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Remarks on Lorentz symmetric spaces

Abdelghani Zeghib

Abstract

We consider homogeneous Lorentz spaces of dimension at least 3. We prove that if such a
space has ‘big’ isotropy (that is, a non-precompact and irreducible isotropy group), then
this space must have constant sectional curvature. As a corollary, we obtain a new direct
proof of the fact that irreducible Lorentz symmetric spaces have constant curvature, which
was known via (algebraic) classification.

In [CLPTV91], Cahen et al. used the following theorem.

Theorem 1. Let (M,g) be an irreducible Lorentz symmetric space of dimension � 3, then it has
constant sectional curvature.

To prove this, Cahen et al. examined the Berger list of irreducible symmetric pseudo-Riemannian
spaces, and checked that the Lorentz signature of the metric implies constant sectional curvature.
Afterwards Cahen et al. remarked that ‘it would be certainly worthwhile to have a direct proof’.
In [BI93], Bérard-Bergery and Ikemakhen also remarked that a direct proof of this fact would be
interesting.

In this note we give a direct proof. Our result is as follows.

Theorem 2. Let (M,g) be an irreducible homogeneous Lorentz space of dimension � 3, with
non-precompact and irreducible isotropy group, then it has constant sectional curvature.

By non-precompact isotropy group, we mean that the closure of its image under the derivative
representation (on the tangent space at its fixed point) is not compact (inside the orthogonal group
O(1, n − 1), n = dimM).

Our proof here is of geometrico–dynamical flavour, in relation with [Zeg99], using the non-
compactness of the isotropy group. In fact, we have known of this direct proof for a long time, but
it was the remark in [CLPTV91] which convinced us of the interest.

Based on the ‘almost definition’ of symmetric spaces, ‘the isotropy contains the holonomy’, a
direct algebraic approach to Theorem 2 is also available (see, for instance, [DO01, BZ]). We give
here a classification-free geometric proof. Witte [Wit01] proved (but did not state) a variation on
Theorem 2 with a non-geometric ergodic theory argument.

To start with, note the following rigidity.

Proposition 3. Let M be a Lorentz manifold such that, for any x ∈ M , there are H1, . . . ,Hd totally
geodesic lightlike hypersurfaces containing x, such that their characteristic directions
(TxH1)⊥, . . . , (TxHd)⊥ generate TxM . Then M has constant curvature.
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Proof. Fix x ∈ M , denote TxH i by Bi, and choose bi an isotropic vector such that Bi = (bi)⊥.
For u ∈ TxM , denote by Au the curvature operator Au : v ∈ TxM → R(u, v)u ∈ TxM . Then,

for u ∈ Bi, Au preserves Bi (since totally geodesic submanifolds are ‘invariant’ by the curvature
operator). Moreover, Au(bi) is collinear to bi (for u ∈ Bi). Indeed 〈Au(bi), v〉 = 〈Au(v), bi〉. The last
quantity equals zero if v ∈ Bi, since Au(v) ∈ Bi and, hence, Au(bi) ∈ (Bi)⊥ = Rbi.

Choose ei a unit director vector of
⋂

j �=i B
j, and consider Aei . Since ei ∈ Bj, for j �= i, there is

λi,j such that Aeib
j = λi,jb

j (for i �= j).
Since Aei is symmetric, λi,j〈bj , bk〉 = 〈Aeib

j, bk〉 = 〈Aeib
k, bj〉 = λi,k〈bj , bk〉, and we have λi,j =

λi,k (for j �= k, 〈bj , bk〉 �= 0, because both bj and bk are isotropic). Write λi = λi,j. Thus, the
sectional curvature of any non-degenerate plane which contains ei equals λi. From this, we infer
that λ1 = · · · = λn (to see this, consider 2-planes generated by two vectors ei and ej). One may
use standard algebraic manipulations to show that all the 2-planes in TxM have the same sectional
curvature. In order to deduce from this that the constant is the same everywhere in M , we use the
following fact. This will which complete the proof of the theorem.

