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Abstract Given a finite sequence a = 〈ai〉n
i=1 in N and a sequence 〈xt〉∞

t=1 in N, the Milliken–Taylor
system generated by a and 〈xt〉∞

t=1 is

MT(a, 〈xt〉∞
t=1) =

{ n∑
i=1

ai ·
∑
t∈Fi

xt : F1, F2, . . . , Fn are finite non-empty

subsets of N with max Fi < min Fi+1 for i < n

}
.

It is known that Milliken–Taylor systems are partition regular but not consistent. More precisely, if a

and b are finite sequences in N, then, except in trivial cases, there is a partition of N into two cells,
neither of which contains MT(a, 〈xt〉∞

t=1) ∪ MT(b, 〈yt〉∞
t=1) for any sequences 〈xt〉∞

t=1 and 〈yt〉∞
t=1.

Our aim in this paper is to extend the above result to allow negative entries in a and b. We do so with
a proof which is significantly shorter and simpler than the original proof which applied only to positive
coefficients. We also derive some results concerning the existence of solutions of certain linear equations in
βZ. In particular, we show that the ability to guarantee the existence of MT(a, 〈xt〉∞

t=1)∪MT(b, 〈yt〉∞
t=1)

in one cell of a partition is equivalent to the ability to find idempotents p and q in βN such that
a1 · p + a2 · p + · · · + an · p = b1 · q + b2 · q + · · · + bm · q, and thus determine exactly when the latter has
a solution.

Keywords: Stone–Čech compactification; image-partition regularity; Milliken–Taylor systems

AMS 2000 Mathematics subject classification: Primary 05D10
Secondary 22A15; 54H13

1. Introduction

There are striking differences between finite and infinite partition-regular systems of
linear expressions. To make this assertion precise, we remind the reader of the notion of
an image-partition-regular matrix. (We are taking N to be the set of positive integers.)
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Definition 1.1. Let A be a (finite or infinite) matrix with entries from Z and only
finitely many non-zero entries on each row. Then A is image-partition regular if and only
if whenever Z is partitioned into finitely many classes (or is finitely coloured), there exists
a vector x of the appropriate size with entries from N such that all entries of Ax are in
the same class (or are monochrome).

Image-partition-regular matrices arise naturally in Ramsey Theory. For example, van
der Waerden’s Theorem and Schur’s Theorem are naturally stated as the assertion that
certain matrices are image-partition regular. See [4], [7] or [5, Chapter 15] for more
extensive discussions of image-partition-regular matrices. (One of the major differences
between finite and infinite image-partition-regular matrices is that the former have been
completely characterized [4], while the characterization of infinite image-partition-regular
matrices is a vexing open problem. However, we are not concerned with this difference
in this paper.)

It is a consequence of a result of Deuber [2] and some results from [4] that whenever
A and B are finite image-partition-regular matrices, then so is the matrix(

A 0
0 B

)
.

That is, whenever Z is finitely coloured, there must exist vectors x and y of the appro-
priate size with entries from N such that all entries of Ax and By have the same colour.
This is far from the case with infinite image-partition-regular matrices. To further this
discussion, we introduce the notion of Milliken–Taylor systems. Given a set A, we denote
the set of finite non-empty subsets of A by Pf (A).

Definition 1.2. Let a = 〈ai〉n
i=1 be a finite sequence in Z\{0} and let 〈xt〉∞

t=1 be a
sequence in N. The Milliken–Taylor system MT(a, 〈xt〉∞

t=1) generated by a and 〈xt〉∞
t=1

is { n∑
i=1

ai ·
∑
t∈Fi

xt : F1, F2, . . . , Fn ∈ Pf (N) and maxFi < min Fi+1 for i < n

}
.

Milliken–Taylor systems are so named because their partition regularity follows imme-
diately from the Milliken–Taylor Theorem (see [9, Theorem 2.2] and [10, Lemma 2.2]).

Definition 1.3. Let 〈yn〉∞
n=1 and 〈xn〉∞

n=1 be sequences in N. The sequence 〈xn〉∞
n=1

is a sum subsystem of 〈yn〉∞
n=1 if and only if there is a sequence 〈Hn〉∞

n=1 in Pf (N) with
max Hn < min Hn+1 for each n ∈ N and xn =

∑
�∈Hn

y� for each n ∈ N.

Notice that if 〈xn〉∞
n=1 is a sum subsystem of 〈yn〉∞

n=1, then

FS(〈xn〉∞
n=1) ⊆ FS(〈yn〉∞

n=1),

where

FS(〈xn〉∞
n=1) =

{∑
n∈F

xn : F ∈ Pf (N)
}

= MT(〈1〉, 〈xn〉∞
n=1).
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Not only are Milliken–Taylor systems partition regular, but in fact the following
stronger result is true.

Theorem 1.4. Let a be a finite sequence in N and let 〈yn〉∞
n=1 be a sequence in N.

Let r ∈ N and let N =
⋃r

i=1 Bi. Then there exist i ∈ {1, 2, . . . , r} and a sum subsystem
〈xn〉∞

n=1 of 〈yn〉∞
n=1 with MT(a, 〈xn〉∞

n=1) ⊆ Bi.

Proof. See [3, Theorem 2.5]. �

We can now describe the striking difference between finite and infinite image-partition-
regular matrices, with which we are concerned. Consider, for example, the matrix A

whose rows consist of all rows with entries from {0, 1, 2} with only finitely many non-
zero entries, at least one 1, at least one 2, and all occurrences of 1 before any occurrences
of 2. Consider also the matrix B whose rows consist of all rows with entries from {0, 1, 2}
with only finitely many non-zero entries, at least one 1, at least one 2, and all occurrences
of 2 before any occurrences of 1. Then, given a sequence x = 〈xn〉∞

n=1, the set of entries
of Ax is MT(〈1, 2〉, 〈xn〉∞

n=1) and the set of entries of Bx is MT(〈2, 1〉, 〈xn〉∞
n=1). Thus,

by Theorem 1.4, the matrices A and B are image-partition regular. On the other hand,
it was shown in [3, Theorem 3.3] that

(
A 0
0 B

)

is not image-partition regular. And we can say more. We know exactly when such matrices
can be combined to yield an image-partition-regular matrix.

Definition 1.5. Let a = 〈ai〉n
i=1 be a finite sequence. Then a is a compressed sequence

if and only if a has no adjacent repeated terms.

We note that, as far as partition regularity is concerned, we lose no generality by
restricting our attention to compressed sequences a. In the following lemma, if we had
a = 〈2,−3,−3, 1, 1, 1, 1, 2〉, then we would have c = 〈2,−3, 1, 2〉.

