is the identity map because of the universality of

perfectoidizations (Theorem 2.9). On the other hand, the (A0)perfd-algebra map ψ ◦ϕ can

be extended to the (A0)perfd-algebra endomorphism on (((A0)perfd)
ptf)∗ because of the

inclusion ((A0)perfd)
ptf ⊆ (((A0)perfd)

ptf)∗ ⊆ ((A0)perfd)[1/p]. Then the above rigidity lemma

(Lemma 5.2) shows that ψ ◦ϕ is in fact the identity map on ((A0)perfd)
ptf . This completes

the proof.

In the proof of [12, Th. 4.4], Dine states that a quotient of a perfectoid Tate ring by some

ideal has the perfectoidization that is isomorphic to its uniform completion. We reformulate

the proof for the situation of integral perfectoid rings as follows.

Theorem 5.4 (cf. [12]). Let A0 be a derived p-complete algebra over some integral

perfectoid ring of characteristic 0. Set a Tate ring A := A0[1/p]. Assume that the

perfectoidization (A0)perfd is an (honest) integral perfectoid ring and the uniform completion

Aû of A is a perfectoid Tate ring.

Then Aû is isomorphic to (A0)perfd[1/p] as a Tate ring. In particular, (Aû)◦ and

(A0)perfd,∗ are isomorphic as rings.

Proof. If we know that Aû is a perfectoid Tate ring, the same proof of [12, Th. 4.4]

induces the isomorphism Aû ∼= (A0)perfd[1/p] by checking the universality of perfectoidiza-

tions and uniform completions as in Proposition 5.1. By Lemma 4.7, taking the set of all

power-bounded elements induces the isomorphism (Aû)◦ ∼= (A0)perfd,∗.

Remark 5.5. Note that (Aû)◦ is an integral perfectoid ring if and only if Aû is a

perfectoid Tate ring by Lemma 2.6. So the conditions for Aû to be a perfectoid Tate ring

are studied in [18, Th. 3.3.18(ii)]. For example, if A0 is a semiperfectoid ring, then (Aû)◦ is

an integral perfectoid ring as shown in [12, Th. 4.4]. Compare Remark 5.8 below.

We recall that taking the set of all power-bounded elements is not only a topological

operation but also an algebraic operation as mentioned in the next lemma. This lemma is

used in the proof of Corollary 6.2.

Lemma 5.6. Let A0 be a π-adically topological ring for an element π ∈A0 and let A be

a Tate ring A0[1/π]. Assume that A0 is integral over some Noetherian ring. Then (Aû)◦ is

the same as the π-adic completion (̂A0)
+
A of the integral closure (A0)

+
A of A0 in A.

Proof. By Lemma 3.8, we have (Aû)◦ ∼= Âu◦. Recall that (A0)
+
A becomes a ring of

definition of Au and thus Au◦ is the complete integral closure ((A0)
+
A)

∗
A of (A0)

+
A in Au

by [20, Lem. 2.13(1)]. By assumption, (A0)
+
A is integral over some Noetherian ring and then

Au◦ = (A0)
+
A by [21, Prop. 7.1]. This completes the proof.

The main result of this paper is the following.
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Theorem 5.7. Let R be a ring which contains Z as a subring and satisfies the following

conditions:

1. The p-adic completion A0 := R̂ of R has a map from some integral perfectoid ring.

2. The perfectoidization (R̂)perfd of R̂ is an (honest) integral perfectoid ring.

3. The p-adic completion Ĉ(Rptf) of the p-root closure C(Rptf) is an integral perfectoid

ring.

Set a Tate ring A := A0[1/p]. Then there exists an isomorphism ϕ : Ĉ(Rptf)
∼=−→ (R̂)ptfperfd

which is a restriction of the unique map (Aû)◦ → (A0)perfd,∗ taken in Proposition 5.1. In

particular, (R̂)perfd is (p)1/p
∞
-almost isomorphic to Ĉ(Rptf). If R is p-torsion-free, we have

an honest isomorphism Ĉ(R)∼= (R̂)perfd.

Proof. Since (A0)perfd is an integral perfectoid ring whose perfectoid element is �,

the ring (A0)
ptf
perfd is also an integral perfectoid ring by [13, Prop. 2.19]. In particular,

(A0)
ptf
perfd is p-root closed in (A0)perfd[1/p] because of the injectivity of the p-th power

map (A0)
ptf
perfd/�(A0)

ptf
perfd

a �→ap

−−−−→ (A0)
ptf
perfd/p(A0)

ptf
perfd (see [11, (2.1.7.1)]). The map of

Tate rings R[1/p] → (A0)perfd[1/p] induced by R → A0 → (A0)perfd gives a unique map

ϕ : Ĉ(Rptf)→ (A0)
ptf
perfd such that the following diagram commutes

R[1/p] A0[1/p] (A0)perfd[1/p]

Ĉ(Rptf)

C(Rptf) C(Aptf
0 ) (A0)

ptf
perfd

R A0 (A0)perfd.

