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Abstract We give a new elementary construction of Ree’s family of finite simple groups of type 2G2,
which avoids the need for the machinery of Lie algebras and algebraic groups. We prove that the groups
we construct are simple of order q3(q3 +1)(q − 1) and act doubly transitively on an explicit set of q3 + 1
points, where q = 32k+1. Moreover, our construction is practical in the sense that generators for the
groups and many of their maximal subgroups may easily be obtained.
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1. Introduction

The two families of Ree groups, namely

R(32k+1) = 2G2(32k+1) and R(22k+1) = 2F4(22k+1),

are among the least understood of the finite simple groups. Partly this is due to the
difficulty in constructing them. They were the last infinite families of finite simple groups
to be discovered [6], and the standard construction is described in [3] using a great
deal of technical machinery. Put simply, they are described as subgroups of G2(q) and
F4(q) acting on the respective Lie algebra, of dimension 14 or 52, centralizing certain
automorphisms of order 2 which are constructed with considerable technical difficulty.

It is well known, however, that the smallest representation of G2(q) (for q odd), and
also of R(32k+1), has dimension 7, and can be obtained from the octonion algebra. Sim-
ilarly, the smallest representation of F4(q) (for q prime to 3), and also of R(22k+1), has
dimension 26, and can be obtained from an exceptional quadratic Jordan algebra. Explicit
constructions of these representations are given, for example, by Howlett et al . [5] (see
also [7]), and are included in [2]. Nevertheless, these constructions require even more
machinery, namely some representation theory of Lie algebras and/or algebraic groups.

There is also a geometrical construction of 2G2(q) (but not of 2F4(q)) due to Tits [8]
(see also [9]), which works with six-dimensional projective space and describes explicitly
a set of q3 + 1 points permuted 2-transitively by the group. However, his list of points,
given by complicated formulae, is obtained from the Lie theory. Of course, one can take
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this list of points as a definition and deduce the required properties of the group from it,
but then there is no motivation for this seemingly arbitrary definition.

In this paper I shall give a completely elementary construction of the small Ree groups,
2G2(q), which uses no Lie theory whatsoever. This is related to the Tits construction,
but I believe it offers several significant advantages over the latter. What is new here is,
firstly, the observation that the entire construction is determined by elementary proper-
ties of the affine group 23:7:3; secondly, a simple algebraic definition of the points from
which Tits’s formulae can easily be derived by solving equations; thirdly, a simple alge-
braic criterion for membership in the group, from which the group order and simplicity
follow easily. Thus, our viewpoint is quite different and, perhaps more importantly, it
provides a template for the much more difficult construction of the large Ree groups,
2F4(22n+1), which is described in [10]. The latter construction is, I believe, completely
new. To demonstrate the utility of these constructions, I calculate the group orders, prove
simplicity and construct most of the maximal subgroups.

2. A definition of the Ree groups

The affine group H := 23:7:3 ∼= AΓL1(8) may be built from the field of order 8 by taking
the split extension of the additive group by the multiplicative group, and then further
extending by the field automorphisms. It has a natural module of degree 7, generated by
the following linear transformations with respect to a basis {it | t ∈ F7} of the underlying
vector space V over any field F of characteristic not 2:

α : it �→ ±it (‘+’ sign for t = 1, 2, 4),

β : it �→ it+1,

γ : it �→ i2t.

It is easy to see, either from first principles or by calculating the character, that on
restriction to the subgroup 23:7 the exterior square Λ2(V ) of V is a direct sum of three
copies of the restriction of V . It follows easily that Λ2(V ) itself has a unique quotient
module isomorphic to V , and that the natural quotient map (defined up to an overall
scalar factor) is m : it ∧ it+r �→ it+3r for r a quadratic residue mod 7 (that is, r = 1, 2, 4).
Similarly there is a unique submodule, V ′, say, isomorphic to V , and the inclusion map
is (again up to a scalar factor) µ : it �→

∑
r=1,2,4(it+r ∧ it+3r).