Lemma 1.6. Let a be a finite sequence in Z\{0} and let c be the compressed
sequence obtained by deleting adjacent repetitions of terms. Let 〈yn〉∞

n=1 be a sequence
in N. Then there is a sum subsystem 〈xn〉∞

n=1 of 〈yn〉∞
n=1 such that MT(c, 〈xn〉∞

n=1) ⊆
MT(a, 〈yn〉∞

n=1).

Proof. Let m be the length of a and for k ∈ N, let Hk = {(k − 1)m + 1, (k − 1)m +
2, . . . , km} and let xk =

∑
t∈Hk

yt. �

The main result of [3] determined precisely when one could guarantee Milliken–Taylor
systems for a and b in the same cell of an arbitrary partition of N, provided that the
entries of a and b are positive.
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Theorem 1.7. Let a and b be finite compressed sequences with entries from N. The
following statements are equivalent.

(a) Whenever r ∈ N and N =
⋃r

i=1 Bi, there exist i ∈ {1, 2, . . . , r} and sequences
〈xn〉∞

n=1 and 〈yn〉∞
n=1 with MT(a, 〈xn〉∞

n=1) ∪ MT(b, 〈yn〉∞
n=1) ⊆ Bi.

(b) There is a positive rational number α such that b = α · a.

Proof. See [3, Theorems 3.2 and 3.3]. �

In the definition of partition regularity of matrices, the requirement that the entries
of 〈xn〉∞

n=1 be positive is there because that is desired in the typical classical Ramsey-
theoretic applications. In [3], Deuber et al . did not ask what happens when the entries
of a are allowed to be negative. Had they asked this question, they could have presented
the following result, which was first stated in [7, Corollary 3.6].

Theorem 1.8. Let a be a finite sequence in Z\{0} and let 〈yn〉∞
n=1 be a sequence in

N. Let r ∈ N and let Z =
⋃r

i=1 Bi. Then there exist i ∈ {1, 2, . . . , r} and a sum subsystem
〈xn〉∞

n=1 of 〈yn〉∞
n=1 with MT(a, 〈xn〉∞

n=1) ⊆ Bi.

Proof. The proof of [3, Theorem 2.5] may be copied verbatim. �

Furthermore, if in Theorem 1.7 the entries of a and b are allowed to be negative, then
one may take the proof that (b) implies (a) directly from the proof of [3, Theorem 3.2].

The matter of the proof that (a) implies (b) in the revised Theorem 1.7 is considerably
more complicated. In the first place, the proof of [3, Theorem 3.3] is lengthy and at
least moderately intricate. In the second place, that proof does not easily accommodate
the inclusion of negative numbers. The reason has to do with the difference between the
addition and subtraction algorithms in our ordinary arithmetic (to a specified positive
base).

It is easy to see that, given p ∈ N and a sequence 〈yn〉∞
n=1 in N, there is a sum subsystem

〈xn〉∞
n=1 of 〈yn〉∞

n=1 with the property that for any t, n ∈ N, if xn � pt, then pt+1 divides
xn+1, and consequently there is no carrying when xn and xn+1 are added in base p arith-
metic. This fact allowed a colouring of N based on patterns which occurred in the base p

expansion of members of N which could separate MT(a, 〈xn〉∞
n=1) from MT(b, 〈yn〉∞

n=1)
for any sequences 〈xn〉∞

n=1 and 〈yn〉∞
n=1, as long as one did not have b = α · a for any

positive rational α.
However, even under these conditions, there is borrowing when xn is subtracted from

xn+1. The fact that the string of zeros between the least significant digit of xn+1 and the
most significant digit of xn is replaced by a string of (p − 1)s is not a serious problem,
but the change in the least significant digit of xn+1 caused by the borrowing seriously
disrupts the patterns of digits. This fact caused us significant problems. Then we recalled
a lecture that two of us heard at the University of Sheffield in 1996 at which Behzad
Bordbar discussed some joint research with John Pym [1] which used the fact that any
integer (positive, zero or negative) has a unique expansion to the base −2 (using only the
digits 0 and 1). A moment’s reflection will convince the reader that the same statement
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is true with regard to base −p, using the digits {0, 1, . . . , p−1}. There are two important
properties of this expansion. The first is that a number is divisible by pt if and only if
the rightmost t digits are 0. The second is that, when t ∈ N, x, y ∈ Z, |x| � pt and
pt+1 divides y, then there is no carrying and no borrowing when x and y are added in
base −p. This fact allows us to modify the construction of [3] and establish the analogue
of Theorem 1.7 which allows entries of a and b to be negative.

In § 2 of this paper we present some relevant facts about negative base arithmetic and
some special functions that we will use. In § 3 we complete the proof of the analogue of
Theorem 1.7. In § 4 we present additional equivalent conditions dealing with the solution
of certain linear equations in the Stone–Čech compactification of Z.

2. Arithmetic in base −p

We begin with the description of the base −p expansion and some routine facts about
that expansion, whose proofs we omit. (We take ω = N ∪ {0}.)

Lemma 2.1. Let p ∈ N with p � 2. For every x ∈ Z, there exists a unique function
γp,x : ω → {0, 1, . . . , p − 1} (with {t ∈ ω : γp,x(t) �= 0} finite) such that

x =
∞∑

t=0

γp,x(t) · (−p)t.

If x > 0, then max{t ∈ ω : γp,x(t) �= 0} is even, and if x < 0, then max{t ∈ ω :
γp,x(t) �= 0} is odd. For any x ∈ Z\{0} and any n ∈ N, pn divides x if and only if
min{t ∈ ω : γp,x(t) �= 0} � n.

Given x ∈ Z\{0} and p ∈ N\{1} if α = max{t ∈ ω : γp,x(t) �= 0}, we refer to γp,x(α) as
the most significant digit of x in the base −p expansion and we refer to α as the location
of the most significant digit. Similarly, if δ = min{t ∈ ω : γp,x(t) �= 0}, then γp,x(δ) is the
least significant digit and δ is its location.

Lemma 2.2. Let p ∈ N\{1}, let t ∈ N, and let x ∈ Z \ {0}. If x is expressible in
base −p with the most significant digit in location t, then

pt

p + 1
< |x| <

pt+2

p + 1
.

Proof. If t is even, this follows easily from the inequalities:

pt − (p − 1)(pt−1 + pt−3 + · · · + p) � x � (p − 1)(pt + pt−2 + · · · + p2 + 1).

If t is odd, our claim then follows from the inequalities:

pt+1

p + 1
< −px = p|x| <

pt+3

p + 1
.

