POINTWISE CHAIN RECURRENT MAPS OF THE TREE

ZHANG GENGRONG AND ZENG FANPING

Let T be a tree, $f: T \to T$ be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of T is chain recurrent under f), then either f^{a_n} is identity or f^{a_n} is turbulent if $\operatorname{Fix}(f) \cap \operatorname{End}(T) = \emptyset$; or else $f^{a_{n-1}}$ is identity or $f^{a_{n-1}}$ is turbulent if $\operatorname{Fix}(f) \cap \operatorname{End}(T) \neq \emptyset$. Here n denotes the number of endpoints of T and, a_n denotes the minimal common multiple of $2, 3, \ldots, n$.

1. INTRODUCTION

Firstly some notation and definitions are established. Let (X, d) be a compact metric space and $g: X \to X$ be a continuous map. If $g^n(x) = x \neq g^k(x), k = 1, 2, ..., n-1$, for some $x \in X$ and some positive integer n, then the point x is called a *periodic point* of period n, where $g^0 = id, g^i = g \circ g^{i-1} (i \ge 1)$. In particular, if g(x) = x, then x is called a *fixed point* of g, the set of all fixed points of g is denoted by Fix(g). For $x, y \in X$ and $\varepsilon > 0$, an ε -chain from x to y is a finite sequence $x = x_0, x_1, \ldots, x_{n-1}, x_n = y$ with $d(g(x_i), x_{i+1}) < \varepsilon$ for $0 \le i \le n-1$. We say x chains to y under g, if for each $\varepsilon > 0$, there is an ε -chain from x to y. A point x is said to be *chain recurrent* if x chains to itself. The map g is said to be *pointwise chain recurrent* if every point of X is chain recurrent under g. The following facts about chain recurrent are standard observations:

- (a) If g is pointwise chain recurrent, then g maps X onto X.
- (b) g is pointwise chain recurrent if and only if gⁿ is pointwise chain recurrent for every n > 0.
- (c) [3, Theorem A] If X is connected and $g : X \to X$ is pointwise chain recurrent, then there is no nonempty open set $U \neq X$ such that $g(\overline{U}) \subset U$.

Being chain recurrent is an important dynamical property of a system and has been studied intensively in recent years. For more details see [1, 2, 3, 4, 5, 7, 8].

A tree is any space which is uniquely arcwise connected and homeomorphic to the union of finitely many copies of the unit interval, that is, a graph(see [6])containing no

Received 2nd June, 2003

Project supported by NSFCs(10361001,10226014) and supported partly by GuangXi Science Foundation (0229001, 0249002).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

cycles. Let T be a tree, the points of T which have no neighbourhood homeomorphic to an open interval of the real line are called *vertices*, written by V(T). Let $z \in T$, the number of connected components of $T \setminus \{z\}$ is called the *valence* of z. A vertex of valence 1 is called an *endpoint* of T and a vertex of valence larger than 2 is called a *branching point* of T. Denote by End(T) and Br(T) the sets of endpoints and branching points of T, respectively, and let NE(T) be the number of endpoints of T. For a point $p \in Fix(f)$, the connected component of Fix(f) which contains p is represented by C_p . Let N be the set of positive integers. For any $n \in N$ with $n \ge 2$, let a_n denote the minimal common multiple of $2, 3, \ldots, n$.

For $a, b \in T$, we use [a, b], to denote the smallest closed connected subset containing a and b. We define $(a, b] = [a, b] \setminus \{a\}$ and similarly define (a, b) and [a, b). We also use $T_b(a)$ to denote the connected component of $T \setminus \{b\}$ which contains a. For a subset A of T, we use $int(A), \overline{A}$ and $\partial(A)$ to denote the interior, the closure and the boundary of A, respectively.

A map $g: T \to T$ is called turbulent if there are closed non-degenerate connected subsets J and K with disjoint interiors such that $g(J) \cap g(K) \supset J \cup K$.

The following are obviously:

- (1) If g is turbulent then g^n is turbulent for any n > 1.
- (2) If there exist $p \in Fix(g), y \in T$ such that $y \in ((g(y), p) \text{ and } p = g^2(y),$ then g is turbulent.