Fact 4 (Weak Schur’s lemma, see for instance [KN63, p. 202]). If a pseudo-Riemannian manifold of
dimension � 3 has constant curvature at each of its points, then this constant is the same everywhere
on the manifold; that is to say, the manifold has constant curvature.

Remark 5. We called this fact the weak Schur’s lemma, because the most well-known version of
Schur’s lemma concerns Ricci curvature; that is, if the Ricci curvature is everywhere proportional to
the metric, then the proportionality constant is the same for all the points of the pseudo-Riemannian
manifold, which is in fact, up to a normalization constant, the scalar curvature. In other words, the
manifold is an Einstein manifold.

Now, we have the following.

Fact 6. Let M be as in Theorem 2, then it contains a totally geodesic lightlike hypersurface
(and, hence, by homogeneity, such a hypersurface through each of its points).

Proof. Consider f ∈ Isox0 (the isotropy group of a point x0 ∈ M) and its graph Graph(f) ⊂
M × M . It is an isotropic totally geodesic d-dimensional submanifold of M × M , when equipped
with the metric g ⊕ (−g) (d = dimM). If fn ∈ Isox0 is a sequence tending to infinity, Graph(fn)
converges to H ′, an n-dimensional isotropic totally geodesic submanifold, which is no longer a graph.
Its intersection with {x0}×M is non-trivial, but has at most dimension 1, because it is isotropic and
M is Lorentzian. Therefore, the projection H of H ′ is a totally geodesic hypersurface in M ×{x0},
which can easily be seen to be lightlike.

Proof of Theorem 2. The isotropic directions corresponding to all lightlike totally geodesic hyper-
surfaces containing x0, generate a subspace of Tx0M invariant by Isox0. In the irreducible case, this
is the whole space and this allows one to apply Proposition 3 to conclude.

For Lorentz symmetric spaces, we have the following general fact which completes the proof of
Theorem 1.

Fact 7. Let M be a Lorentz symmetric space, then it contains a totally geodesic lightlike hyper-
surface (and, hence, such a hypersurface through each of its points).

Proof. One can restrict the analysis to the case where M is weakly irreducible; that is to say,
the holonomy does not preserve any non-degenerate space. Indeed, if a non-degenerate subspace is
invariant by the holonomy, then it gives a parallel decomposition of the manifold together with its
orthogonal space, which reduces the problem to the non-decomposable case.
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If M is weakly irreducible, but non-irreducible, then, by definition, it has a parallel direction field
or, equivalently, a parallel lightlike hyperplane field. It is integrable, with totally geodesic leaves,
which proves our claim in this case.

In the other case, that is when M is irreducible, let H be the isotropy group of a point x0.
Then H cannot be precompact by the following argument. Suppose that H is precompact. Then the
holonomy group Holx0 is precompact, and hence preserves a Riemannian scalar product on Tx0M .
As it also fixes the Lorentzian product, it preserves non-trivial eigenspaces of the matrix representing
the Lorentzian product with respect to an orthonormal basis, contradicting the irreducibility of M .

Some comments and questions

Let us mention here some related questions.

1) The statement of Proposition 3 can be adapted to the general pseudo-Riemannian case and, in
particular, to the Riemannian case. This implies the known fact that, in a irreducible symmetric
Riemannian manifold of non-constant curvature, (proper) totally geodesic submanifolds have
at least codimension 2.

2) Another striking fact in Lorentz geometry is that (assuming the dimension � 3), if the curvature
is bounded at some point, then it is constant (at this point). This is implicit in the proof of
Theorem 1.3.1 of [Wol64], and explicit, for instance, in [BP84]. The reason for this is that the
sectional curvature at a fixed point gives rise to a mereomorphic function, which cannot be
bounded unless constant. This function is invariant by the isotropy group. This fact is specific
to Lorentz (not necessarily symmetric) manifolds. Now, in the general pseudo-Riemannian
case, the idea is to ask whether a ‘big’ isotropy can leave a non-trivial mereomorphic function
invariant. This would lead to results similar to Theorem 2 for pseudo-Riemannian manifolds,
assuming a sufficiently large isotropy group.
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