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ABSTRACT. Strain rates are fundamental measures of ice flow and are used in a wide variety of glacio-
logical applications including investigations of bed properties, calculations of basal mass balance on ice
shelves, and constraints on ice rheological models. However, despite their extensive application, strain
rates are calculated using a variety of methods and length scales and the details are often not specified.
In this study, we compare the results of nominal and logarithmic strain-rate calculations based on a
satellite-derived velocity field of the Antarctic ice sheet generated from Landsat 8 satellite data. Our
comparison highlights the differences between the two common approaches in the glaciological litera-
ture. We evaluate the errors introduced by each approach and their impacts on the results. We also dem-
onstrate the importance of choosing and specifying a length scale over which strain-rate calculations are
made, which can strongly influence other derived quantities such as basal mass balance on ice shelves.
Finally, we present strain-rate data products calculated using an approximate viscous length-scale with

satellite observations of ice velocity for the Antarctic continent.
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1. INTRODUCTION

In glaciology, strain is a measure of how much ice stretches,
compresses and deforms in all directions as it flows, and
strain rates represent how quickly these deformations
occur. This quantity is a fundamental measure of ice flow
that is used in a variety of applications. Combined with
Glen’s Flow Law, strain rates can be used to calculate the
stress state of flowing ice and how that stress state has
changed through time (Nye, 1953; Glen, 1955). Strain rates
can be used to identify areas of thinning and thickening that
may relate to surge dynamics (Murray and others, 2003;
Burgess and others, 2012) or bed properties (Bindschadler
and Vornberger, 1996; Howat and others, 2008). Many
authors (e.g. Ambach, 1968) have calculated the local direc-
tion of greatest principal stress based on strain-rate measure-
ments to determine the most likely direction of crevasse
formation. Empirical (e.g. Alley and others, 2008) and mod-
eling (e.g. Benn and others, 2007) studies demonstrate that
strain rates may be used to predict calving velocities on
ice shelves and tidewater glaciers. ‘Compressive arches,’
defined based on strain-rate patterns, may delineate the
limit of ice shelf stability during retreat (Doake and others,
1998). Strain rates are also used to calculate mass flux diver-
gence on flowing ice, which is an important component in
mass-balance calculations (Jenkins and Doake, 1991;
Rignot and others, 2013).

The earliest strain-rate measurements on flowing ice
employed in situ measurements of the movements of stakes
placed on a glacier surface (e.g., Nye, 1959). These calcula-
tions were limited to discrete measurements over small
regions that were accessible to repeat field campaigns. More
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recently, GPS monuments have made it possible to monitor
strain rates continuously (e.g. Howat and others, 2008). In
situ methods constrain strain rates at only a few points on
accessible glaciers, limiting their applications. However, the
availability of satellite-derived velocity grids has made it pos-
sible to calculate comprehensive strain-rate maps for broad
areas of flowing ice. Various methods have been applied to
calculate these strain-rate maps, which yield different results.

In this paper, we explore two commonly employed
approaches for the calculation of strain rates from satellite-
derived velocity grids: a nominal strain-rate calculation using
simple differencing of velocity grids (e.g., Paterson and
Savage, 1963), and a logarithmic strain-rate formulation (Nye,
1959) that relies on a numerical stake-tracking scheme. We
compare the resulting strain-rate fields, and analyze the import-
ance of the length scales used in the calculations. Finally, we
present data products for three components of the strain-rate
tensor calculated using Antarctica-wide velocity mosaics
derived from Landsat-8 imagery (Fahnestock and others, 2016).

2. STRAIN-RATE DEFINITIONS

Denoting two (horizontal) components of velocity as v and v,
the strain-rate tensor in two dimensions may be defined as

(Nye, 1959):
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We will define the x- and y-directions based on the velocity
grids from which strain rates are calculated. If the strain-rate
tensor is rotated relative to the local flow direction, the longitu-
dinal strain (€,,, parallel to the local flow direction) can be
found in the upper left-hand entry, transverse strain (éqans, per-
pendicular to the local flow direction) in the lower right and
shear strain (égeqr) in the other two entries. The rotation to
orient the strain-rate components relative to the local flow direc-
tion can be applied following Bindschadler and others (1996):

€lon = & COS” &0 + 2&, cosasina + &, sin” (2)
€irans = & SiN” @ — 26y cos a sin a + & cos’a  (3)
éshear = (éy - éx)Cosasin o+ 'Exy(COS2 o — sin2 O() (4)

where the flow angle a is defined counter-clockwise from the x-
axis.