The map m may be interpreted as the (anti-commutative) multiplication itit+r =
it+3r for r = 1, 2, 4, which defines the eight-dimensional octonion algebra with basis
{1, it} over F , and this leads to a quick and easy definition of G2(F ) as the group of
automorphisms of this algebra. The map µ is the corresponding comultiplication, with
respect to the natural bilinear form under which {it} is an orthonormal basis. It is a
triviality to verify that the composite map mµ is multiplication by the scalar 3. Hence,
there is a fundamental dichotomy between the characteristic 3 case, when mµ = 0, and
the rest, when mµ is an H-module automorphism of V . If the characteristic of F is not 3,
then Λ2(V ) = im µ ⊕ ker m; and if the characteristic of F is 3, then im µ ⊂ ker m.
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We assume from now on that F has characteristic 3, and define V ′ = im µ and W =
ker m. Now we can construct the H-module V ∗ := W/V ′, and observe that V ∗ is also
isomorphic, as an H-module, to V . To see this isomorphism clearly, pick the basis {i′t, i

∗
t |

t ∈ F7} of W by

i′t = µ(it) =
∑

r=1,2,4

it+r ∧ it+3r

= it+1 ∧ it+3 + it+2 ∧ it+6 + it+4 ∧ it+5,

i∗t = it+1 ∧ it+3 − it+2 ∧ it+6.

Then it is a triviality that β : i′t �→ i′t+1 and β : i∗t �→ i∗t+1 and γ : i′t �→ i′2t, and it is an
easy exercise to show that γ : i∗t �→ i∗2t − i′2t and α : i′t �→ ±i′t and α : i∗t �→ ±i∗t , with a
‘+’ sign just for t = 1, 2, 4.

With the above notation we may define natural H-module homomorphisms θ : V →
W : it �→ i′t (which is an embedding) and ρ : W → V : i∗t �→ it, i

′
t �→ 0 (which is

a projection). The former is (by definition) essentially the comultiplication µ on V , so
we may define G2(F ) as the subgroup of the orthogonal group on V (where {it} is an
orthonormal basis) which commutes with θ.

To define the Ree groups we twist ρ by a field automorphism to give ρ∗ : λ∗i∗t �→ λit,
where λ∗ = λ3k+1

if F has order 32k+1. Thus, ‘∗∗’ denotes the field automorphism λ �→ λ3.
Then the Ree group R(F ) or 2G2(F ) (also known as R(32k+1) or 2G2(32k+1)) is defined
as the subgroup of G2(F ) consisting of elements which commute with ρ∗.

3. Generators for the Ree groups

The basis {i0, . . . , i6} of V exhibits a symmetry group 23:7:3, but to see other symmetries
it is helpful to change basis on V to {v0, v±1, v±2, v±3} defined as follows:

v−3 = −i3 − i5 − i6, v3 = i3 − i5 + i6,

v−2 = −i1 − i2 − i4, v2 = i1 + i2 − i4,

v−1 = −i0 − i3 + i6, v1 = −i0 + i3 − i6,

v0 = i1 − i2.

(This basis is almost completely determined by the requirements that it is a symplectic
basis with respect to which α is diagonal and γ is unitriangular.) We can calculate θ(vr)
explicitly and for simplicity of notation define v′

r = θ(vr). These vectors are listed in the
second column of Table 1. The third column gives a choice of v∗

r such that ρ(v∗
r ) = vr.

Notice that with respect to these new (ordered) bases of V and W , both θ and ρ are
graded. The calculations required to verify the correctness of this table are relegated to
the appendix.

What symmetries are visible with respect to this new basis? First notice that the
element α which negates i0, i3, i5, i6 acts by negating v±1, v±3. Then the element αβ3

which negates i1, i2, i3, i6 acts by negating v0 and swapping vr with v−r for r �= 0.
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Table 1. The new basis of W

r v′
r v∗

r

−3 v0 ∧ v−3 + v−2 ∧ v−1 v−3 ∧ v−2

−2 v1 ∧ v−3 + v−2 ∧ v0 v−1 ∧ v−3

−1 v−3 ∧ v2 + v−1 ∧ v0 v−2 ∧ v1

0 v−3 ∧ v3 + v2 ∧ v−2 + v1 ∧ v−1 v−3 ∧ v3 + v−2 ∧ v2

1 v3 ∧ v−2 + v0 ∧ v1 v2 ∧ v−1

2 v−1 ∧ v3 + v0 ∧ v2 v1 ∧ v3

3 v3 ∧ v0 + v2 ∧ v1 v3 ∧ v2

Next consider a diagonal element δ := diag(λ−3, . . . , λ3), defined with respect to the
new basis. For this to commute with θ, the following equations hold:

λ−3 = λ0λ−3 = λ−2λ−1,

λ0 = λ−3λ3 = λ−2λ2 = λ−1λ1,

which imply that δ = diag(λ−3, λ−2, λ−3λ
−1
−2, 1, λ−1

−3λ−2, λ
−1
−2, λ

−1
−3). We easily check that

this element δ does indeed commute with θ for any choice of non-zero λ−3, λ−2 in F .
Now we need δ or, equivalently, its 3k+1th power, δ∗, also to commute with ρ∗. We

calculate the image of v∗
−3 under δ∗ρ∗ to be λ∗

−3v−3, whereas the image under ρ∗δ∗

is λ−3λ−2v−3. Therefore, λ∗
−3 = λ−3λ−2 and so λ−2 = λ3k+1−1

−3 . Similarly, we calculate
the images of the other basis elements, and check that they all give the same equation.
Therefore, the diagonal elements

δ(λ) := diag(λ, λ3k+1−1, λ−3k+1+2, 1, λ3k+1−2, λ−3k+1+1, λ−1)

belong to the Ree group R(q), for any λ ∈ F = Fq, where q = 32k+1.
In fact, these diagonal elements together with the group H ∼= 23:7:3 generate R(q),

provided that q > 3. However, this is not obvious, and we shall not use it below. The
cyclic group {δ(λ) | λ ∈ F} is of course none other than the maximally split torus. It is
inverted by αβ3

so 〈δ(λ), αβ3〉 ∼= D2(q−1).

4. A definition of the Ree unital

We say that v ∈ V is a ∗-vector, or v ∈ v∗, if v∗ ≡ v ∧ w (mod V ′) for some w ∈ V .
Similarly, we say that 〈v〉 is a ∗-point (or just point, if there can be no confusion) if v

is a ∗-vector. The Ree unital (also known as the Ree–Tits unital) is the set of ∗-points.
The reason for the notation v ∈ v∗ is that v ∧ w corresponds (via duality) to the 2-space
〈v, w〉.

In order to classify the ∗-vectors, we first analyse the leading terms: writing
v =

∑3
r=−3 αrvr, we say that αrvr is the leading term (or r is the grade of v) if r is

maximal such that αr �= 0. Similarly, if also w =
∑3

r=−3 βrvr, then the leading term of
v ∧ w is αrβsvr ∧ vs, where r and s are maximal such that αr �= 0 and βs �= 0. Note
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Table 2. Equations for the points

Term Equation Solved for

v∗
3 β2 = 1 β2

v∗
2 β1 = −α∗

2 β1

v′
3 β0 = α1β2 − α2β1 β0

v′
2 β−1 = α0β2 − α2β0 β−1

v∗
1 α∗

1 = α2β−1 − α−1β2 α−1

v′
1 β−2 = α1β0 − α0β1 β−2

v∗
−1 β∗

−1 = α−2β1 − α1β−2 α−2

v∗
0 α∗

0 = −β−3 + α−2β2 − α2β−2 β−3

v′
−1 α2β−3 − α−3β2 = α−1β0 − α0β−1 α−3

v′
0 β−3 = α2β−2 − α−2β2 + α1β−1 − α−1β1

v′
−2 α−3β1 − α1β−3 = α−2β0 − α0β−2

v′
−3 α−3β0 − α0β−3 = α−2β−1 − α−1β−2

v∗
−2 α∗

−2 = α−1β−3 − α−3β−1

v∗
−3 α∗

−3 = α−3β−2 − α−2β−3

in particular that this leading term is uniquely determined. More generally, define the
leading term of an arbitrary vector

∑3
r=−3

∑3
s=−3 γrsvr ∧ vs in Λ2(V ) to be the sum∑

r+s=t γrsvr ∧ vs, where t is maximal subject to this sum being non-zero. Now consider
the leading term in v ∧w: this cannot lie in V ′, since no vector in V ′ has a single leading
term. (For example, if the leading term was v′

2 = v−1 ∧ v3 + v0 ∧ v2 there would have
to be a term in either v3 ∧ v0 or v3 ∧ v2, which is a contradiction.) Now the grading of
the maps θ and ρ implies that the leading term in v, which corresponds with the leading
term in v∗, is also the leading term in v ∧ w, so by inspection of Table 1, this is either
v−3 or v3.