�
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Corollary 2.3. Let a, x ∈ Z \ {0}, with |a| < p. If the most significant digits of
x and ax in their base −p expansions occur in positions t and u, respectively, then
t − 1 � u � t + 2.

Proof. This is immediate from the inequalities:

pt

p + 1
< |x| � |ax| <

pt+3

p + 1

and

pu

p + 1
< |ax| <

pu+2

p + 1
.

�

We now introduce some special functions which we will use to define colourings of Z.

Definition 2.4. Let p ∈ N\{1}.

(a) For each x ∈ Z \ {0}, we define ρp(x) ∈ {1, 2, . . . , p − 1} to be the least significant
digit in the base −p expansion of x.

(b) If x ∈ Z with |x| > p11, we define λp(x) ∈ {0, 1, 2, . . . , p − 1}11 by λp(x) =
(v1, v2, . . . , v11), where v1v2 · · · v11 occurs in the base −p expansion of x with v1 at
a location t which is a multiple of 6, and the most significant digit of the expansion
occurs at location s with t − 5 � s � t.

Notice that if λp(x) = λp(y), then the most significant digits of x and y occur in
positions that are congruent mod 6 (hence mod 2) and thus x and y have the same sign.

Lemma 2.5. Let p � 3 be a prime. Let x, y ∈ Z \ {0} and let a, b, c ∈ Z \ {0} satisfy
|a|, |b|, |c|, |a − b| < p.

(i) If ρp(ax) = ρp(bx), then a = b.

(ii) If |x|, |y| > p11 and if λp(cx) = λp(cy) and λp(ax) = λp(by), then a = b.

Proof. (i) If ρp(x) = ρp(y) = u, then au ≡ bu (mod p) and so a = b.

(ii) Let t, t′, u, u′, v, v′ denote the locations of the most significant digits of x, y, ax,
by, cx, cy, respectively, in their base −p expansions.

We may suppose that u = u′. If u′ > u, we can replace x by (−p)u′−ux. Since u ≡ u′

(mod 6), this does not alter λp(ax) or λp(cx). If u′ < u, we can replace y by (−p)u−u′
y.

We claim that v = v′. We suppose that t′ � t, the other case being similar. By
Corollary 2.3, t′ − 1 � u′ = u � t + 2. So t′ � t + 3. However, x and y have the same
sign, because cx and cy have the same sign, and therefore t and t′ have the same parity.
Thus t′ � t + 2. Now t − 1 � v � t + 2 and t − 1 � t′ − 1 � v′ � t′ + 2 � t + 4. Since
v ≡ v′ (mod 6), v = v′.
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We have

ax = w1(−p)u + w2(−p)u−1 + · · · + w6(−p)u−5 + z

and

by = w1(−p)u + w2(−p)u−1 + · · · + w6(−p)u−5 + z′,

where w1, w2, w3, w4, w5, w6 ∈ {0, 1, 2, . . . , p − 1} and

|z|, |z′| <
pu−4

p + 1
� pt−2

p + 1
.

So |ax − by| < 2(pt−2/(p + 1)). Similarly, |x − y| � |c(x − y)| < 2(pt−2/(p + 1)) and so
|bx − by| < 2(pt−1/(p + 1)). Thus

|(b − a)x| � 2
pt−1

p + 1
+ 2

pt−2

p + 1
<

pt

p + 1
< |x|

so b = a. �

We remark that it is the above proof which forces us to require 11 digits in λp(x).
If λp(ax) = λp(bx) = (v1, v2, . . . , v11), then one could have u = v6, in which case
(w1, w2, . . . , w6) = (v6, v7, . . . , v11).

3. Separating MT(a, 〈xn〉∞
n=1) from MT(b, 〈yn〉∞

n=1)

We shall be concerned in this section with establishing the generalization of Theorem 1.7
which allows entries of a and b to be negative. The proof that we present of the gener-
alization turns out to be significantly simpler and shorter than the original proof.

Theorem 3.1. Let a and b be finite compressed sequences with entries from Z\{0}.
The following statements are equivalent.

(a) Whenever r ∈ N and Z =
⋃r

i=1Bi, there exist i ∈ {1, 2, . . . , r} and sequences 〈xt〉∞
t=1

and 〈yt〉∞
t=1 in N with MT(a, 〈xt〉∞

t=1) ∪ MT(b, 〈yt〉∞
t=1) ⊆ Bi.

(b) There is a positive rational number α such that b = α · a.

Proof. (b) implies (a). Pick positive integers m and n such that α = m/n and let
d = ma. Assume that r ∈ N and Z =

⋃r
i=1 Bi. By Theorem 1.8, pick an i ∈ {1, 2, . . . , r}

and a sequence 〈zt〉∞
t=1 in N such that MT(d, 〈zt〉∞

t=1) ⊆ Bi. For each t ∈ N, let xt = mzt

and let yt = nzt. Then MT(a, 〈xt〉∞
t=1) = MT(b, 〈yt〉∞

t=1) = MT(d, 〈zt〉∞
t=1).

The proof that (a) implies (b) will include several definitions and lemmas. We assume
that we have compressed sequences a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bm〉 with
entries from Z\{0} such that whenever Z is finitely coloured there exist sequences 〈xt〉∞

t=1

and 〈yt〉∞
t=1 in N with MT(a, 〈xt〉∞

t=1) ∪ MT(b, 〈yt〉∞
t=1) monochrome.
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We choose a prime number p such that p > 2|ai| + 2|bj | for every i ∈ {1, 2, . . . , n}
and every j ∈ {1, 2, . . . , m}. We also choose an even positive integer k such that k >

2m + 2n. We use π : Z → Zk for the canonical homomorphism, and we represent Zk as
{0, 1, . . . , k − 1}. �

Definition 3.2. Let x ∈ N. Then supp(x) = {t ∈ ω : γp,x(t) �= 0}.

In the above definition we suppress the dependence of supp(x) on p, because p will
remain fixed throughout the remainder of this section. Similarly, we shall write ρ(x) and
λ(x) instead of ρp(x) and λp(x)

Lemma 3.3. Let 〈xt〉∞
t=1 be an arbitrary sequence in N.

(a) Given any b ∈ N, there is a sum subsystem 〈ut〉∞
t=1 of 〈xt〉∞

t=1 such that
FS(〈ut〉∞

t=1) ⊆ bN.

(b) There is a sum subsystem 〈yt〉∞
t=1 of 〈xt〉∞

t=1 such that for each t ∈ N,

min(supp(yt+1)) � 13 + max(supp(yt)).