The strain-rate tensor must be discretized or integrated in
some way for an application to satellite-derived velocity
fields. The simplest formulation is known as ‘nominal’ or
‘engineering’ strain, and is commonly defined in one dimen-
sion as the change in length of a parcel (L) divided by the
original length (L,), which can then be divided by the incre-
ment of time over which the deformation occurs (6t) to calcu-
late a strain rate (Rees, 2006):

SL/L,

é==L2. (5)

This strain-rate definition is directly equivalent to differen-
cing velocities over some distance and dividing by the
offset distance, which is the most straightforward calculation
of the strain-rate tensor (Supplementary Section S1). It is
derived with the assumption that the change in length 6L is
very small compared with the original length of the object
or parcel, and that velocities change linearly between
sample points. Many authors (e.g. Howat and others, 2008;
Rignot and others, 2011) have relied on nominal strain-rate
formulations for calculating strain rates from ice flow velocity
grids or in situ measurements.

However, errors are introduced when this approximation
is used for a parcel that is strained significantly, such as an
ice parcel flowing through large velocity gradients in a
glacier (for example, when flowing through an ice fall or
shear margin). In this case, a different definition that essen-
tially compares a length change to a previous length, rather
than the original length, is more appropriate because the cal-
culated strain rate will depend on the history of strain experi-
enced by the parcel. This integrated quantity is known as
‘logarithmic strain” or ‘true strain” (Nye, 1959):

e:Altm(LL_;). (6)

L¢ in this equation is the final length of the parcel. This
approach to calculating strain rates has also seen the signifi-
cant application in the glaciological literature (e.g. Nye,
1959; Bindschadler and Vornberger, 1996; Scherler and
others, 2008; Burgess and others, 2012). However, many
authors do not specify whether logarithmic or nominal
strain was utilized in their study.

Nominal strain and logarithmic strain will generally be
approximately equal if length change is <2% of the original
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length (Rees, 2006). If accurate integration of parcel trajector-
ies is possible, nominal and logarithmic strain rates are
exactly equal (Supplementary Section S1). With real data,
however, exact integration is impossible, and application of
the two methods to the same data will yield different results.

3. DATA AND METHODS

We present two Matlab codes for calculating strain rates, as
well as data products for longitudinal, transverse and shear
strain rates calculated for the Antarctic continent. Codes
are provided as Supplementary Files; strain-rate data pro-
ducts can be obtained through open ftp by contacting the
National Snow and Ice Data Center (NSIDC) or the authors.

3.1. Velocity grids

The ice velocity grids used in this study have been derived
from the cross-correlation of pairs of Landsat-8 scenes. The
velocities have then been mosaicked to cover the Antarctic
continent as the Landsat Ice Speed of Antarctica (LISA) data
product (using the methods of Fahnestock and others,
2016; data available from NSIDC). The grids, which are pro-
vided as separate rasters for ice speeds in the x-direction (u)
and y-direction (v), were assembled from data collected
between 1 July 2013 and 30 June 2016.

The feature tracking program used by Fahnestock and
others (2016) is accurate to ~0.1 pixels; Landsat-8 panchro-
matic imagery, used for the LISA mosaic, has a resolution of
15 m. The accuracy in velocity estimates is then tied to the
time separation between the images and the amount of dis-
placement observed, as well as geolocation errors in the
imagery. However, the LISA mosaics are stacked products
including many overlapping pairs of Landsat scenes span-
ning many different time intervals, allowing for significant
reduction in both the geolocation and random velocity
error. Errors are discussed in detail in later sections. The ana-
lyses presented here are built on the LISA mosaic gridded at a
spatial resolution of 750 m.

3.2. Nominal strain-rate code

A one-dimensional strain rate is correctly defined as an
instantaneous change in velocity (speed) with distance,
du/dx. However, to implement this definition, velocity differ-
ences have to be taken over some finite distance:

du _u2—ul ' )
dx Ax

This quantity is frequently seen in the literature, generalized
to 2d and calculated from a velocity grid. This method inher-
ently assumes that velocities change linearly across the differ-
encing distance, as it does not take into account the
velocities between the sample points.

In the nominal strain-rate code, tensor components are
derived by offsetting a u or v velocity grid some distance rela-
tive to itself in the x- or y-direction according to (1)
(Supplementary Section S2). The velocity differences at that
distance are then calculated and divided by the offset dis-
tance to determine the strain-rate components. Values are
assigned to the center point around which the velocity differ-
ences were calculated; we will define the half-length-scale (r)
as the distance between the center point and one of the
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velocity points used for differencing, which is half the offset
distance (Supplementary Fig. S2).

In this code, as in the logarithmic strain-rate code
described below, strain-rate components are first calculated
relative to the x- and y-directions of the velocity grid. A
tensor rotation is then applied to align measurements relative
to the local flow direction to derive longitudinal, transverse
and shear-strain values using (2)-(4).

3.3. Logarithmic strain-rate code

Some of the first calculations of the strain-rate tensor on a
glacier were made by J.F. Nye as part of the 1956
Cambridge Austerdalsbre Expedition (Nye, 1959). Nye’s
method calculated the surface strain rate at a point by meas-
uring changes over time in a grid of five stakes. Multiple mea-
surements were made in the same direction to minimize error
and take into account strain-rate patterns averaged over a
length scale of interest. The stakes were placed as close to
a perfect square as possible, as shown in Figure 1, and mea-
surements were taken of each labeled distance.