Therefore, unless v = v−3 we may assume that

v = v3 +
2∑

r=−3

αrvr and w =
2∑

r=−3

βrvr

and then look in turn at the coefficients of v∗
3 , . . . , v′

−3 in the congruence v∗ ≡ v ∧ w

(mod V ′) to solve for one coefficient at a time in terms of the parameters α2, α1, α0.
The equations are as given in Table 2, in the order they are used.

(Actually, this only works as it stands if β1 �= 0; that is, if α2 �= 0. Otherwise, the
equation labelled v∗

−1 cannot be solved for α−2: in this case, take the difference of the
equations labelled v∗

0 and v′
0 to get an equation in which the coefficient of α−2 is β2 = 1.

The second half of the table contains the equations which are not used, except in this
special case.)

We conclude that there are at most q3+1 possibilities for v, up to scalar multiplication,
or (q−1)(q3 +1) altogether. We shall show in the next section that there are at least this
number. At that point it would be possible to identify this copy of the Ree unital with
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the one given in [8], and hence deduce all the required properties of the group from that
source. However, we gain some advantage by using the underlying algebraic structure we
have produced rather than relying solely on the geometry.

5. 2-transitivity

In order to prove that there are exactly q3+1 points, and that the group acts 2-transitively
on them, we explicitly construct some automorphisms described by lower unitriangular
matrices, which fix the point 〈v−3〉, and permute the other q3 points regularly. Indeed,
if φ is such an automorphism, we may choose the values of α2, α1 and α0 in φ(v3) =
v3+

∑2
r=−3 αrvr arbitrarily, and then the method of the previous section provides enough

equations to solve for every entry in the matrix of φ.
The easiest case is when α0 = 1 and α1 = α2 = 0. We obtain the element s1, which

centralizes v−3, v−2, v−1 and maps

v0 �→ v0 − v−3,

v1 �→ v1 + v−2,

v2 �→ v2 − v−1 − v−3,

v3 �→ v3 + v0 + v−2 + v−3.

The case when α1 = 1 and α0 = α2 = 0 is actually the element β of H, which gives
an alternative method of calculating it. This element (call it s2) centralizes v−3, v−2 and
maps

v−1 �→ v−1 − v−3,

v0 �→ v0 + v−2,

v1 �→ v1 + v−3,

v2 �→ v2 − v0 + v−2,

v3 �→ v3 + v1 − v−1 + v−3.

The third case is α2 = 1 and α0 = α1 = 0. This element s3 centralizes v−3 and maps

v−2 �→ v−2 − v−3,

v−1 �→ v−1 + v−2 − v−3,

v0 �→ v0 − v−1,

v1 �→ v1 + v0 + v−1 + v−3,

v2 �→ v2 − v1 − v0 − v−1 + v−3,

v3 �→ v3 + v2 − v−1 + v−2 − v−3.

Indeed, s1 = [s3, s2], so it suffices to check s3. The calculations required to check that s3

is in the Ree group are relegated to the appendix. Once we have verified that these three
linear transformations do indeed commute with θ and ρ∗, we have shown that indeed
the three parameters α2, α1 and α0 can be chosen from F independently, and therefore
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there are exactly q3 + 1 points in the Ree unital. Moreover, the stabilizer of the point
〈v−3〉 is transitive on the remaining q3 points. Since αβ3

maps v−3 to v3, the Ree group
is 2-transitive on the q3 + 1 points.

6. The order of the group

Lemma 6.1. The stabilizer in R(q) of the point 〈v−3〉 consists of lower triangular
matrices with respect to the basis {v−3, . . . , v3}.

Proof. If 〈v−3〉 is fixed, then so is 〈v∗
−3〉, which corresponds to the 2-space 〈v−3, v−2〉.

Therefore, also 〈v∗
−3, v

∗
−2〉 is fixed, and so is the space spanned by the corresponding

2-spaces, that is 〈v−3, v−2, v−1〉. Together with their orthogonal complements, these form
a complete composition series of the vector space V . �

Let B be the subgroup generated by the lower unitriangular matrices s1, s2, s3 and the
diagonal matrices δ(λ). Thus, B is a group of lower triangular matrices, and has order at
least q3(q − 1). On the other hand, the argument in § 4 shows that the stabilizer of the
two points 〈v−3〉 and 〈v3〉 is cyclic of order q − 1, and therefore the order of B is exactly
q3(q − 1).