(c) Given any finite colouring of N and any b ∈ N, there is a sum subsystem 〈zt〉∞
t=1

of 〈xt〉∞
t=1 such that FS(〈zt〉∞

t=1) ⊆ bN, FS(〈zt〉∞
t=1) is monochrome, and for each

t ∈ N, min(supp(zt+1)) � 13 + max(supp(yt)).

Proof. (a) By thinning, we may presume that xt ≡ xs(mod b) for all t, s ∈ N. For
each s ∈ N, let Hs = {sb, sb + 1, sb + 2, . . . , (s + 1)b − 1} and let us =

∑
t∈Hs

xt.

(b) Let H1 = {1} and let y1 = x1. Inductively, given s ∈ N, assume that we have
chosen Hs and ys =

∑
t∈Hs

xt. Let r = 13 + max(supp(ys)). Choose Hs+1 ⊆ {i ∈ N :
i > max(Hs)} such that |Hs+1| = pr and xi ≡ xj(mod pr) for all i, j ∈ Hs+1. Let
ys+1 =

∑
t∈Hs+1

xt. Then pr divides ys+1, so min(supp(ys+1)) � r.

(c) Using (a), choose a sum subsystem 〈ut〉∞
t=1 of 〈xt〉∞

t=1 such that FS(〈ut〉∞
t=1) ⊆

bN. Using (b), choose a sum subsystem 〈yt〉∞
t=1 of 〈ut〉∞

t=1 such that for each t ∈ N,
min(supp(yt+1)) � 13+max(supp(yt)). Using [5, Corollary 5.15], choose a sum subsystem
〈zt〉∞

t=1 of 〈yt〉∞
t=1 such that FS(〈zt〉∞

t=1) is monochrome. �

Definition 3.4.

(a) V = {v ∈ {0, 1, 2, . . . , p − 1}11 : (v1, v2, . . . , v6) �= 0}.

(b) If x ∈ Z \ {0}, then

G(x) = {(t, u, v) ∈ N × {1, 2, . . . , p − 1} × V : u00 . . . 0v1v2v3 · · · v11

occurs in the base −p expansion of x, with u

in location t, v1 in a location which is a multiple

of 6 and at least one zero occurring between u and v1}
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A gap of x is any member of G(x). We shall refer to (t, u, v) ∈ G(x) as a (u, v)-gap of
x. The following simple lemma is the key to our counting of gaps.

Lemma 3.5. Let |x1| > p11 and assume that

max(supp(x1)) + 11 � s = min(supp(x2)),

then G(x1 + x2) = G(x1) ∪ G(x2) ∪ {(s, ρ(x2), λ(x1))}.

Proof. We leave most of the details to the reader, only pointing out the two
places where we use the assumption that max(supp(x1)) + 11 � min(supp(x2)). Let
r = max(supp(x1)). If (t, u, v) is a gap of x2 so that u00 · · · 0v1v2v3 · · · v11 occurs in the
base −p expansion of x2, with u in location t and v1 in location j, then j � s � r + 11
so u00 · · · 0v1v2v3 · · · v11 occurs in the expansion of x1 + x2, with u in location t.

Similarly, if (t, u, v) is a gap of x1 +x2 with t > s, so that u00 · · · 0v1v2v3 · · · v11 occurs
in the expansion of x1 + x2, with u in location t, and v1 occurs in location j, then
j � s � r + 11, so none of the digits of v come from x1 and thus (t, u, v) is a gap of
x2. �

Definition 3.6. Let x ∈ Z\{0}.

(a) For (u, v) ∈ {1, 2, . . . , p − 1} × V , G(u,v)(x) = {t ∈ N : (t, u, v) ∈ G(x)}.

(b) For (u, v) ∈ {1, 2, . . . , p − 1} × V , g(u,v)(x) = |G(u,v)(x)|.

(c) P (x) = {(u, v) ∈ {1, 2, . . . , p − 1} × V : π(g(u,v)(x)) ∈ {1, 2, . . . , 1
2k}}.

Thus G(u,v)(x) is the set of locations of (u, v)-gaps of x and g(u,v)(x) is the number of
(u, v)-gaps of x. We shall only be concerned with (u, v)-gaps of x for (u, v) ∈ P (x). We
pause to give an informal description of the procedure we shall follow to prove that (a)
implies (b) in Theorem 3.1.

Let x = anwn + · · · + a2w2 + a1w1, where 〈wt〉∞
t=1 is a suitable sum subsystem of

〈xt〉∞
t=1. We count gaps in the expansion of x. What is a bit confusing is that we have to

do this more than once.

(1) Firstly, for a given (u, v), we count the number of corresponding gaps in order to
decide whether (u, v) is in P (x) (i.e. whether the number of (u, v)-gaps is less than
or equal to 1

2k(mod k)).

(2) Then, for each gap (t, u, v) ∈ G(x), with (u, v) in P (x), we count the number of
gaps in P (x) which occur to the right of the given one.

(3) Then, keeping (u, v) fixed, for each i ∈ {0, 1, . . . , n − 2}, we count the number of
values of t for which the number obtained in (2) is equal to i(mod k).

(4) Finally, we ask whether the number obtained in (3) is equal to 1(mod k). If it is,
the gap which occurs between ai+2wi+2 and ai+1wi+1 is a (u, v)-gap.
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To indicate why this works, consider the following.
Firstly, (u, v) is in P (x) if and only if it occurs between ai+1wi+1 and aiwi for some i.

If we look at the expansion of x and make the simple-minded assumption that the gaps in
P (x) occur only in this way, and never occur internally inside the expansion of some aiwi,
then the gap between ai+2wi+2 and ai+1wi+1 is distinguished from the others because
it is the only one in P (x) with i gaps of P (x) to its right. Of course, this assumption is
likely to be false. However, we get the same answer in (4) as we would if it were true.
The reason is that, for the gap between ai+1wi+1 and aiwi, the number of internal gaps
in P (x) to its right is congruent to 0(mod k). So, whether this gap is counted in (3) or
not is unaffected by the internal gaps. Furthermore, the number of internal gaps counted
in (3) is congruent to 0(mod k). So the answer in (4) is unaffected by the internal gaps.

Lemma 3.7. Let 〈xt〉∞
t=1 be a sequence in Z\{0} such that

|x1| > p11 and max(supp(xt)) + 11 � min(supp(xt+1)) for every t ∈ N.

Suppose that there exist u ∈ {1, 2, . . . , p − 1} and v ∈ V such that ρ(x) = u and λ(x) = v

for every x ∈ FS(〈xt〉∞
t=1). Let w ∈ {1, 2, . . . , p − 1}, let z ∈ V , let r ∈ {0, 1, . . . , k − 1},

and assume that g(w,z)(x) ≡ r(mod k) for each x ∈ FS(〈xt〉∞
t=1).