Returning after some period of time, the change in length
of each segment defining the grid was recorded, and the
initial and final lengths (L,. and L.) were used, along with
the time interval, to calculate the strain rate for each
segment using the logarithmic strain Eqn (6). Each of the
strain-rate components was averaged with its corresponding
component on the opposite side of the grid in order to
account for the variation of the strain-rate tensor across the
square. This resulted in four measured strain rates: a, b, c
and d, which correspond to &y, &5, € and &35. A least-
squares method was used to estimate the longitudinal,
transverse and shear strain rates from these averages
(Supplementary Section S3).

Our logarithmic strain-rate code adapts Nye’s technique for
measuring strain rates to satellite-derived velocity grids. A
digital ‘stake’ is placed at a center point in the grid, with four
others placed at a length scale r in perpendicular directions
from the center point, in the same pattern as Nye's strain
square (Fig. 1). Stakes are allowed to move through the velocity
field using a numerical tracking scheme with adaptive time-
stepping (Supplementary Section S4) that ensures a reasonable
level of accuracy for each stake movement. We assume that
the velocity field is constant during the time the stakes are
allowed to move. After stakes have moved for a sufficient
period of time, the final lengths for each segment are calcu-
lated, and the data are reduced and rotated to find the three
flow-oriented strain-rate components. This process is repeated
for each pixel in the velocity grid.

Unlike the nominal method, which assumes that veloci-
ties change linearly over the length scale used for calcula-
tion, the logarithmic method takes into account nonlinear

a=£'u
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Fig. 1. Stake setup used by Nye (1959) to measure the strain-rate
tensor.
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velocity variations between sample points. The code extracts
velocity values throughout the travel paths of the virtual
stakes, employing bilinear interpolation to estimate velocity
values between grid center points.

3.4. Validation and sign conventions

We validated the performance of both codes by calculating
strain rates for a synthetic velocity field that produces
uniform  strain  rates for axis-oriented components
(Supplementary Section S5). Both strain-rate algorithms
reproduced the correct values with high accuracy; the loga-
rithmic code introduced a small amount of error due to
numerical approximations, and the nominal code yielded
exact results because its inherent assumption of linear
strain-rate change is correct for this field.

When strain rates are rotated relative to the local flow dir-
ection, the uniform strain-rate field is also useful for demon-
strating the applied sign conventions. Flow vectors for a
uniform strain-rate field centered on the origin are shown
in Figure 2a. Figure 2b shows flow-oriented longitudinal
strain rates, with positive values between 315° and 45° as
well as between 135° and 225°, and negative values else-
where. As shown by the flow vectors in Figure 2a, regions
with positive longitudinal strain rates are areas where the vel-
ocity increases along a flowline; a parcel traveling in these
regions will extend as it flows, which is defined as a positive
longitudinal strain rate. Figure 2c is the transverse strain rate
for the field, which measures stretching or compression
across flow. In this case, the positive and negative values
are reversed from the longitudinal strain-rate field. In nega-
tive areas, flowlines approach each other, leading to trans-
verse compression, while in positive areas the flow lines
are spreading farther apart.

Longitudinal and transverse strain rates can both be
expressed in terms of extension or compression. In both
cases, strain rates are defined as positive in extension, and nega-
tive in compression. In other words, ice parcels that stretch in
the along- or cross-flow directions have positive longitudinal
and transverse strain rates, respectively, while ice parcels that
compact along- or across-flow have negative strain rates.

Sign conventions for shear strain rates are more obscure. In
Figure 2d, we see that the positive shear strain rates are found
between 0° and 90°, as well as between 180° and 270°. If an
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Fig. 2. Strain rates calculated from a uniform-strain velocity field. (a)
Velocity vectors, (b) longitudinal strain rates, (c) transverse strain
rates, (d) shear strain rates.
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imaginary parcel is placed in the field in one of these regions, the
parcel would deform with the right-hand face moving down-
wards and the left-hand face moving up, relative to each
other; in other words, ice deformations that have right-lateral
movement are considered to have positive shear strain values.
This sign convention is maintained throughout this paper.