Corollary 6.2. The group B is the full stabilizer of the point 〈v−3〉 in R(q) and has
order q3(q − 1).

In particular we have proved the following result.

Theorem 6.3. The order of the group R(q) is q3(q3 + 1)(q − 1), where q = 32k+1 is
the order of the underlying field.

7. Simplicity

With this preparation, simplicity can be proved using one of the standard variants of
Iwasawa’s Lemma.

Lemma 7.1. If G is a perfect group acting faithfully and primitively on a set Ω, and
the point stabilizer has a normal soluble subgroup whose conjugates generate G, then G

is simple.

Theorem 7.2. The group R(q), for q = 32k+1, is simple if q > 3.

Proof. In this case the point stabilizer B is itself soluble, and it is a triviality that
R(q) is generated by conjugates of the point stabilizer, since R(q) acts 2-transitively and
therefore primitively. To prove that R(q) is perfect, provided that q > 3, observe that
(q−1)/2 is odd, and every odd-order element in the maximal torus is a commutator, since
the normalizer of the torus is D2(q−1). Moreover, provided that q > 3, the commutator
subgroup of B is the full Sylow 3-subgroup, of order q3. On the other hand, the Sylow
2-subgroup has order 23, and its normalizer contains 23:7:3, so the involutions are also
commutators. Therefore, B is contained in R(q)′, so R(q) is perfect, and so, by the lemma,
is simple. �
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8. The involution centralizer

Now the involution α = δ(−1) = diag(−, +,−, +,−, +,−) centralizes δ(λ), s2 and αβ3
.

Together these generate a group isomorphic to 2×L2(q), acting as the orthogonal group
Ω3(q) on the 3-space 〈v−2, v0, v2〉.

On the other hand, the centralizer of the involution in the point stabilizer B has order
q(q − 1), so there are q2 involutions in B, and the involution fixes exactly q + 1 points,
so the number of involutions in R(q) is q2(q3 + 1)/(q + 1), and therefore the involution
centralizer has order q(q − 1)(q + 1). Hence, 2 × L2(q) is the full involution centralizer.

At this stage we have proved that our group R(q) is simple (if q > 3) of order
q3(q3 + 1)(q − 1) and that it has an involution with centralizer 2 × L2(q). In the usual
terminology of the literature on the Classification Theorem for Finite Simple Groups,
therefore, we have ‘constructed’ (i.e. proved the existence of) the Ree simple groups of
type 2G2.

Proving that our groups are isomorphic to the Ree groups as usually defined, however,
is a different story. This so-called ‘uniqueness’ problem for the Ree groups was a major
stumbling block in the proof of the Classification Theorem for Finite Simple Groups,
solved eventually by Bombieri [1]. An alternative strategy, which does not address the
real uniqueness problem, is to observe that our generators are the same as those in [5],
up to a suitable change of signs on the basis {vr}, so by Lie theory our groups are the
Ree groups.

9. Connections with Lie theory

When the author gave a talk on this construction at the Scottish Algebra Day at the
University of St Andrews (28 April 2006), Meinolf Geck asked whether (analogous to his
description of the Suzuki groups in [4]) this method also provides an explicit description
of the graph automorphism of G2(F ), which makes it obvious that when F is algebraically
closed this is a homomorphism (but not an isomorphism!) of algebraic groups, and that
it squares to the standard Frobenius. Indeed it does.

To see this, observe that, with respect to the basis {vr ∧ vs}, the matrix entries in
the action of G2(F ) on Λ2(V ) are polynomials in the matrix entries in the action on
V . (They are of course 2 × 2 determinants.) Now change basis on Λ2(V ) to include the
basis {v′

r, v
∗
r} given above for W . Such a basis change can be achieved by an invertible

matrix over F3, so the matrix entries with respect to this new basis are still polynomials.
Finally, the matrix entries for the action on V ∗ are just a subset of the matrix entries we
have just created. The projection ρ then identifies V ∗ with V and produces the required
group homomorphism.