(a) If (w, z) �= (u, v), then r = 0.

(b) If (w, z) = (u, v), then r = k − 1.

Proof. If (w, z) �= (u, v), then G(w,z)(x1 + x2) = G(w,z)(x1) ∪ G(w,z)(x2) and so
g(w,z)(x1 + x2) = g(w,z)(x1) + g(w,z)(x2). If (w, z) = (u, v) and min(supp(x2)) = s, then
G(w,z)(x1 + x2) = G(w,z)(x1) ∪ G(w,z)(x2) ∪ {s} and so g(w,z)(x1 + x2) = g(w,z)(x1) +
g(w,z)(x2) + 1. �

Lemma 3.8. Let 〈xt〉∞
t=1 be a sequence in N such that x1 > p11 and max(supp(xt))+

13 � min(supp(xt+1)) for each t ∈ N. Suppose that ρ(aix) = ρ(aix
′) and λ(aix) = λ(aix

′)
for all x, x′ ∈ FS(〈xt〉∞

t=1) and all i ∈ {1, 2, . . . , n}. Suppose also that g(w,z)(aix) ≡
g(w,z)(aix

′)(mod k) for all x, x′ ∈ FS(〈xt〉∞
t=1), all i ∈ {1, 2, . . . , n}, and all (w, z) ∈

{1, 2, . . . , p − 1} × V . If x ∈ FS(〈xt〉∞
t=1), j ∈ {1, 2, . . . , n − 1}, w = ρ(aj+1x), and

z = λ(ajx), then g(w,z)(aix) ≡ 0(mod k) for all i ∈ {1, 2, . . . , n}.

Proof. Let i ∈ {1, 2, . . . , n} and notice that the sequence 〈aixt〉∞
t=1 satisfies the

hypotheses of Lemma 3.7. (Given t ∈ N, by Corollary 2.3 we have that max(supp(aixt))+
11 � max(supp(xt)) + 13 � min(supp(xt+1)) = min(supp(aixt+1)).)

Let j ∈ {1, 2, . . . , n − 1}, let w = ρ(aj+1x1), and let z = λ(ajx1). By Lemma 3.7
it suffices to show that (w, z) �= (ρ(aix1), λ(aix1)). Suppose instead that ρ(aj+1x1) =
ρ(aix1) and λ(ajx1) = λ(aix1). Then by Lemma 2.5 (i) we have immediately that aj+1 =
ai. By Lemma 2.5 (ii), with x = y = x1 and c = 1, we have that aj = ai. This contradicts
the fact that a is a compressed sequence. �
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We are now in a position to complete the proof of Theorem 3.1 by showing that (a)
implies (b).

Proof that (a) implies (b). Recall that we have been assuming that we have com-
pressed sequences a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bm〉 with entries from Z\{0}
such that whenever Z is finitely coloured there exist sequences 〈xt〉∞

t=1 and 〈yt〉∞
t=1 in N

with MT(a, 〈xt〉∞
t=1) ∪ MT(b, 〈yt〉∞

t=1) monochrome. We show first that we may assume
that an = bm ∈ N (and then show that a = b). To see this note that an and bm have
the same sign. (If 〈xt〉∞

t=1 is a sequence in N and F ∈ Pf (N) such that minF � n and∑
t∈F xt > |

∑n−1
i=1 aixi|, then an

∑
t∈F xt +

∑n−1
i=1 aixi has the same sign as an.) Also, if

Z =
⋃r

i=1 Bi, then Z =
⋃r

i=1(−Bi), so statement (a) holds for a and b if and only if it
holds for −a and −b. Thus we may assume that an and bm are positive.

Let c = bma and let d = anb. We claim that c and d satisfy statement (a). To see
this, let r ∈ N and let Z =

⋃r
i=1 Bi. Pick i ∈ {1, 2, . . . , r} and sequences 〈xt〉∞

t=1 and
〈yt〉∞

t=1 in N with MT(a, 〈xt〉∞
t=1) ∪ MT(b, 〈yt〉∞

t=1) ⊆ Bi. By passing to sum subsystems
we may presume (using Lemma 3.3) that FS(〈xt〉∞

t=1) ⊆ bmN and FS(〈yt〉∞
t=1) ⊆ anN.

For t ∈ N, let ut = (xt/bm) and vt = (yt/an). Then MT(c, 〈ut〉∞
t=1) = MT(a, 〈xt〉∞

t=1)
and MT(d, 〈vt〉∞

t=1) = MT(b, 〈yt〉∞
t=1). Therefore, we may assume that an = bm ∈ N as

claimed.
Now for x ∈ Z\{0}, let GP (x) = {(t, u, v) ∈ G(x) : (u, v) ∈ P (x)}. For x ∈ Z\{0} and

t ∈ N, let Rt(x) = {(t′, u′, v′) ∈ GP (x) : t′ < t}. For x ∈ Z\{0} and i ∈ {0, 1, . . . , k − 1},
let

Si(x) = {(t, u, v) ∈ GP (x) : π(|Rt(x)|) = i}

and

Ti(x) = {(u, v) ∈ {1, 2, . . . , p − 1} × V : π(|{t ∈ N : (t, u, v) ∈ Si(x)}|) = 1}.

We define a colouring ϕ of Z as follows. For x, y ∈ Z, ϕ(x) = ϕ(y) if and only if
either x = y = 0 or λ(x) = λ(y), ρ(x) = ρ(y), π(g(u,v)(x)) = π(g(u,v)(y)) for every
(u, v) ∈ {1, 2, . . . , p − 1} × V , and Ti(x) = Ti(y) for every i ∈ {0, 1, . . . , k − 1}. Notice
that ϕ is a finite colouring of Z. Pick sequences 〈xt〉∞

t=1 and 〈yt〉∞
t=1 in N such that

ϕ(x) = ϕ(y) for every x ∈ MT(a, 〈xt〉∞
t=1) and every y ∈ MT(b, 〈yt〉∞

t=1).
Now define a colouring ψ of Z as follows. For x, y ∈ Z, ψ(x) = ψ(y) if and only if either

x = y = 0 or

(1) ρ(x) = ρ(y) and λ(x) = λ(y);

(2) for all i ∈ {1, 2, . . . , n}, ρ(aix) = ρ(aiy) and λ(aix) = λ(aiy);

(3) for all i ∈ {1, 2, . . . , m}, ρ(bix) = ρ(biy) and λ(bix) = λ(biy);
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(4) for all (u, v) ∈ {1, 2, . . . , p − 1} × V and all i ∈ {1, 2, . . . , n}, g(u,v)(aix) ≡
g(u,v)(aiy)(mod k); and

(5) for all (u, v) ∈ {1, 2, . . . , p − 1} × V and all i ∈ {1, 2, . . . , m}, g(u,v)(bix) ≡
g(u,v)(biy)(mod k).