In [2], it is proved that a pointwise chain recurrent map h of the interval must satisfy that either h^2 is the identity or h^2 is turbulent. In [4], it is shown that a pointwise chain recurrent map h of the space Y satisfy that either h^{12} is identity or h^{12} is turbulent.

In this paper, we prove the following:

MAIN THEOREM. Let T be a tree with n endpoints, $f: T \to T$ be a continuous map. If f is pointwise chain recurrent, then

- (1) If $Fix(f) \cap End(T) = \emptyset$, then either f^{a_n} is the identity or f^{a_n} is turbulent;
- (2) If $\operatorname{Fix}(f) \cap \operatorname{End}(T) \neq \emptyset$, then either $f^{a_{n-1}}$ is the identity or $f^{a_{n-1}}$ is turbulent.

From the Main Theorem, we obtain the following Corollary, which sharpens the result of [4].

COROLLARY. Let f be a pointwise chain recurrent map of the space Y, then

- (1) If $Fix(f) \cap End(T) \neq \emptyset$, then either f^2 is turbulent or f^2 is identity;
- (2) If $Fix(f) \cap End(T) = \emptyset$, then either f^6 is identity or f^6 is turbulent.

2. PROOF OF MAIN THEOREM

Before proving the main theorem, some lemmas are established.

LEMMA 2.1. Suppose $k, m, n \in N$ with $km \leq n$, then $ka_m \leq a_n$ and $ka_m \mid a_n$. PROOF: Let $a_m = \prod_{i=1}^{s+l} q_i^{r_i}$ and $k = \prod_{i=1}^l q_i^{t_i}$, where q_i are prime number with $q_i \neq q_j$, for all $1 \leq i < j \leq s+l$. Then $ka_m = \prod_{i=1}^l q_i^{r_i+t_i} \prod_{j=l+1}^{s+l} q_j^{r_j}$. Obviously, $q_i^{r_i+t_i} \leq n$ for all i < l+1, and $q_i^{r_i} \leq m$ for all l < i < l+s+1. Thus, $ka_m \mid a_n$, which completes the proof.

LEMMA 2.2. Let T be a tree, $f : T \to T$ be a pointwise chain recurrent map. Then $Fix(f) \cap int(T) \neq \emptyset$. In particular, if $Fix(f) = \{p\}$, then $p \notin End(T)$.

PROOF Suppose that $Fix(f) \cap int(T) = \emptyset$, that is $Fix(f) \subset End(T)$. Given $v_1 \in int(T)$, then $f(v_1) \in (v_1, e_1)$ for some endpoint e_1 .

(1) If $(v_1, e_1) \cap Br(T) = \emptyset$, then $(v_1, e_1] \cap Fix(f) = \{e_1\}$ and $f([v_1, e_1]) \subset (v_1, e_1]$. But this contradicts (c). Hence there exists some point $v_2 \in (v_1, e_1) \cap Br(T)$ satisfying $(v_1, v_2) \cap Br(T) = \emptyset$.

(2) Obviously $v_2 \in (v_1, f(v_2))$. Then there exists some endpoint e_2 such that $f(v_2) \in (v_2, e_2)$. Hence there exists some point $v_3 \in (v_2, e_2) \cap Br(T)$ satisfying $(v_2, v_3) \cap Br(T) = \emptyset$.

(3) Thus, we can find infinite points v_1, v_2, v_3, \ldots satisfy: $v_{i+1} \in Br(T), (v_i, v_{i+1}) \cap Br(T) = \emptyset, v_i \neq v_j$ for all $i, j \in N$ and $i \neq j$. This is contrary to the fact that Br(T) is finite, which completes the proof.

LEMMA 2.3. Let T be a tree, $f: T \to T$ be a pointwise chain recurrent map. $p \in \operatorname{End}(T) \cap \operatorname{Fix}(f)$. If $C_p \cap \operatorname{Br}(T) = \emptyset$, then either $f^{-1}(C_p) \cap T \setminus \operatorname{Fix}(f) \neq \emptyset$ or f is turbulent.

PROOF: Without loss of generality, let $C_p = \{p\}$. Suppose $f^{-1}(p) = \{p\}$.