4. QUANTIFYING CODE ACCURACY USING A
SYNTHETIC VELOCITY FIELD

A uniform strain-rate field is useful for validating the codes and
defining sign conventions, but it is not realistic. In order to test
the level of error introduced by our codes, we create a strain
field corresponding to potential flow (White, 1999) around a
Rankine half-body, which is simple enough that the coordin-
ate-oriented strain-rate components can be derived analytically
(Supplementary Section S6). The analytical solutions, as well as
results discussed below, are shown in Figure 3. The Rankine
half-body flow field yields patterns similar to flow around a
nunatak or ice rise within flowing ice; we chose parameters
that approximate flow characteristics around large ice rises in
Antarctic ice shelves, such as Roosevelt Island in the Ross Ice
Shelf or Berkner Island in the Filchner-Ronne. Note that real
strain-rate fields are considerably more complicated and
have much larger gradients in strain rates, particularly at
shear margins. Because this field only includes smooth, pre-
dictable changes that can be reasonably approximated in
linear segments, the nominal code will perform better than in

nominal I

arithmic
with noise e

with noise

nominal

more complex flow fields, where the logarithmic strain calcula-
tions and stake-tracking will be more important.

In order to understand the impacts of our numerical approx-
imations on strain-rate results, we use a simple measure to
assess code accuracy: the mean of the absolute value of the
difference between the calculated and theoretical strain
fields (we will refer to this as the ‘difference’ throughout this
section). This is a single value that will not be representative
of all areas. We chose a domain that encompasses the
higher-strain-rate regions near the tip of the Rankine half-
body, but still includes large areas of very low strain rates
where the nominal code is expected to perform very well
(Fig. 3).

Figure 4a shows the difference between the numerical
results and the analytical solution for both codes.
Differences are generally on the order of 1072-10~" day ™',
which means they are generally between 0.1 and 1% of
the strain-rate values calculated for this scenario. The differ-
ence for the nominal code shows very little change with
length scale because the smooth gradients in the velocity
field are approximated well by linear assumptions regardless
of differencing distance. The logarithmic code shows an
increase in difference with length scale, which is related to
error introduced by the repeated stake velocity approxima-
tions. However, very few locations would rely on the larger
length scales shown on the graph, and at maximum, the dif-
ference is <1% of typical values. The length scales more
commonly used would yield even smaller differences, at

logarithmic ~ analytical soln.

Fig. 3. Theoretical and calculated strain-rate results for flow around a Rankine half-body.
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added Gaussian noise.

levels where the disparities between the nominal and loga-
rithmic codes are not statistically significant.

We also tested the codes with added simulated noise in the
Rankine half-body velocity grids, in the form of a normally dis-
tributed perturbation with a mean of zero and a Std dev. of 2.5
m a~', which is on the order of error expected in the LISA
mosaics. Images of the results are shown in Figure 3.
Difference results are shown in Figure 4b. In this case, differ-
ence estimates were about an order of magnitude higher,
yielding percentages between ~1% and 10%. Furthermore,
the results suggest that in real data, any differences added by
larger numbers of approximations in the logarithmic code
will be insignificant compared with any error in the data.
With noise added, the logarithmic code has slightly smaller
differences than the nominal code. The reduction is a conse-
quence of the logarithmic code sampling over many pixels,
which smooths out noisy measurements. On the other hand,
the nominal code makes calculations simply by differencing
two measurements at a time; if these measurements are cor-
rupted by measurement error, the resulting differences in
strain-rate estimates can become magnified. In contrast to
the trends in difference without noise, the fields with noise
show a decrease in difference as the length scale increases.
This is due to a smoothing effect produced by spreading calcu-
lations over larger distances.

Overall, these tests show that both codes perform well on
this relatively smooth strain-rate field, both with and without
added noise, and that differences introduced by the numer-
ical methods are insignificant. We also conclude, however,
that the logarithmic code is more likely to be accurate
when applied to a wide variety of real velocity fields. Its
use of logarithmic strain will make it more accurate in
areas with high strain rates (Rees, 2006), and its numerical
integration along stake paths makes it less sensitive to large
errors in isolated measurements. It also avoids the assump-
tions of large-scale linear changes in velocity inherent in
the nominal strain-rate code.

5. RESULTS USING LISA MOSAICS

5.1. Impacts of calculation approach

In order to explore the impacts of the calculation approach
on real data, we extracted a section of the LISA velocity
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mosaic around the Bindschadler and MacAyeal Ice Streams
(also known as Ice Streams D and E) that feed the Ross Ice
Shelf. We chose this region as a representative of many
areas of interest for strain-rate calculations. Although the
strain rates are not the largest in Antarctica, they are still
high at the shear margins, which is likely to highlight any dif-
ferences between the codes. The ice streams also exhibit
complex strain-rate patterns between the shear margins. In
addition, this is a region in which strain rates have been pre-
viously calculated (Bindschadler and Vornberger, 1996)
because they reveal important information about the ice
stream flow patterns.

Figure 5 shows the normalized error between the results of
the logarithmic and nominal codes for the region of interest.
The percent difference is calculated as the absolute value of
the difference between the two results divided by the abso-
lute value of the results for the logarithmic code, multiplied
by 100.