Using Lemma 3.3 and passing to sum subsystems, we may presume that

(a) x1 > p11 and y1 > p11;

(b) for each t ∈ N, min(supp(xt+1)) � 13 + max(supp(xt)) and min(supp(yt+1)) �
13 + max(supp(yt)); and

(c) for all x, x′ ∈ FS(〈xt〉∞
t=1) and all y, y′ ∈ FS(〈yt〉∞

t=1), one has ψ(x) = ψ(x′) and
ψ(y) = ψ(y′).

We have some P ⊆ {1, 2, . . . , p − 1} × V such that for all x ∈ MT(a, 〈xt〉∞
t=1) and

all y ∈ MT(b, 〈yt〉∞
t=1), P (x) = P (y) = P , because π(g(u,v)(x)) = π(g(u,v)(y)) for all

(u, v) ∈ {1, 2, . . . , p − 1} × V . Let Q = {(ρ(aj+1xj+1), λ(ajxj)) : j ∈ {1, 2, . . . , n − 1}}.
We claim that P = Q. To see this, note that by Lemma 3.7 and conditions (2) and (4)
of the definition of ψ, π(g(u,v)(aixi)) ∈ {0, k − 1} for all (u, v) ∈ {1, 2, . . . , p − 1} × V

and all i ∈ {1, 2, . . . , n}. By Lemma 3.8, if (u, v) ∈ Q, then π(g(u,v)(aixi)) = 0 for all
i ∈ {1, 2, . . . , n}.

Now let x = anxn + an−1xn−1 + · · · + a1x1, so that P (x) = P . For any (u, v) ∈
{1, 2, . . . , p − 1} × V , we have

g(u,v)(x) =
n∑

i=1

g(u,v)(aixi) + |{j ∈ {1, 2, . . . , n − 1} : (u, v) = (ρ(aj+1xj+1), λ(aj , xj))}|.

Thus

if (u, v) ∈ Q, then π(g(u,v)(x)) = |{j ∈ {1, 2, . . . , n − 1} :

(u, v) = (ρ(aj+1xj+1), λ(aj , xj))}|. (∗)

On the other hand, if (u, v) /∈ Q, then g(u,v)(x) =
∑n

i=1 g(u,v)(aixi), so either

π(g(u,v)(x)) = 0 or π(g(u,v)(x)) ∈ {k − n, k − n + 1, . . . , k − 1}

so that (u, v) /∈ P . Thus P = Q as claimed. Similarly, P = {(ρ(bj+1yj+1), λ(bjyj)) : j ∈
{1, 2, . . . , m − 1}}.

Now using (∗) and the corresponding assertion for y = b1y1 + b2y2 + · · · + bmym, we
have

n − 1 =
∑

(u,v)∈P (x)

π(g(u,v)(x)) =
∑

(u,v)∈P (y)

π(g(u,v)(y)) = m − 1,

so n = m.
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For t ∈ N and z ∈ Z \ {0}, let

δt(z) = {(t′, u′, v′) ∈ G(z) : t′ < t and (u′, v′) ∈ Q}.

Given (u, v) ∈ Q, i ∈ {0, 1, . . . , k − 1} and z ∈ Z\{0}, let

γ(i,u,v)(z) = {t ∈ N : (t, u, v) ∈ G(z) and π(|δt(z)|) = i}.

Using Lemma 3.3, choose a sum subsystem 〈wt〉∞
t=1 of 〈xt〉∞

t=1 such that for all
w, w′ ∈ FS(〈wt〉∞

t=1), all (u, v) ∈ Q, all s ∈ {1, 2, . . . , n} and all i ∈ {0, 1, . . . , k − 1},
|γ(i,u,v)(asw)| ≡ |γ(i,u,v)(asw

′)|(mod k).
Let (u, v) ∈ Q, let s ∈ {1, 2, . . . , n}, and let i ∈ {0, 1, . . . , k − 1}. We claim that

|γ(i,u,v)(asw)| ≡ 0(mod k) for all w ∈ FS(〈wt〉∞
t=1). For this it suffices to show that

γ(i,u,v)(asw2 + asw1) = γ(i,u,v)(asw2) ∪ γ(i,u,v)(asw1).
We note that (ρ(asw2), λ(asw1)) /∈ Q. To see this, suppose instead that

(ρ(asw2), λ(asw1)) = (ρ(aj+1xj+1), λ(ajxj)) for some j ∈ {1, 2, . . . , n − 1}.

Since w1, w2 ∈ FS(〈xt〉∞
t=1), we have that ρ(aj+1xj+1) = ρ(asw2) = ρ(asxj+1) and

λ(ajxj) = λ(asw1) = λ(asxj). But then by Lemma 2.5, aj+1 = as = aj , contradicting
the fact that a is a compressed sequence. Thus since (ρ(asw2), λ(asw1)) /∈ Q,

γ(i,u,v)(asw2 + asw1) = {t ∈ N : (t, u, v) ∈ G(asw2) and π(|δt(asw2 + asw1)|) = i}
∪ {t ∈ N : (t, u, v) ∈ G(asw1) and π(|δt(asw2 + asw1)|) = i}.

Now, if (t, u, v) ∈ G(asw1), then δt(asw2 + asw1) = δt(asw1). If (t, u, v) ∈ G(asw2),

then (again using the fact that (ρ(asw2), λ(asw1)) /∈ Q) we have δt(asw2 + asw1) =

δt(asw2) ∪ δt(asw1). Also, for (t, u, v) ∈ G(asw2),

δt(asw1) =
⋃

(u′,v′)∈Q

{(t′, u′, v′) : t′ ∈ G(u′,v′)(asw1)},

and so |δt(asw1)| =
∑

(u′,v′)∈Q g(u,v′)(asw1) ≡ 0(mod k). Thus if (t, u, v) ∈ G(asw2),

we have π(|δt(asw2 + asw1)|) = π(|δt(asw2)|). Therefore, γ(i,u,v)(asw2 + asw1) =

γ(i,u,v)(asw2) ∪ γ(i,u,v)(asw1) as required.
We shall complete the proof by showing that for any x ∈ MT(a, 〈xt〉∞

t=1), any z ∈
FS(〈xt〉∞

t=1) and any i ∈ {0, 1, . . . , n − 2},

Ti(x) = {(ρ(ai+2z), λ(ai+1z))}. (†)

Assume for now that we have done this. It will then follow similarly that for any
y ∈ MT(a, 〈yt〉∞

t=1), any q ∈ FS(〈yt〉∞
t=1) and any i ∈ {0, 1, . . . , n − 2}, Ti(y) =
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{(ρ(bi+2q), λ(bi+1q))}. Since for such x, y and i, we have Ti(x) = Ti(y), we must then
have in particular that λ(ai+1xn) = λ(bi+1yn). We also have that

λ(anxn) = λ(anxn + an−1xn−1 + · · · + a1x1)

= λ(bnyn + bn−1yn−1 + · · · + b1y1) = λ(bnyn) = λ(anyn).