∃!ϕ (5.1)

Taking the p-adic completion of R → C(Rptf), we have a map A0 → Ĉ(Rptf). By

assumption, Ĉ(Rptf) is an integral perfectoid ring and then, there exists a unique map

(A0)perfd → Ĉ(Rptf) which extends A0 → Ĉ(Rptf) as follows.

(A0)perfd Ĉ(Rptf)

A0

R C(Rptf)

∃!ψ

(5.2)

Since Ĉ(Rptf) is p-torsion-free, there exists a unique map ψ : (A0)
ptf
perfd) → Ĉ(Rptf) which

extends (A0)perfd → Ĉ(Rptf).
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Combining (5.1) and (5.2), the composite map (A0)
ptf
perfd

ψ−→ Ĉ(Rptf)
ϕ−→ (A0)

ptf
perfd is

an R-algebra map and thus an A0 = R̂-algebra map. Furthermore, this extends to an

A0-algebra map of perfectoid Tate rings (A0)perfd[1/p]→ (A0)perfd[1/p] and thus extends to

an A0-algebra map (A0)perfd,∗ → (A0)perfd,∗ by Lemma 4.7. This must be the identity map

because of Lemma 5.2 above, and then ψ ◦ϕ is also the identity map.

On the other hand, consider the R-algebra map Ĉ(Rptf)
ϕ−→ (A0)

ptf
perfd

ψ−→ Ĉ(Rptf).

Inverting p, we have a map of Tate rings Ĉ(Rptf)[1/p] → Ĉ(Rptf)[1/p] over R[1/p] via

R[1/p] ↪→ C(Rptf)[1/p]→ Ĉ(Rptf)[1/p]. Since C(Rptf)⊆R[1/p] is contained in the integral

closure R̃ of R in R[1/p], the uniform completion C(Rptf)[1/p]û of C(Rptf)[1/p] can be

written as a Tate ring
̂̃
R[1/p] by Definition 3.6. Similarly, the uniform completion R[1/p]û

of R[1/p] also coincides with the Tate ring
̂̃
R[1/p]. So these two uniform completions

C(Rptf)[1/p]û and R[1/p]û are isomorphic each other via the canonical map of Tate rings

R[1/p]→ C(Rptf)[1/p].4 Furthermore, since Ĉ(Rptf) is a p-torsion-free integral perfectoid

ring, the uniform completion of Ĉ(Rptf)[1/p] is isomorphic to itself by Lemma 2.8. These

arguments show that

R[1/p]û
∼=−→ C(Rptf)[1/p]û

∼=−→ Ĉ(Rptf)[1/p]û ∼= Ĉ(Rptf)[1/p]. (5.3)

This shows that the above R[1/p]-algebra map of Tate rings Ĉ(Rptf)[1/p]→ Ĉ(Rptf)[1/p]

coincides with an R[1/p]-algebra map of Tate rings R[1/p]û → R[1/p]û and this is the

identity map by the universality of uniform completion.

We next check that ϕ : Ĉ(Rptf)→ (A0)
ptf
perfd is a restriction of the unique map (Aû)◦ →

(A0)perfd,∗ taken in Proposition 5.1. Similarly as above, the uniform completion of A0[1/p] is

Aû =A0[1/p]
û = R̂[1/p]û ∼=R[1/p]û ∼= Ĉ(Rptf)[1/p]û. (5.4)

The uniform completion Ĉ(Rptf)[1/p]û of Ĉ(Rptf)[1/p] has a universality which gives a

unique extension Aû → (A0)perfd[1/p] of ϕ as follows (see Proposition 3.7):

R A0 (A0)
ptf
perfd

Ĉ(Rptf) (A0)perfd[1/p]

Ĉ(Rptf)[1/p]

Ĉ(Rptf)[1/p]û Aû.

ϕ

ϕ[1/p]

∼=

∃!η

4 Note that the identity map R[1/p] =C(Rptf)[1/p] is only an isomorphism of rings which is not necessarily
an isomorphism of topological rings. Therefore, we go back to the construction of uniform completion
and prove the isomorphism R[1/p]û ∼= C(Rptf)[1/p]û in this way.
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Since A0 is the p-adic completion of R, η : Aû → (A0)perfd[1/p] is a unique extension of

A0 → (A0)
ptf
perfd. By Lemma 4.7 and the proof of Proposition 5.1, η induces the unique map

(Aû)◦ → (A0)perfd,∗ taken in Proposition 5.1 and this extends ϕ.

If R is p-torsion-free, A0 = R̂ is also p-torsion-free and so is (A0)perfd by [19, Lem. A.2].

Then Ĉ(Rptf) = Ĉ(R) is isomorphic to (R̂)perfd.

Remark 5.8. Let R be a (not necessarily p-adically complete) ring containing a

compatible sequence of p-power roots {�1/pj}j≥0 of � ∈ R such that �p is some unit

multiple of p in R. If the Frobenius map R/pR
F−→R/pR is surjective, the p-adic completion

Ĉ(R) is an integral perfectoid ring by [11, Prop. 2.1.8]. Compare Remark 5.5 above.