Because we are showing differences as percentages, small
differences in strain-rate results due either to code differences
and/or random error in the original data yield much larger
values in areas with very small strain rates, such as those gen-
erally found outside the ice streams. Therefore, most of the
speckled values shown outside the ice streams can be
treated as spurious noise. However, the areas within and
along the edges of the ice streams show more reliable
results, with the biggest errors found at shear margins. This
is predictable because shear margins are typically where
the largest strain rates and the largest gradients in strain
rates occur, which leads to larger differences between engin-
eering and logarithmic strain estimates.

The differences between the codes vary with strain-rate
component, but generally are not large, particularly within
the ice streams. It is only in the narrow shear margins where sig-
nificant errors are found. Typical difference values in the shear
margins for longitudinal and shear strain rates are below 10%,
but can reach 20-30% in some areas. Transverse strain rates
have higher differences near the shear margins, typically
above 10% and often reaching above 50% in areas that are
not obviously noisy. There are also some significant differences
within the ice streams for transverse strain rates, in areas where
absolute values for strain rates are larger.

As noted, we expect smaller differences between the
codes, due to better alignment with assumptions, in areas
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this area. Percent difference is calculated as the absolute value of the difference between the two codes divided by the absolute value of

the results of the logarithmic code, multiplied by 100.

with small strain-rate gradients where linear approximations
between pixels are relatively accurate. There is also an inter-
esting feedback in the strain-rate calculations between differ-
ences in the codes, the local strain rate and the length scale
assigned. Rees (2006) noted that logarithmic strain formula-
tions are significantly more accurate when an object strains
more than ~2%. In an area with high strain rates, each
strain-rate segment will change length a relatively large
amount during the designated time interval. So, we expect
the logarithmic code to perform better in areas with high
strain rates. However, the length scale applied is also import-
ant. If a calculation is made with a larger length scale in an
area with high strain rates, a comparable amount of absolute
length change in a strain segment translates to a smaller per-
centage, and use of the logarithmic strain-rate approach is
not as important. Therefore, we expect smaller differences
between the codes in areas with low strain rates and when
using larger length scales.

Overall, we conclude that, in most locations, there is very
little difference between the two approaches, and either code
can be reasonably applied. However, if it is important to
measure strain rates accurately at the shear margins or in
other areas with high strain rates and/or high gradients in
strain rates, the logarithmic strain-rate code is significantly
more accurate. We, therefore, continue our analysis with
only the logarithmic strain-rate code, and use the logarithmic
approach to create our strain-rate data products.

5.2. Impacts of length scale on logarithmic code

Although differences between results produced by the two
codes were relatively small, with significant differences con-
fined to shear margins and areas of large strain rates, larger
differences are found associated with the use of different
length scales. The use of a larger length scale has essentially
a smoothing or averaging effect on the results. Figure 6 shows
logarithmic code results for the MacAyeal/Bindschadler Ice
Streams region at four different length scales. Close
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inspection shows that shear margins and features within the
ice streams tend to be thinner and more well-defined at
smaller length scales, while at larger length scales shear
margins spread to larger areas and some small-scale features
are no longer visible. For example, the circled region in the
longitudinal strain-rate images is an area where details
within the ice stream are lost at larger length scales; the
arrow in the shear strain-rate fields shows the widening of a
shear margin.

Figure 7 shows the absolute value of the difference
between the results for the logarithmic code at user-defined
length scales of r=1500 and 3000 m (effective length
scales of 3000 and 6000 m). Note that the units used in
this case are day ', and are the same units and order of mag-
nitude as seen in the raw results in Figure 6. As with the dif-
ferences between the codes, the biggest differences are found
at the shear margins. However, differences in length scale
also cause differences of comparable magnitude in strain
rates within the ice streams.

Unfortunately, deciding on a ‘correct’ length scale is not
straightforward. If large-scale features of the flow, such as
thinning or thickening of the ice, are of interest, it is best to
choose a length scale that reflects the viscous processes gov-
erning ice flow. Therefore, we seek a ‘longitudinal stress-gra-
dient coupling’ length that roughly indicates how far away a
perturbation in one location can be felt by another ice parcel
(Cuffey and Paterson, 2010). Longitudinal coupling is gov-
erned by many factors such as effective viscosity, ice thick-
ness and basal shear stress. Ice with higher viscosities,
larger thicknesses and lower basal shear stress exhibits
longer longitudinal stress-gradient coupling lengths (Cuffey
and Paterson, 2010; Gudmundsson, 2013). Additionally,
crystal fabric orientation may make longitudinal coupling
lengths anisotropic, putting our centered, isotropic approach
to strain-rate calculation at a disadvantage.

Of the major factors that govern longitudinal coupling
length (effective viscosity, ice thickness and basal shear
stress), only ice thickness can currently be reasonably
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therefore represent half of the effective length scale used in the calculation. Circled region in the longitudinal strain-rate grids highlights an
area where detail within the ice stream is lost at larger length scales; arrow in shear strain-rate grids shows a region where the shear margin

spreads at larger length scales.

constrained across the Antarctic continent. Longitudinal
coupling length scales in temperate mountain glaciers tend
to be small because of high basal shear stresses and low
ice viscosities, as well as small ice thicknesses, with length
scales generally 1-3 times the ice thickness. Colder ice
sheets have longitudinal coupling length scales that are typ-
ically 4-10 times the ice thickness (Cuffey and Paterson,
2010). As ice sheets also tend to have much larger thick-
nesses, this leads to very large length scales for calculation.