Thus by Lemma 2.5 (ii), we will have that ai+1 = bi+1 for each i ∈ {0, 1, . . . , n−2}. Since
we already know that an = bn, we will then have a = b.

To establish (†), let x = anwn + an−1wn−1 + · · · + a1w1. We show that Ti(x) =
{(ρ(ai+2wi+2), λ(ai+1wi+1))} for each i ∈ {0, 1, . . . , n−2}. Notice that if i ∈ {0, 1, . . . , n−
2} and (u, v) ∈ Ti(x), then {t ∈ N : (t, u, v) ∈ Si(x)} �= ∅ and so (u, v) ∈ P (x) = Q.
Consequently, for each i ∈ {0, 1, . . . , n − 2},

Ti(x) = {(u, v) ∈ Q : π(|{t ∈ N : (t, u, v) ∈ Si(x)}|) = 1}.

Let (u, v) = (ρ(ai+2wi+2), λ(ai+1wi+1)), where i ∈ {0, 1, . . . , n − 2}. We consider {t ∈
N : (t, u, v) ∈ Si(x)}. If t = min(supp(ai+2wi+2)), then (t, u, v) ∈ Si(x), because it follows
from Lemma 3.8 that g(u,v)(asws) ≡ 0 (mod k) for every s ∈ {1, 2, . . . , n}. If (t, u, v) ∈
G(x) and t = min(supp(aj+2wj+2)), with j ∈ {0, 1, . . . , n−2}\{i}, then (t, u, v) ∈ Sj(x)
and thus (t, u, v) /∈ Si(x). If (t, u, v) ∈ G(asws) for some s ∈ {1, 2, . . . , n}, then (t, u, v) ∈
Si(x) if and only if t ∈ γ(j,u,v)(asws), where j + s − 1 ≡ i(mod k). We have seen that
|γ(j,u,v)(asws)| ≡ 0 (mod k). So |{t ∈ N : (t, u, v) ∈ Si(x)}| ∈ 1 + kω, i.e. (u, v) ∈ Ti(x).

Now let (w, z) ∈ P (x)\{(u, v)}. Then (t, w,z) ∈ Si(x) if and only if t ∈ γ(j,w,z)(asws)
for some s ∈ {1, 2, . . . , n}, where j +s−1 ≡ i(mod k). Since |γ(j,w,z)(asws)| ≡ 0 (mod k),
|{t ∈ N : (t, w,z) ∈ Si(x)}| ∈ kω and so (w, z) /∈ Ti(x).

Thus Ti(x) = {(u, v)}, and we have established that (†) holds. �

In the proof of Theorem 3.1 we used a large number of colours. We observe now that
in fact two colours suffice.

Corollary 3.9. Let a and b be finite compressed sequences with entries from Z\{0}
and assume that there is no positive rational number α such that b = α · a. Then
there exist sets A and B such that Z = A ∪ B and there is no sequence 〈xi〉∞

i=1 with
MT(a, 〈xi〉∞

i=1) ⊆ B and there is no sequence 〈yi〉∞
i=1 with MT(b, 〈yi〉∞

i=1) ⊆ A.

Proof. By Theorem 3.1, pick an r ∈ N and sets 〈Cj〉r
j=1 such that Z =

⋃r
j=1 Cj and

for no j ∈ {1, 2, . . . , r} do there exist sequences 〈xi〉∞
i=1 and 〈yi〉∞

i=1 with MT(a, 〈xi〉∞
i=1)∪

MT(b, 〈yi〉∞
i=1) ⊆ Cj . Let A =

⋃
{Cj : there exists 〈xi〉∞

i=1 with MT(a, 〈xi〉∞
i=1) ⊆ Cj} and

let B = N \ A. By Theorem 1.8 the sets A and B are as required. �

4. Equations in βZ

The results of this paper are intimately related to the algebra in the Stone–Čech com-
pactification βZ of Z. Given any discrete semigroup (S, ·), the operation extends to βS,
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making (βS, ·) a compact right-topological semigroup with S contained in the topolog-
ical centre of βS. We take the points of βS to be the ultrafilters on S. See [5] for an
elementary introduction to this structure, and for the meaning of any unfamiliar terms
used here.

In particular, the operations + and · on Z both extend to βZ making (βZ, +) and (βZ, ·)
right-topological semigroups. The following theorem easily implies our Theorem 1.8. In
this result it is important to note that, for example, 2 ·p refers to the operation in (βZ, ·)
and does not mean p + p.

Theorem 4.1. Let 〈at〉n
t=1 be a sequence in Z\{0}, let p be an idempotent in (βN, +),

and let q = a1 · p + a2 · p + · · · + an · p. Let A ∈ p and B ∈ q. There exists a sequence
〈xi〉∞

i=1 in N with FS(〈xi〉∞
i=1) ⊆ A and MT(a, 〈xi〉∞

i=1) ⊆ B.

Proof. See [7, Lemma 3.4]. �

To derive Theorem 1.8 from Theorem 4.1, let a sequence 〈yi〉∞
i=1 in N be given, let r ∈ N

and let Z =
⋃r

j=1 Bj . By passing to a sum subsystem if necessary, we may presume that
for each i, yi+1 > 4 ·

∑i
t=0 yt. By [5, Lemma 5.11], we can pick an idempotent p with

FS(〈yi〉∞
i=1) ∈ p and let q = a1 ·p+a2 ·p+· · ·+an ·p. Pick j ∈ {1, 2, . . . , r} such that Bj ∈ q

and pick a sequence 〈xi〉∞
i=1 with FS(〈xi〉∞

i=1) ⊆ FS(〈yi〉∞
i=1) and MT(a, 〈yi〉∞

i=1) ⊆ Bj .
Since, for each i, we had yi+1 > 4 ·

∑i
t=0 yt, one easily sees (using [7, Lemma 3.5], for

example) that 〈xi〉∞
i=1 is in fact a sum subsystem of 〈yi〉∞

i=1.
Maleki observed in Theorem 2.19 in [8] that the results of [3] implied that if

〈a1, a2, . . . , an〉 and 〈b1, b2, . . . , bm〉 are distinct compressed sequences in N, then the
equation a1 · p + a2 · p + · · · + an · p = b1 · p + b2 · p + · · · + bm · p has no solutions with
p an idempotent in (βN, +). (He also showed in [8, Theorem 2.7] that this equation also
has no solutions if p is right cancellable in (βN, +).) We now see that the corresponding
assertion holds where the entries of a and b are allowed to be negative.