Now perform this operation explicitly on the diagonal matrices

diag(λ1, λ2, λ1λ
−1
2 , 1, λ−1

1 λ2, λ
−1
2 , λ−1

1 ).

Using the basis v∗
−3, . . . , v

∗
3 of V ∗ defined by Table 1, we obtain the matrix

diag(λ1λ2, λ
2
1λ

−1
2 , λ−1

1 λ2
2, 1, λ1λ

−2
2 , λ−2

1 λ2, λ
−1
1 λ−1

2 ),
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and if we perform the same operation again we obtain

diag(λ3
1, λ

3
2, λ

3
1λ

−3
2 , 1, λ−3

1 λ3
2, λ

−3
2 , λ−3

1 ).

Finally, the subgroup 23:7:3 is represented by identical matrices, with entries in F3, on
V and V ∗, and this subgroup, together with the maximal torus, generates G2(q). Thus,
the given automorphism squares to the Frobenius, as claimed.

Of course, the Lie theory is never far away from what we have been doing. Indeed, W is
essentially the Lie algebra, and {v′

r, v
∗
r} is a Chevalley basis. But the point is that we do

not need to use the Lie algebra structure. One way of looking at what we have done is that
we have factored the comultiplication µ on the octonion algebra V through the submodule
W of Λ2(V ). As a G2(F )-module, Λ2(V ) is a uniserial module with composition factors
V , V ∗, V , so there is a 14-dimensional quotient W ∗ of Λ2(V ), and a corresponding way
to factor the product m through W ∗. (Our projection map ρ should therefore ‘really’ be
written as a map W ∗ → V , but this would merely shift the difficulty on to constructing
an H-module isomorphism between W and W ∗.) Putting together all the relevant G2(F )-
module homomorphisms, we obtain a commutative diagram as follows:

V ∗

κ

���
��

��
��

��
��

��

W

τ

���������������

ι

���
��

��
��

��
��

��
W ∗

σ

���
��

��
��

��
��

��

V
µ ��

θ

���������������
Λ2(V ) m ��

π

���������������
V

In view of the fact that this diagram contains a total of eight multiplications, comultipli-
cations and left/right semi-(co-)multiplications, I feel justified in renaming the octonion
algebra in characteristic 3 the octopus algebra. Actually, I have left out the most important
part of the octopus algebra, namely the ‘middle bi-semi-multiplication’ m := πι = κτ ,
which forms the heart of the exact sequence

0 �� V
θ �� W

m �� W ∗ σ �� V �� 0

or perhaps the mouth of the octopus.
Changing our viewpoint slightly, we can shift the field automorphism into the identifi-

cation of W with W ∗, so that (since θ is a natural inclusion and σ is a natural projection)
the structure which defines the Ree groups inside G2(F ) is completely encapsulated in
the resulting ‘twisted middle bi-semi-multiplication’ on W . In a sense, we have now come
full circle. The twisted middle bi-semi-multiplication has the simple form

m
∗ :

∑
λ∗

rv
∗
r +

∑
µrv

′
r �→

∑
λrv

′
r

with respect to the Chevalley basis of the Lie algebra W , and 2G2(F ) may be defined as
the group of automorphisms of the Lie algebra which commute with m∗.
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Appendix A

Here we give the details of the calculations. First we show that the basis of W given in
Table 1 has the required properties. To save space we use a shorthand notation, so that
st denotes is ∧ it. We use the fact that −st = ts to remove minus signs, and use a dot to
denote addition. First we calculate v′

r = θ(vr):

v′
−3 = −i′3 − i′5 − i′6 = 64.25.10.16.40.32.20.51.43,

v0 ∧ v−3 + v−2 ∧ v−1 = 31.51.61.23.25.26.10.13.61.20.23.62.40.43.64
= 51.16.32.25.10.20.40.43.64,

v′
−2 = −i′1 − i′2 − i′4 = 42.03.65.53.14.06.05.36.21,

v1 ∧ v−3 + v−2 ∧ v0 = 03.05.06.53.63.63.65.12.14.12.42
= 03.05.06.53.36.65.21.14.42,

v′
−1 = −i′0 − i′3 + i′6 = 31.62.54.64.25.10.02.15.34,

v−3 ∧ v2 + v−1 ∧ v0 = 13.15.16.23.25.26.34.54.64.10.13.61.02.32.26
= 31.16.25.62.34.54.64.10.02,