In particular, any semiperfectoid ring satisfies the assumptions of Theorem 5.7 and so

we have the following corollary.

Corollary 5.9. Let R be a ring such that the p-adic completion R̂ of R becomes

a semiperfectoid ring which contains Z as a subring. Then (R̂)ptfperfd is isomorphic to the

p-adic completion Ĉ(Rptf) of C(Rptf). If R is p-torsion-free, we have (R̂)perfd ∼= Ĉ(R).

Proof. First, the semiperfectoid ring R̂ has a surjective map from some integral

perfectoid ring by the definition of semiperfectoid rings (Definition 2.4). Second, The

perfectoidization (R̂)perfd of R̂ is an (honest) integral perfectoid ring by [8, Cor. 7.3 and

Prop. 8.5]. Finally, the p-adic completion Ĉ(Rptf) of the p-root closure C(Rptf) is an integral

perfectoid ring by Remark 5.8. So R satisfies all assumptions of Theorem 5.7, and this

completes the proof.

§6. Connections between p-root Closure and Perfectoidization

We recall a mixed characteristic analog of the perfection of rings, which was introduced

in [16]. This construction includes an example from [23, §4] which demonstrates a good

behavior of p-root closure from the perspective of Fontaine rings.

Construction 6.1. Let (R0,m,k) be a complete Noetherian local domain of mixed

characteristic (0,p) with perfect residue field k and let p,x2, . . . ,xn be any system of

generators of the maximal ideal m such that p,x2, . . . ,xd forms a system of parameters

of R0. Choose compatible sequences of p-power roots

{p1/pj}j≥0,{x1/pj

2 }j≥0, . . . ,{x1/pj

n }j≥0 (6.1)

inside the absolute integral closure R+
0 . Set

R∞ :=
⋃
j≥0

R0[p
1/pj

,x
1/pj

2 , . . . ,x1/pj

n ]⊆R+
0 . (6.2)

Let R̃∞ be the integral closure of R∞ in R∞[1/p] and let
̂̃
R∞ (resp., R̂∞) be the p-adic

completion of R̃∞ (resp., R∞).

By Cohen’s structure theorem, there exists a surjective map S0 � R0 such that S0 is

a complete unramified regular local ring W (k)[|t2, . . . , tn|] and ti maps to xi respectively.

In particular, R0 is a finite extension of a subring T0 := W (k)[|t2, . . . , td|] of S0. Then,

proceeding as in [16], we have a surjective map S∞ � R∞ and its p-adic completion

Ŝ∞ → R̂∞. Remark that Ŝ∞ is an integral perfectoid ring which has a compatible sequence

of p-power roots {p1/pj}j≥0 of p. Therefore, R̂∞ is a semiperfectoid ring.

https://doi.org/10.1017/nmj.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.2


758 R. ISHIZUKA

In [16], we show that Ĉ(R∞) and
̂̃
R∞ are integral perfectoid rings and are (pg)1/p

∞
-

almost flat and (pg)1/p
∞
-almost faithful T0-algebra where g is a non-zero element of R̂∞

that becomes a non-zero-divisor in
̂̃
R∞.

Corollary 6.2. Keep the notation of Construction 6.1. Then, the integral perfectoid

ring
̂̃
R∞ is (p)1/p

∞
-almost isomorphic to the perfectoidization (R̂∞)perfd and its restriction

to Ĉ(R∞) induces an isomorphism of Ĉ(R∞)
∼=−→ (R̂∞)perfd.

Proof. As above, R̂∞ is a semiperfectoid ring and has a compatible sequence of p-power

roots {p1/pj}j≥0 of p. So the second statement is already proved in Corollary 5.9.

In particular, the perfectoidization (R̂∞)perfd is an honest integral perfectoid ring by

[8, Prop. 8.5]. Also
̂̃
R∞ is an integral perfectoid ring by [16, Lem. 4.2]. Note that the

proof of [16, Prop. 5.9] shows that the uniform completion of R̂∞[1/p] is isomorphic to the

uniform completion R∞[1/p]û of R∞[1/p]. Since R̂∞ is a semiperfectoid ring, the uniform

completion R̂∞[1/p]û ∼=R∞[1/p]û is a perfectoid Tate ring by Remark 5.5. In particular, we

have (R∞[1/p]û)◦ =
̂̃
R∞ by Lemma 5.6 and deduce the first statement by Theorem 5.4.

Acknowledgment. I would like to express my gratitude to Kazuma Shimomoto for his

time and effort in this research. Many thanks to Shinnosuke Ishiro for his insightful feedback

on the paper’s interpretation. Additionally, we thank Yves André, Dimitri Dine, Fumiharu
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352 (2013), 509–534.

[15] S. Ishiro, K. Nakazato, and K. Shimomoto, Perfectoid towers and their tilts: With an application to the
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