If strain rates are calculated for application to brittle pro-
cesses, such as crevasse formation, or are being related to
other small-scale features, it may be best to consider strain
rates over smaller length scales. Therefore, the selection of
a length scale is both location- and application-dependent.

5.3. Impacts of length scale in a glaciological
calculation: basal melt rates

To evaluate the importance of length scale choice in glacio-
logical calculations, we applied strain-rates calculated at
different length scales to calculations of basal melt rates
on ice shelves. Strain-rate calculations are inherent in
assessments of ice shelf mass balance at a given location.
If we assume that ice is incompressible, we can write the

Longitudinal

Shear

mass-balance equation for flowing ice following Jenkins
and Doake (1991):

Uit i, — V(Hu). (8)
In this equation, & and &, are rates of surface and basal
accumulation, respectively, H. is the ice thickness, and t
is time. u is a vector of horizontal velocities, which are
assumed to be uniform throughout the vertical column in
shelf ice. Expansion using the chain rule makes the depend-
ence on strain rates explicit:

oH oH  oH
E—as+abe(eX+ey)+ua +v§ (9)

Given independent estimates of, surface mass balance (&) and
ice thickness (H), velocity grids may be used to calculate hori-
zontal strain rates which can be used with (9) to calculate rates
of ice shelf basal mass balance (¢,) (Rignot and others, 2013).
In areas with high steady-state basal melt rates, the time-varying
term oH/ot and the surface mass-balance term (&) have rela-
tively insignificant impacts on the calculated basal melt rates.
The ice thickness and mass flux divergence, calculated from
surface strain rates, have much larger impacts.

5e

. d_'ay- ,

Transverse

Fig. 7. Length-scale differences between numerical code strain-rate calculations for the Bindschadler and MacAyeal Ice Streams. Values
shown are absolute values of differences. Half-length scales used are 1500 and 3000 m.
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We carried out example basal melt rate calculations using
a variety of data sources. Ice shelf thicknesses (H) are derived
ata 1 km resolution from Cryosat-l radar altimetry data col-
lected between 2011 and 2014 (Chuter and Bamber, 2015).
All other data have been resampled to match this 1 km reso-
lution. Surface mass balance (&) is derived from a 30-year
average of RACMO-2.3 model output from 1984 to 2014
(Van Wessem and others, 2014). Ice thickness change (aH/
aY) is calculated from an 18-year trend of satellite altimetry
data between 1996 and 2014 (Paolo and others, 2015). We
approximate ice thickness change from surface elevation
change using a density of 917 kg m~? for ice and a density
of 1023 kg m™> for seawater. Surface velocities (u, v) are
from LISA mosaics (Fahnestock and others, 2016). Data
sources are unavailable for a single coincident time period;
however, as mentioned previously, the data sources that
have the largest impacts on the calculations are ice thickness
and surface velocity, and the time periods of data collection
for these overlap. In addition, our intent is to offer an example
of the importance of length scale within a reasonable glacio-
logical calculation, not to present a defensible estimate of
basal melt on ice shelves, which decreases the importance
of using data from coincident time periods.

Because ice thickness and velocity measurements are not
from precisely the same time period, local basal melt rates
may be strongly affected by the advection of large rifts.

1-km length scale

50

miyr

Pine Island

Filchner-Ronne Amery Dotson/Crosson

Ross

Thickness-dependent
length scale

These features are reflected in both the ice thickness mea-
surements and the calculated strain rates. If the rift locations
are offset between the two datasets, the basal melt calcula-
tion will falsely indicate parallel regions of very high basal
melt and freeze-on. These parallel regions can be promin-
ently seen on the Ross Ice Shelf, among other locations
(Fig. 8). These are obvious transient effects due to the differ-
ing time periods of the datasets; less obvious transient effects
may also be present. These and other outliers are therefore
reflected in our results, but they will be included to a
similar magnitude in both example calculations made for
each ice shelf.

Figure 8 shows the calculated basal melt rate results for
several large ice shelves in Antarctica. We first calculated
basal melt rates using strain rates computed at the smallest
possible length scale, which in this case uses the pixel size
of 1 km (therefore the length scale is effectively 2 km). This
commonly used approach utilizes the highest resolution pos-
sible given the pixel size and may be appropriate for assess-
ments of small-scale patterns of basal melt rates on ice
shelves with complex basal topography. Then basal melt
rates were recalculated with strain rates determined using
length scales of ~8x the ice thickness. These viscous-scale
calculations might be appropriate for large-scale averages
and for ice shelves with less complex basal topography.
Finally, we compared the average values in each calculation.