v′
0 = i′1 − i′2 = 24.30.56.53.14.06,

v−3 ∧ v3 + v2 ∧ v−2 + v1 ∧ v−1 = 35.36.35.65.63.65.21.41.12.42.41.42.03.60.03.36.60.63
= 53.56.14.24.30.06,

v′
1 = −i′0 + i′3 − i′6 = 31.62.54.46.52.01.20.51.43,

v3 ∧ v−2 + v0 ∧ v1 = 13.23.43.51.52.54.16.26.46.01.13.61.20.32.26
= 13.43.51.52.54.62.46.01.20,

v′
2 = i′1 + i′2 − i′4 = 24.30.56.35.41.60.05.36.21,

v−1 ∧ v3 + v0 ∧ v2 = 30.05.60.35.63.63.56.12.41.12.24
= 30.05.60.35.36.56.21.41.24,

v′
3 = i′3 − i′5 + i′6 = 46.52.01.16.40.32.02.15.34,

v3 ∧ v0 + v2 ∧ v1 = 31.15.61.23.52.26.01.13.61.02.23.62.40.34.46
= 15.16.32.52.01.02.40.34.46.

Next we verify that ρ(v∗
r ) = vr. Notice that the base change between the i∗t and the

v∗
r is only specified modulo V ′. Thus, we have not specified the complete basis change

on W . However, this can be obtained by analysing the calculations below in more detail.
Expressions in brackets are vectors in V ′ which therefore cancel out. We have

v∗
−3 ≡ −i∗3 − i∗5 − i∗6 ≡ 64.52.16.04.20.15,

v−3 ∧ v−2 = 31.32.34.51.52.54.61.62.64
= (31.62.54).34.51.32.61.52.64
≡ 34.51.(20.51.43).32.61.(61.04.23).52.64
= 15.20.16.04.52.64,

https://doi.org/10.1017/S001309150800028X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150800028X


A new construction of the Ree groups of type 2G2 541

v∗
−2 ≡ −i∗1 − i∗2 − i∗4 = 42.30.53.41.05.63,

v−1 ∧ v−3 = 03.05.06.35.36.36.56
≡ 03.56.(42.03.65).06.35.(35.41.60).05.63
= 30.42.53.41.05.63,

v∗
−1 ≡ −i∗0 − i∗3 + i∗6 = 31.26.64.52.02.15,

v−2 ∧ v1 = 10.20.40.31.32.34.16.26.46
≡ 31.26.10.46.(46.52.01).20.34.(20.51.43).(40.32.16)
≡ 31.26.64.52.02.51,

v∗
0 ≡ i∗1 − i∗2 = 24.03.53.41,

v−3 ∧ v3 + v−2 ∧ v2 = 35.36.35.65.63.65.12.14.21.24.14.24
≡ 53.56.41.42.(42.03.65)
= 53.41.24.03,

v∗
1 ≡ −i∗0 + i∗3 − i∗6 = 31.26.46.25.20.15,

v2 ∧ v−1 = 01.31.16.02.32.26.40.43.64
≡ 31.26.(16.40.32).01.64.(64.25.10).02.43.(02.15.34)
= 31.26.46.25.20.15,

v∗
2 ≡ i∗1 + i∗2 − i∗4 = 24.03.35.14.05.63,

v1 ∧ v3 = 30.05.60.53.36.36.65
≡ 30.65.(24.30.56).60.53.(53.14.06).05.63
= 03.24.35.14.05.63,

v∗
3 ≡ i∗3 − i∗5 + i∗6 = 46.25.16.04.02.51,

v3 ∧ v2 = 31.32.43.15.25.54.61.62.46
≡ (31.62.54).25.46.32.61.(61.04.23).43.15.(02.15.34)
≡ 25.46.16.04.51.02.