CASE 1. There is some point c with $(p, c) \cap (\operatorname{Fix}(f) \cup \operatorname{Br}(T)) = \emptyset$. If $f(x) \in (p, x)$ for all $x \in (p, c)$, then $f([p, x]) \subset [p, x)$ for all $x \in (p, c)$. That is a contradiction. Thus, $x \in (p, f(x))$ for all $x \in (p, c)$, and there exists some point $b \in (p, c)$ with $f(x) \in T_b(c)$ for all $x \notin T_c(b)$. Thus $f(\overline{T_b(c)}) \subset T_b(c)$, also a contradiction.

CASE 2. There are some fixed points p_0, p_1, \ldots with $(p_0, p) \cap Br(T) = \emptyset$, $d(p_i, p) < d(p_{i-1}, p)$ for all $i \in N$ and $\lim_{i\to\infty} d(p_i, p) = 0$. Without loss of generality, we assume $(p_i, p_{i+1}) \cap Fix(f) = \emptyset$. If there exists some positive integer i_0 such that $f(x) \in [p, x]$ for all $x \in [p, p_{i_0}]$ or $x \in [p, f(x)]$ for all $x \in [p, p_{i_0}]$, we obtain a analogous contradiction as case 1. Then, there exists some $i_0 \in N$ satisfies $f(x) \in (p, x)$ for all $x \in (p_{i_0+1}, p_{i_0})$ and $x \in (p, f(x))$ for all $x \in (p_{i_0+1}, p_{i_0+2})$. If $f(x) \neq p_{i_0+2}$ for all $x \in (p_{i_0+1}, p_{i_0})$ and $f(x) \neq p_{i_0}$ for all $x \in (p_{i_0+1}, p_{i_0+2})$, then there some open set $U \subset (p_{i_0}, p_{i_0+2})$ such that $f(\overline{U}) \subset U$. That is a contradiction. Without loss of generality, we assume $y \in [p_{i_0}, p_{i_0+1}]$ with $f(y) = p_{i_0+2}$ and $f^{-1}(p_{i_0+2}) \cap (p_{i_0+1}, y) = \emptyset$. If $f(x) \in (p_{i_0+2}, b)$ for all $x \in (p_{i_0+2}, p_{i_0+1})$ and some $b \in (p_{i_0+1}, y)$, then $f(\overline{U}) \subset U$ for some open set $U \subset (p_{i_0+2}, b)$. that is a contradiction. Else, f(x) = y for some $x \in (p_{i_0+2}, p_{i_0+1})$, then f is turbulent. This completes

the proof.

LEMMA 2.4. Let [p,c] be an interval, $g \in C^0[p,c]$ be a pointwise chain recurrent map. If $\{p,c\} \cap Fix(g) \neq \emptyset$, then g is turbulent or g is identity.

PROOF: Suppose that g is not turbulent and g is not identity and $p \in Fix(g)$. Without loss of generality, we assume that $C_p = \{p\}$. Then, by Lemma 2.3, f(y) = p for some $y \in (p, c]$. There exists some point $b \in (p, y)$ with $f(x) \in [p, b)$ for all $x \in [p, y]$. Hence $f([p, y]) \subset [p, y)$, a contradiction, which completes the proof.

LEMMA 2.5. Let T be a tree, $f: T \to T$ be a pointwise chain recurrent map. If n > 2 and $f^{-1}(\operatorname{Fix}(f)) \cap (T \setminus \operatorname{Fix}(f)) = \emptyset$, then either $\operatorname{Card}(\operatorname{End}(\overline{H})) < n$ for each connected component H of $T \setminus \operatorname{Fix}(f)$ or f^2 is turbulent.

Proof Suppose that there exists some connected component H of $T \setminus Fix(f)$ satisfied that \overline{H} has n endpoints and let $T \setminus H = H_1$.

CASE 1. If $\operatorname{Card}(\operatorname{Fix}(f)) \ge 2$, then $\operatorname{Card}(\overline{H} \cap \operatorname{Fix}(f)) \ge 2$ or $\operatorname{Card}(H_1 \cap \operatorname{Fix}(f)) \ge 2$.

SUBCASE 1.1. $\operatorname{Card}(\overline{H} \cap \operatorname{Fix}(f)) \ge 2$, then $f(\overline{H}) = \overline{H}$. But $\operatorname{Fix}(f) \cap \overline{H} \subset \operatorname{End}(\overline{H})$, this contradicts Lemma 2.2.