Difference

25

miyr

10 5
mfyr mfyr
-10 -5
10 2
miyr mfyr
-10 -2

Fig. 8. Estimated basal melt rates on ice shelves. Basal melt rates calculated using Eqn (9). First column shows results with strain rates
calculated at the smallest possible length scale according to the pixel size; second column shows results with strain rates calculated at a
length scale of 8x the ice thickness. Third column is first column subtracted from second column.
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Table 1. Average basal melt rates for several Antarctic ice shelves

329

Table 2. Velocity statistics for slow-moving test regions

Ice shelf Avg. basal Avg. basal melt rate  Percent
melt rate at 1 at thickness- difference
km length dependent length
scale scale
ma™' ma™'

Pine Island 28.9 22.9 26.2

Dotson/Crosson 2.42 2.33 3.86

Amery 1.64 2.38 45

Filchner-Ronne —-0.010 1.72 16200

Ross 3.20 0.410 680

Region Mean of absolute values Standard deviation
m day ™’ m day ™"

Roosevelt Island u 0.0058 0.0015
Roosevelt Island v 0.0065 0.0016
Berkner Island u 0.0084 0.0018
Berkner Island v 0.0063 0.0020

East Antarctica u 0.0015 0.00023

East Antarctica v 0.0017 0.00025
Mean u 0.0052 0.0012

Mean v 0.0048 0.0013

We chose example ice shelves that are not dominated by
large rifts.

In Table T we show a comparison of average basal melt
rates for each calculation. For some ice shelves with low
strain rates and low overall melt rates, such as on the Ross
and Filchner-Ronne, the percent differences are very large
because the absolute melt rates are very small; therefore, per-
centages are likely not representative measures of change.
However, it is notable that the difference in length scale actu-
ally reversed the sign of the melt on the Filchner-Ronne Ice
Shelf, an effect very significant to the interpretation of the
results. On ice shelves that have large strain rates and
strain-rate gradients as well as large overall melt rates, such
as Pine Island Ice Shelf, the basal melt rates calculated with
the two methods are significantly different in both magnitude
and percentage. In these cases, the length scale used to
calculate strain rates may have a significant impact on the
interpretation of ice shelf mass balance.

6. STRAIN-RATE DATA PRODUCTS
6.1. Results

We present three strain-rate data products derived from the
LISA mosaics (Fahnestock and others, 2016) at a spatial

Transverse

Fig. 9. Example strain-rate products for the Filchner Ice Shelf.
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resolution of 750 m: longitudinal, transverse and shear
strain rates. Effective and vertical strain rates may be calcu-
lated from the three strain-rate product grids. Data products
are available through open ftpby contacting NSIDC or the
authors.

As the data products cover a large area, we choose a lon-
gitudinal coupling length representing large-scale viscous
processes. Longitudinal coupling lengths are on the order
of 4-10 ice thicknesses for polar ice (Cuffey and Paterson,
2010). Because the data product includes grounded ice, ice
streams with very low basal shear stresses and floating ice,
an appropriate longitudinal coupling length might lie some-
where in the middle of this range. However, because most
of the areas with complex strain-rate patterns are found
within ice streams and ice shelves, we chose a number at
the upper end of the range that would favor ice that experi-
ences little basal resistance. The effective length scale used
in the data products is adjusted locally based on ice thickness
from Bedmap-2 (Fretwell and others, 2012) to ~8x the ice
thickness (r = 4x the ice thickness).

Figure 9 shows example strain-rate results for the Filchner
Ice Shelf region, which is fed by a complex network of ice
streams. In this region of low basal shear stresses, longitu-
dinal strain rates are primarily positive, indicating ice exten-
sion along-flow. Two rifts near the ice shelf edge show
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Fig. 10. Percent error as measured by results of the Monte Carlo simulation.

particularly high rates of extension. Areas with negative lon-
gitudinal strain rates likely reflect variations in basal shear
stress in grounded regions or convergence where ice
streams join. Transverse strain rates show broadly the oppos-
ite sign from longitudinal strain rates; areas where this rela-
tionship does not hold, such as the region of positive
longitudinal and transverse strain rates near the ice shelf
edge, have large vertical strain-rate magnitudes (in this case
indicating thinning). Prominent bands of high shear strain-
rate magnitudes along ice stream margins illustrate the
rapid change in ice velocity across these regions.