Next we verify that s3 is in the Ree group. Here we write r for vr if r is non-negative,
and r̄ for v−r if r is positive. We use the same trick to eliminate signs as above. First we
verify that the action on v′

r is correct:

v′
−3 = 03̄.2̄1̄ �→ 03̄.3̄1̄.2̄1̄.3̄2̄.1̄3̄.2̄3̄ = 03̄.2̄1̄,

v′
−2 = 13̄.2̄0 �→ 13̄.03̄.1̄3̄.2̄0.1̄2̄.03̄.3̄1̄ = 13̄.2̄0.3̄0.1̄2̄,

v′
−1 = 3̄2.1̄0 �→ 3̄2.13̄.03̄.1̄3̄.1̄0.2̄0.03̄.1̄2̄.3̄1̄ = 3̄2.1̄0.13̄.2̄0.3̄0.1̄2̄,

v′
0 = 3̄3.22̄.11̄ �→ 3̄3.3̄2.1̄3̄.3̄2̄.22̄.2̄1.2̄0.2̄1̄.3̄2̄.3̄2.13̄.03̄.1̄3̄.11̄.12̄.3̄1.01̄.02̄.3̄0.1̄2̄.3̄1̄.3̄1̄.3̄2̄

= 3̄3.22̄.11̄.23̄.01̄,

v′
1 = 32̄.01 �→ 32̄.22̄.2̄1̄.2̄3̄.3̄3.3̄2.1̄3̄.3̄2̄.01.01̄.03̄.11̄.01̄.3̄1̄

= 32̄.01.3̄3.22̄.11̄.3̄2.1̄0.03̄.2̄1̄,
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v′
2 = 1̄3.02 �→ 1̄3.1̄2.1̄2̄.3̄1̄.2̄3.2̄2.1̄2̄.3̄2̄.33̄.23̄.3̄1̄.2̄3̄.02.10.1̄0.03̄.21̄.1̄1.1̄0.3̄1̄

= 1̄3.02.2̄3.10.33̄.2̄2.1̄1.23̄.01̄.03̄.2̄1̄,

v′
3 = 30.21 �→ 30.20.01̄.2̄0.03̄.1̄3.1̄2.1̄2̄.3̄1̄.21.10.11̄.3̄1.20.01.01̄.3̄0.21̄.1̄1.1̄0.3̄1̄.23̄.3̄1.3̄0.3̄1̄

= 30.21.1̄3.02.23̄.01̄.13̄.2̄0.3̄0.1̄2̄.

Finally, we verify the action of s3 on the v∗
r , modulo V ′. As before, expressions in

brackets are vectors in V ′:

v∗
−3 = 3̄2̄ �→ 3̄2̄,

v∗
−2 = 1̄3̄ �→ 1̄3̄.2̄3̄,

v∗
−1 = 2̄1 �→ 2̄1.2̄0.2̄1̄.2̄3̄.13̄.03̄.1̄3̄

= 2̄1.1̄3̄.2̄3̄.(13̄.2̄0).(03̄.2̄1̄),

v∗
0 = 3̄3.2̄2 �→ 3̄3.3̄2.1̄3̄.3̄2̄.2̄2.12̄.02̄.1̄2̄.2̄3̄.23̄.3̄1.3̄0.3̄1̄

= 3̄3.2̄2.12̄.(3̄0.1̄2̄).(3̄1.02̄),

v∗
1 = 21̄ �→ 21̄.1̄1.1̄0.3̄1̄.22̄.2̄1.2̄0.2̄1̄.3̄2̄.3̄2.13̄.03̄.1̄3̄

= 21̄.3̄3.2̄2.2̄1.3̄2̄.(33̄.2̄2.1̄1).(3̄2.1̄0).(13̄.2̄0).(03̄.2̄1̄),

v∗
2 = 13 �→ 13.12.1̄1.12̄.3̄1.03.02.1̄0.02̄.3̄0.1̄3.1̄2.1̄2̄.3̄1̄.3̄3.3̄2.1̄3̄.3̄2̄

= 13.1̄2.33̄.22̄.12̄.3̄2̄.(03.12).(1̄3.02).(33̄.2̄2.1̄1).(3̄2.1̄0).(3̄1.02̄).(3̄0.1̄2̄),

v∗
3 = 32 �→ 32.21̄.2̄2.23̄.13.12.1̄1.12̄.3̄1.03.02.1̄0.02̄.3̄0.1̄3.1̄2.1̄2̄.3̄1̄.33̄.23̄.3̄1̄.2̄3̄

= 32.13.12̄.1̄3̄.2̄3̄.(33̄.2̄2.1̄1).(03.12).(1̄3.02).(32̄.01).(3̄1.02̄).(3̄0.1̄2̄).
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