SUBCASE 1.2. $\operatorname{Card}(H_1 \cap \operatorname{Fix}(f)) \ge 2$ and $\operatorname{Card}(\overline{H} \cap \operatorname{Fix}(f)) = 1$, then H_1 is connected set and $\operatorname{int}(H_1) \cap \operatorname{Fix}(f) \ne \emptyset$. Then $f(H_1) = H_1$, hence $f(\overline{H}) = \overline{H}$. Also a contradiction. CASE 2. If $\overline{H} \cap H_1 = \operatorname{Fix}(f) = \{p\}$, then $f(\overline{H}) = \overline{H}$, $f(H_1) = H_1$ or $f(\overline{H}) = H_1$, $f(H_1) = \overline{H}$.

SUBCASE 2.1. If $f(\overline{H}) = \overline{H}$ and $f(H_1) = H_1$, we have a contradiction as above.

SUBCASE 2.2. if $f(\overline{H}) = H_1$ and $f(H_1) = \overline{H}$, then we have $f^2(H_1) = H_1$. Let $g = f^2|_{H_1}$, it is not difficult to see that g is a not identity. Then, by Lemma 2.4, g is turbulent and f^2 is turbulent. This completes the proof.

LEMMA 2.6. Let T be a tree, $f: T \to T$ be a pointwise chain recurrent map and, f is not identity. If $f^{-1}(\operatorname{Fix}(f)) \cap (T \setminus \operatorname{Fix}(f)) = \emptyset$, then

- (1) Fix(f) is a connected set and;
- (2) If $\operatorname{Card}(\operatorname{Fix}(f)) > 1$, then $\partial(\operatorname{Fix}(f)) \subset \operatorname{Br}(T) \cup \operatorname{End}(T)$ and;
- (3) If $\operatorname{Fix}(f) \cap \operatorname{End}(T) \neq \emptyset$, then $\operatorname{Fix}(f) \cap \operatorname{Br}(T) \neq \emptyset$.

PROOF: (1) If $\operatorname{Fix}(f)$ is not a connected set, then, there is a connected component H of $T \setminus \operatorname{Fix}(f)$ such that $\operatorname{Card}(\partial(H) \cap \operatorname{Fix}(f)) > 1$. We have $f(\overline{H}) = \overline{H}$ and $\operatorname{Fix}(f) \cap H = \emptyset$. This is a contradiction, by Lemma 2.2.

(2) Suppose $\operatorname{Card}(\operatorname{Fix}(f)) > 1$. If there exists some point $p \in \partial(\operatorname{Fix}(f)) \setminus (\operatorname{Br}(T) \cup \operatorname{End}(T))$, let H be the unique connected component of $T \setminus \operatorname{Fix}(f)$ such that $p \in \overline{H}$. Then $f(\overline{H}) = \overline{H}$ and $\operatorname{Fix}(f) \cap \overline{H} \subset \operatorname{End}(\overline{H})$. This is a contradiction, by Lemma 2.2.

(3) If $p \in Fix(f) \cap End(T)$ and $Fix(f) \cap Br(T) = \emptyset$, then, by (2), $Fix(f) = \{p\}$. But this contradicts Lemma 2.2. This completes the proof.

Π

PROOF OF MAIN THEOREM: We do argument on induction.

If n = 2, by [3] and Lemma 2.4, we know that the assertion is true.

Inductively, we assume that the assertion is true for all T with endpoints less than n and n > 2. Now suppose f is not the identity and continue argument for T with n endpoints in the following two cases.

CASE 1. $f^{-1}(\operatorname{Fix}(f)) \cap (T \setminus \operatorname{Fix}(f)) \neq \emptyset$. In this case the following two subcases are considered.

SUBCASE 1.1. Fix $(f) \cap \text{End}(T) = \emptyset$ Without loss of generality, let $f(z_1) = p \in \text{Fix}(f)$ and $z_1 \neq p$. Denotes $C_0 = \{z_1\}$.

 $(1)f^{-1}(z_1) \cap T_{z_1}(p) \neq \emptyset$. Otherwise, there is some nonempty open set $U \subset T_{z_1}(p)$ with $f(\overline{U}) \subset U$. A contradiction.