6.2. Error estimates

However the error in the original velocity grids is reduced by
image mosaicking and therefore not predictable based on the
parameters of the code, we rely on empirical methods to esti-
mate error and understand how it propagates through the
strain-rate code. We make a rough and conservative estimate
of error by using velocities in slow-moving areas of
Antarctica. Table 2 shows statistics for the x- and y-velocities
(u and v, respectively) in three slow-moving sample areas:
Roosevelt Island on the Ross Ice Shelf, Berkner Island on
the Filchner-Ronne Ice Shelf and a grounded portion of inter-
ior East Antarctica. Although these areas move very slowly,
they are still flowing; t-tests show that the mean velocities
in these regions are significantly different from zero.
Nonetheless, we will make the assumption that the velocities
here should be zero, and treat the mean as an approximate
measure of the standard error in the velocities. Since we
know the means are not zero, this is likely to be an overesti-
mate of the error in the velocity measurements.

To understand how this error propagates through the
logarithmic strain-rate code, we add a random error with
a Std dev. of 0.005 m dayf1 (the average of the means in

Percent error
Percent error

0.4 06 08 12 0

ol :
0 02 1
Abs. value of strain rate (day”' x10™)

1 2 3 4 5
Abs. value of strain rate (day' x10%)

Table 1) to the velocity fields before calculating strain
rates and repeat the procedure 100 times in a Monte
Carlo simulation. Computing time prohibits the application
of this procedure to all of Antarctica; therefore, we run it
only on the Bindschadler/MacAyeal Ice Streams region
used previously.

The Std dev. of the Monte Carlo simulation is a reasonable
estimate of error in the strain-rate calculations due to random
error in the velocity measurements. The standard deviations
are largest at the shear margins and other areas with large gra-
dients in strain. The significance of error can be most easily
understood when expressed as a percentage of the measured
strain-rate values; we show these percentages in Figure 10.
Errors within the ice streams are comparatively small; they
are generally <10% of the measured strain rates. The large-
magnitude errors found at shear margins are shown to be
insignificant when expressed as percentages. However, in
slow-moving regions with very low strain rates, errors can
be large compared with measurements. The magnitudes of
these errors are typical compared with other published
studies (Bindschadler and Vornberger, 1996).

Although the percent errors are extremely high in areas
with low strains, they are likely to only slightly impact quan-
titative calculations related to strain rates. Since the strains
are small to begin with, the errors have small absolute
values. It is only in areas with high strain rates that one can
find, for example, significant vertical velocities. Even with
errors of large percentages, vertical velocities calculated in
low strain-rate areas will still be very small, yielding very
little impact on the interpretation of results.

The calculated Monte Carlo simulation revealed very
strong relationships between the percent error and the abso-
lute value of the strain rates (Fig. 11). We fit a power law
curve of the form percent error = a*|strain rate|® to each
error relationship. The coefficients and R* values are shown

_Shear strain rate error relation

Percent error

® 5 | o st o5 © o %
3 0 05 e B 2
Abs. value of strain rate (day' x10™)

Fig. 11. Error relations for calculated strain rates. Percent error is calculated from the Std dev. of the Monte Carlo simulations and the
calculated strain-rate values. All values are calculated for the Bindschadler and MacAyeal Ice Streams region.
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Table 3. Power law coefficients for error relations

Strain type a B R?

Longitudinal 0.001189 —0.8188 0.8699
Shear 0.001026 —-0.8326 0.8761
Transverse 0.001111 —0.8240 0.8644
Effective 0.0009713 —0.8351 0.8838

in Table 3. The high R* values indicate the reliability of these
power laws. We used the calculated relations to estimate
percent errors across the entire Antarctic strain rate product
and then used the percentages to convert to absolute error
values. The resulting estimates are available through open
ftp from NSIDC or by contacting the authors.

7. CONCLUSIONS

Ice surface strain rates have historically been calculated
using inconsistent methods and length scales, which are
often not specified in the text of a given study. Logarithmic
strain-rate calculations are more reliably accurate for ice;
however, significant differences between logarithmic and
nominal strain-rate approaches are found only in areas
with very high strain rates and strain-rate gradients, such as
along shear margins. Overall, the calculation method used
does not significantly impact glaciological calculations
involving strain rates.

The length scale over which strain rates are calculated can
have much bigger impacts on the results. As demonstrated
above, mass-balance calculations of average basal melt
rates on ice shelves can yield results differing by almost
60% when different length scales are used. This example
demonstrates that length scales must be chosen carefully
with reference to factors such as the local ice thickness and
the type of process being examined; these values should
also be stated explicitly within each study.

The strain-rate products presented here reflect large-scale
viscous processes, calculated with a length scale of ~8x the
local ice thickness. In the past, large-scale strain-rate datasets
have been frequently derived from models (e.g., Kulessa and
others, 2014). The continent-wide datasets presented here
are derived from observations, and therefore reliably reflect
real processes that affect grounded and floating ice in
Antarctica. These datasets may be used directly in future
studies, for example, to examine dynamically complex ice
flow, to identify areas of thinning and thickening, or to esti-
mate the stress states of ice streams and ice shelves. They
may also be incorporated into large-scale models in order
to increase the accuracy and reliability of current assess-
ments and future projections of Antarctic ice flow.

SUPPLEMENTARY MATERIAL
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