Corollary 4.2. Let 〈a1,a2, . . . , an〉 and 〈b1, b2, . . . , bm〉 be compressed sequences in
Z\{0}, let p+p = p ∈ βN, and assume that a1 ·p+a2 ·p+· · · an ·p = b1 ·p+b2 ·p+· · · bm ·p.
then a = b.

Proof. We show first that it suffices to show that there is some positive rational
number α such that b = α · a. Let α = (r/s), where r, s ∈ N. Then, by [5, Lemma 13.1]
(which is the only non-trivial instance of the distributive law known to hold in βZ), we
have that

r · (a1 · p + a2 · p + · · · + an · p) = s · (b1 · p + b2 · p + · · · + bm · p).

Since also

s · (a1 · p + a2 · p + · · · + an · p) = s · (b1 · p + b2 · p + · · · + bm · p),

we have by [5, Lemma 6.28] that r = s.
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Therefore, by Theorem 3.1, it suffices to show that whenever r ∈ N and Z =
⋃r

j=1 Bj ,
there exist j ∈ {1, 2, . . . , r} and sequences 〈xi〉∞

i=1 and 〈yi〉∞
i=1 with MT(a, 〈xi〉∞

i=1) ∪
MT(b, 〈yi〉∞

i=1) ⊆ Bi. To this end, pick j ∈ {1, 2, . . . , r} such that Bj ∈ a1 · p + a2 · p +
· · · + an · p and apply Theorem 4.1. �

We shall see in Theorem 4.4 that one can expand the list of equivalent conditions in
Theorem 3.1. One of the added conditions involves idempotents in the smallest ideal
K(βN, +) of (βN, +), the so-called minimal idempotents. These are combinatorially sig-
nificant because the members of minimal idempotents are central sets and are guaranteed
to have rich combinatorial structure (see [5, Chapter 14]).

The following lemma is not new, but does not seem to be in [5].

Lemma 4.3. Let r be an idempotent in K(βN, +) and let k ∈ N. Then k · r is an
idempotent in K(βN, +).

Proof. The function p �→ k · p from βN onto k · βN is a continuous homomorphism.
(It is continuous because λk is continuous in (βN, ·) and it is a homomorphism by [5,
Lemma 13.1].) It maps K(βN, +) onto K(k ·βN, +). Now k ·βN contains all the idempo-
tents of βN by [5, Lemma 6.6], and therefore meets K(βN, +). It follows from [5, Theo-
rem 1.65] that K(k · βN, +) ⊆ K(βN, +). �

Theorem 4.4. Let a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bm〉 be finite compressed
sequences with entries from Z\{0}. The following statements are equivalent.

(a) Whenever r ∈ N and Z =
⋃r

i=1 Bi, there exist i ∈ {1, 2, . . . , r} and sequences
〈xt〉∞

t=1 and 〈yt〉∞
t=1 in N with MT(a, 〈xt〉∞

t=1) ∪ MT(b, 〈yt〉∞
t=1) ⊆ Bi.

(b) There is a positive rational number α such that b = α · a.

(c) There exist idempotents p and q in K(βN, +) such that a1 ·p+a2 ·p+ · · ·+an ·p =
b1 · q + b2 · q + · · · + bm · q.

(d) There exist idempotents p and q in (βN, +) such that a1 · p + a2 · p + · · · + an · p =
b1 · q + b2 · q + · · · + bm · q.

Proof. We have by Theorem 3.1 that (a) and (b) are equivalent and that (c) trivially
implies (d). By Theorem 4.1, (d) implies (a) (by choosing i ∈ {1, 2, . . . , r} such that
Bi ∈ a1 · p + a2 · p + · · · + an · p = b1 · q + b2 · q + · · · + bm · q).

To see that (b) implies (c), pick k, l ∈ N such that b = (k/l) · a. Pick any idempotent
r ∈ K(βN). Let p = k · r and q = l · r. By Lemma 4.3, p and q are idempotents in
K(βN, +). Then a1 · p + a2 · p + · · · + an · p = a1 · k · r + a2 · k · r + · · · + an · k · r =
b1 · l · r + b2 · l · r + · · · + bn · l · r = b1 · q + b2 · q + · · · + bm · q. �

We remark that Corollary 3.9 is equivalent to the following statement: if a and b satisfy
the hypotheses of this corollary, there exists sets A and B such that Z = A∪B and there
is no idempotent p ∈ βN for which B ∈ a1 ·p+a2 ·p+· · ·+an ·p and no idempotent q ∈ βN

for which A ∈ b1 ·q+b2 ·q+ · · ·+bm ·q. This is a property which distinguishes idempotents
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from other elements of N
�. Suppose that a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bm〉 are

arbitrary finite sequences in Z \ {0}, with an, bm ∈ N and
∑n

i=1 ai,
∑m

i=1 bi �= 0. Then it
follows from results in [7] that, in any finite colouring of N, there exist p, q ∈ N

∗ such
that a1 ·p+a2 ·p+ · · ·+an ·p and b1 ·q+b2 ·q+ · · ·+bm ·q have the same monochrome set
as a member. This is even true if we require that p and q have rapidly increasing sets as
members, where we call a subset {tn : n ∈ N} of N rapidly increasing if tn+1 − tn → ∞.
However, if p and q have rapidly increasing sets as members, it is quite easy to prove
that the equation a1 · p + a2 · p + · · · + an · p = b1 · q + b2 · q + · · · + bm · q can only hold if
b is a positive rational multiple of a.

We conclude by modifying [6, Question 1.5] (which remains unanswered) to allow for
negative entries.

Question 4.5. Let 〈a1, a2, . . . , an〉 and 〈b1, b2, . . . , bm〉 be compressed sequences in
Z\{0}. Suppose that there exists some p ∈ N

∗ such that

a1 · p + a2 · p + · · · + an · p = b1 · p + b2 · p + · · · + bm · p.

Must it then be true that a = b?

We note that it can be shown that this equation implies that a1 = b1 and an = bm.
The implication an = bm was shown in [6] in the case in which an, bm > 0, and it is easy
to see that we can assume this. The implication a1 = b1 was also shown in [6] in the case
in which a1, b1 > 0, and the proof in [6] extends easily to the general case.
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