(2) Let $B_1 = \{z_1^1, z_1^2, \ldots, z_1^{k_1}\} \subset f^{-1}(z_1) \cap T_{z_1}(p)$ with $(z_1^i, p) \cap f^{-1}(z_1) = \emptyset$, for all $1 \leq i \leq k_1$ and B_1 is the largest set with this property. Let A_1 denote $T_{z_1}(p) \cap T_{z_1^1}(p) \cap T_{z_1^1}(p) \cap T_{z_1^1}(p)$. Then $f^{-1}(B_1) \cap A_1 \neq \emptyset$ (Else, there is some connected open subset U with $f(\overline{U}) \subset U$, which is a contradiction). Denote $f(A_1) \cap B_1 = C_1$.

(3) Let $B_2 = \{z_2^1, z_2^2, \dots, z_2^{k_2}\} \subset f^{-1}(B_1) \cap A_1$ with $(z_2^i, p) \cap f^{-1}(B_1) = \emptyset$, for all $1 \leq i \leq k_2$ and B_2 is the largest set with this property. Let A_2 denote $T_{z_2^1}(p) \cap T_{z_2^2}(p) \cap \dots \cap T_{z_2^{k_2}}(p) \cap A_1$. Then $f^{-1}(B_2) \cap A_2 \neq \emptyset$. Denote $f(A_2) \cap B_2 = C_2$.

(4) By a repetition of this process we can get nonempty sets $\{A_i, B_i, C_i\}_{i=1}^{\infty}$ with $f(A_i) \cap B_i = C_i$ and $C_{i+1} \subset B_{i+1} \subset A_i \cap f^{-1}(B_i) \subset f^{-1}(C_i)$ for all $i \ge 0$. Take some point $z_{n+1} \in C_n$, then $z_i = f^{n-i+1}(z_{n+1}) \in C_{i-1}$ for all $1 \le i \le n+1$. Obviously, $z_j \in T_{z_i}(p)$ for all i < j and $T = \bigcup_{i=1}^n [p, e_i]$, where $e_1, e_2, \ldots e_n \in \text{End}(T)$. Thus, $z_{i_0}, z_{j_0} \in [p, e_i]$ for some $1 \le j_0 < i_0 \le n+1$ and $i \le n$. Then $z_{i_0} \in (p, z_{j_0})$.

Denote k the minimal common multiple of $i_0 - j_0$ and j_0 , and Let $g = f^k$. There is a point $w \in (p, z_{j_0})$ with $g(w) = z_{j_0}$, since $z_{i_0} \in (z_{j_0}, p)$ and $f^{i_0-j_0}(z_{i_0}) = z_{j_0}$. Then $w \in (p, z_{j_0}), g(w) = z_{j_0}$ and $g(z_{j_0}) = p \in \text{Fix}(g)$. It follows that g is turbulent. Thus f^{a_n} is turbulent, since $k \mid a_n$.

SUBCASE 1.2. If $Fix(f) \cap End(T) \neq \emptyset$, let $p \in Fix(f) \cap End(T)$.

If $f(z_1) = z_0$ for some $z_0 \in C_p$ and $z_1 \notin C_p$, then, taken the process as subcase 1.1, we shall get points $z_0, z_1, \ldots, z_n, \ldots$ with $f(z_{i+1}) = z_i$ for all $i \ge 0, z_j \in T_{z_i}(z_0)$ for all $1 \le i < j$. Obviously $T = \bigcup_{i=1}^n [z_0, e_i]$, where $e_1, e_2, \ldots e_n \in \text{End}(T)$ and $e_n = p$. Then, $z_{i_0}, z_{j_0} \in [z_0, e_i]$ for some $1 \le j_0 < i_0 \le n$ and $i \le n-1$, since $[z_0, p] \subset \text{Fix}(f)$. Then $z_{i_0} \in (z_{j_0}, z_0), i_0 - j_o \le n-1$ and $1 \le j_0 < n-1$. Let k be the minimal common multiple of $i_0 - j_0$ and j_0 , and Let $g = f^k$. There is a point $w \in (p, z_{j_0})$ with $g(w) = z_{j_0}$, since $z_{i_0} \in (z_{j_0}, z_0)$ and $f^{i_0 - j_0}(z_{i_0}) = z_{j_0}$. Then $w \in (p, z_{j_0}), g(w) = z_{j_0}$ and $g(z_{j_0}) = z_0 \in \text{Fix}(g)$. It follows that g is turbulent. Thus $f^{a_{n-1}}$ is turbulent, since $k \mid a_{n-1}$.

