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The sample quantile has a long history in statistics. The aim of this thesis is to explore
some further applications of quantiles as simple, convenient and robust alternatives
to classical procedures. The first application we consider is estimating confidence
intervals for quantile regression coefficients, however, the core of this thesis is the
development of a new, quantile based, robust scale estimator and its extension to
autocovariance estimation in the time series setting and precision matrix estimation
in the multivariate setting.

Chapter 1 addresses the need for reliable confidence intervals for quantile regression
coefficients, particularly in small samples. The existing methods for constructing
confidence intervals tend to be based on complex asymptotic arguments and little is
known about their finite sample performance. We consider taking xy-pair bootstrap
samples and calculating the corresponding quantile regression coefficient estimates
for each sample. Instead of estimating a covariance matrix based on these bootstrap
samples, our approach is to take the appropriate upper and lower quantiles of the
bootstrap sample estimates as the bounds of the confidence interval. The resulting
confidence interval estimate is not necessarily symmetric, only covers admissible
parameter values and is shown to have good coverage properties. This work
demonstrates the competitive performance of our quantile based approach in a broad
range of model designs with a focus on small and moderate sample sizes. These results
were published in [5].

A reliable estimate of the scale of the residuals from a regression model is
often of interest, whether it be parametrically estimating confidence intervals,
determining a goodness-of-fit measure, performing model selection, or identifying
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unusual observations. The robustness of quantile regression parameter estimates to
y-outliers does not extend to the error distribution. Extreme observations in the y
space yield outlying residuals which can interfere with subsequent analyses. This led
us to consider the more fundamental issue of robust estimation of scale.

Chapter 2 forms the core of this thesis with its investigation into robust estimation
of scale. Common robust estimators of scale such as the interquartile range (IQR) and
the median absolute deviation from the median are inefficient when the observations
come from a Gaussian distribution. Rousseeuw and Croux [4] propose a more efficient
robust scale estimator, Qn, which is now widely used. We present an even more
efficient robust scale estimator, Pn, based on a linear combination of U-quantiles. In
its standard form the estimator Pn is proportional to the IQR of the pairwise means and
can be thought of as the scale analogue of the Hodges–Lehmann estimator of location,
the median of the pairwise means. When the underlying distribution is Gaussian, the
Hodges–Lehmann estimator is considerably more efficient than the median, but it is
not as robust. Similarly, Pn trades some robustness for significantly higher Gaussian
efficiency than the IQR.

In the theoretical treatment, Pn is considered as a special case of a more general
class of estimators based on the difference of two quantiles of the pairwise means.
For this class of estimators, assuming the observations are independent and identically
distributed, we show that the influence function is bounded and establish asymptotic
normality. Further extensions to Pn incorporate adaptive trimming to achieve the
maximal breakdown value of 50%. The resulting adaptively trimmed scale estimator
has enhanced performance at extremely heavy-tailed distributions and is shown to
be triefficient across Tukey’s three corner distributions amongst the set of estimators
considered. The adaptively trimmed Pn also yields good results in the multivariate
setting discussed in Chapter 4.

The primary advantage of Pn over competing estimators is its high efficiency at the
Gaussian distribution whilst maintaining desirable robustness and efficiency properties
at moderately heavy-tailed and contaminated distributions. The desirable efficiency
properties of Pn are shown to be even more marked over competing scale estimators
in finite samples. The results of Chapter 2 have been published in [6].

Chapter 3 extends our robust scale estimator to the bivariate setting in a natural
way as proposed by Gnanadesikan and Kettenring [1]. In doing so we move from
estimating scale to estimating dependence. We show that the resulting covariance
estimator inherits the robustness and efficiency properties of the underlying scale
estimator.

Motivated by the potential to extend the efficiency and robustness properties of Pn
to the time series setting, Chapter 3 also considers the problem of estimating scale
and autocovariance in dependent processes. We establish the asymptotic normality of
Pn under short- and mildly long-range dependent Gaussian processes. In the case of
extreme long-range dependence, we prove a non-Gaussian limit result for the IQR,
consistent with results found previously for the sample standard deviation and Qn.
In contrast with the results of Lévy-Leduc et al. [2] for a single U-quantile, namely
Qn, the proof for the IQR, a difference of two quantiles, relies on the higher-order
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terms in the Bahadur representation of Wu [9]. Simulation suggests that an equivalent
result holds for Pn; we state the conjectured result which will require the analogous
Bahadur representation for U-quantiles under long-range dependence. It is reasonably
straightforward to extend the asymptotic results for the robust scale estimator to the
corresponding robust autocovariance estimators. Various results from this chapter
appear in [8].

Classical robust estimators assume that contamination occurs within a subset of
the observations; however, in recent years there has been interest in developing
robust estimators that perform well under scattered contamination. Chapter 4
looks at the problem of estimating covariance and precision matrices under cellwise
contamination. This form of contamination is prevalent in large, automatically
generated data sets, found in data mining and bioinformatics, where there is often
little quality control over the inputs. A pairwise approach is shown to perform
well under much higher levels of contamination than standard robust techniques
would allow. Rather than using the orthogonalised Gnanadesikan and Kettenring
procedure from [3], we consider a method that transforms a symmetric matrix
of pairwise covariances to the ‘nearest’ covariance matrix (in a Frobenius norm
sense). We combine this method with various regularisation routines purpose built for
precision matrix estimation. This approach works well with high levels of scattered
contamination and has the advantage of being able to impose sparsity on the resulting
precision matrix. The results from this chapter have been published in [7].
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