If $f^{-1}(z_0) = \{z_0\}$ for all $z_0 \in C_p$, then, there exists some fixed point $q \notin C_p$ with

 $f^{-1}(q) \cap T \setminus \operatorname{Fix}(f) \neq \emptyset$. Let H be the connected component of $T \setminus C_p$ which contains point q, then, $f(\overline{H}) = \overline{H}$. Let $\{w\} = C_p \cap \overline{H}$. It is obviously that $\{w\} \cap \operatorname{Br}(\overline{H}) = \emptyset$ and $f^{-1}(w) \cap \overline{H} = \{w\}$, then f is turbulent, by Lemma 2.3. It follows that $f^{a_{n-1}}$ is turbulent. CASE 2. $f^{-1}(\operatorname{Fix}(f)) \cap (T \setminus \operatorname{Fix}(f)) = \emptyset$.

Let G_1, G_2 be two connected components of $T \setminus Fix(f)$. Then $f(\overline{G_1}) = \overline{G_2}$ and $\overline{G_1} \cap \overline{G_2} \subset Fix(f)$, if $f(G_1) \cap G_2 \neq \emptyset$.

If f^2 is turbulent, then $f^{a_{n-1}}$ is turbulent.

Now we suppose f^2 is not turbulent, then, by Lemma 2.5 and Lemma 2.6, $NE(\overline{H}) < n$ and $Card(\overline{H} \cap Fix(f)) = 1, f(\overline{H}) \cap \overline{H} \subset Fix(f)$ for each connected component H of $T \setminus Fix(f)$.

Given G a connected component of $T \setminus \operatorname{Fix}(f)$. Without loss of generality, we assume that (1) $f^k(\overline{G}) = \overline{G}$ and k be the minimal positive integer with this property; (2) $m = \operatorname{NE}(\overline{G}) \leq \operatorname{NE}(f^j(\overline{G}))$ for all $k \geq j \geq 1$. Obviously m < n. Then either $(f^k|_{\overline{G}})^{a_{m-1}}$ is identity or $(f^k|_{\overline{G}})^{a_{m-1}} = f^{ka_{m-1}}|_{\overline{G}}$ is turbulent, by induction. And then either $(f^k|_{f^j(\overline{G})})^{a_{m-1}}$ is identity or $f^{ka_{m-1}}|_{f^j(\overline{G})}$ is turbulent for all $k \geq j \geq 0$. Since \overline{G} is arbitrary and $k(m-1) \leq n$, it follows that either f^{a_n} is identity or f^{a_n} is turbulent, by Lemma 2.1.

In particular, if $Fix(f) \cap End(T) \neq \emptyset$, then, by Lemma 2.6, $k(m-1) \leq n-1$. Thus, we have either $f^{a_{n-1}}$ is identity or $f^{a_{n-1}}$ is turbulent, by Lemma 2.1. This completes the proof.

References

- L. Block and W.A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513 (Spinger-Verlag, Berlin, Heidelberg, New York, 1991).
- [2] L. Block and E.M. Coven, 'Maps of the interval with every point chain recurrent', Proc. Amer. Math. Soc. 98 (1986), 513-515.
- [3] L. Block and J. Franke, 'The chain recurrent set, attractors, and explosions', Ergodic Theory Dynamical System 5 (1985), 321-327.
- [4] W.J. Guo, F.P. Zeng and Q.Y. Hu, 'Pointwise chain recurrent maps of the space Y', Bull. Austral. Math. Soc. 67 (2003), 79-85.
- [5] T. Li and X.D. Ye, 'Chain recurrent point of a tree map', Bull. Austral. Math. Soc. 59 (1999), 181-186.
- [6] S.B. Nadler, Continuum theory, an introduction (Marcel Dekker. Inc., New York, 1992).
- [7] X.D. Ye, 'The centre and the depth of the centre of a tree map', Bull. Austral. Math. Soc. 48 (1993), 347-350.
- [8] F.P. Zeng, H. Mo, W.J. Guo and Q.J. Gao, 'ω-limit set of a tree map', Northeast. Math. J. 17 (2001), 333-339.

Department of Mathematics Guangxi University, Nanning, Guangxi 530004 People's Republic of China