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ABSTRACT

In this paper we give a recursive scheme, involving Panjer's recursion, to
compute the distribution of a compound sum of integer claims, when the
number of summands follows a Generalized Poisson distribution. Also, an
elegant derivation is given for some basic properties of this counting distribu-
tion.

1. THE GENERALIZED POISSON DISTRIBUTION

The Generalized Poisson distribution, see CONSUL (1989), is an integer-valued,
non-negative distribution with two parameters 0 and X. A random variable N
having this distribution with parameters 8 and X is also denoted as a GP (9, X)
random variable. In the first section we repeat the mathematical properties of
this distribution, giving a short and elegant derivation. The second section
contains a recursive algorithm to compute the probabilities of a compound
Generalized Poisson distribution. This algorithm is obtained by the well-
known technique of differentiating the generating function and comparing
coefficients of resulting power series. This function, however, is known only in
an implicit form, so the process is not as trivial as usual.

An actuarial application of the Generalized Poisson distribution, linking it to
the ruin model, can be found in GERBER (1990). Other chance mechanisms
generating this distribution are described in CONSUL (1989). One of these is the
Galton-Watson branching process, which is a model with many conceivable
actuarial applications. In this process, the spreading of a certain disease is
modeled as follows. Suppose M individuals are originally infected. Each of
these infects L, other individuals, / = 1, ..., M. These in turn infect Ly new
victims, j = I, ..., Lj, and so on. Now if Mis a Poisson (6) distributed random
variable, and the L,, Ly, ... are independent Poisson (X) random variables, the
total number N of people infected has a Generalized Poisson distribution with
parameters 6 and X.

The parameters 6 and X are non-negative; the Poisson distribution is the
special case with 1 = 0. Assume X < 1 to ensure that N remains finite with
probability one.

Consider the total number of individuals Bt infected by the rth person,
including this person himself, and define By analogously for the 7th person
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infected by i, j = 1, . . . , L,•. Obviously Bt and Btj are random variables with the
same distribution. We can write B{ as:

(1) B, = 1 + £ B,7.

Let 5 be distributed as 5, and -B,y. From relation (1), and using some
well-known properties of compound Poisson (X) distributions, we can directly
derive expressions for the mean, variance and generating function of B. The
mean can be computed as follows:

(2) E[B] = 1 + XE[B] => E[B] =
\-X

The variance and the second moment can be computed from:

(3) Var [B] = XE[B2] => E[B2] = .
( 1 A ) 3

If GB(u) = E[uB] is the generating function of the Bt and Btj random variables,
it must satisfy the following relation:

(4) GB(u) = uGLl(GB (K)) = u ek{G°(u)-X).

Writing t = t(u) = GB(u), we obtain from (4):

(5) u=te-x^X).

The probabilities P [B = /] are the coefficients of the power series representa-
tion of t(u). To determine them from relation (4), we use a slightly simplified
form of Relation 3.6.7 in ABRAMOWITZ and STEGUN (1965; Lagrange's
expansion): if u = / ( / ) , / (0) = 0 , / ' (0) =f= 0, and g is any function infinitely
differentiable, then

The distribution of B is found by taking g(t) = t and using u = f(t) as in (5),
resulting in the Borel distribution:

i\

Since a GP (9, X) random variable is a compound Poisson (9) sum of Borel (X)
random variables, its generating function equals efl(G*<w)~ l\ so the density of a
GP (6, X) random variable N is found by taking g(t) = e'"-'~]) in (6), leading
to:

e(9+nxy e
(8) P[N = n] = - i , n = 0, 1, . . . .
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To compute mean and variance of N directly from (8) involves rather tricky
mathematics. Using (2) and (3), however, it is trivial exercise; note that for
X > 0 the mean exceeds the variance:

(9) E[N] = ; Var [N] = .

Being a compound Poisson (6) sum (of Borel (X) distributions), a GP (6, X)
random variable is easily seen to be infinitely divisible, as for any n = 1,2,...

it can be written as the convolution of n GP
n

variables.

2. A RECURSIVE ALGORITHM FOR THE PROBABILITIES
OF A COMPOUND G P DISTRIBUTION

To actuaries the total of the incurred claims is more relevant than their
number. If the costs associated with occurrence i, i = 1, ..., N, are given by a
random variable Z,, then the total costs are given by the following compound
Generalized Poisson (6, A) random variable:

(io) s = 2, z,•.
; = i

Here the GP (9, X) distributed counting variable N is assumed to be indepen-
dent of all Z,, and the sequence Zx, Z2, ... is i.i.d. We assume the Z, to be
integer-valued and positive. (By excluding zero-claims, we avoid problems later
on, when we have to compute P[S = 0] to start a recursion.)

Actuaries prefer to use counting distributions that are suitable for computa-
tions of quantities like probabilities of ruin and stop-loss premiums. Since
PANJER (1981) actuaries are aware that there is a very efficient recursive
algorithm to compute probabilities of S as in (10) if N is Binomial, Negative
Binomial or Poisson. SUNDT and JEWELL (1981) derive similar recursions for a
wider class of counting distributions. In this section we will derive recursion
formulae expressing P [S = s] in P [S = j ] , j = 0, 1, ..., s — 1 for the case of a
Borel and a GP counting variable, too.

To this end, we will derive recursion relations for the coefficients of the
generating function Gs(u). Using the fact that a GP (6, X) distribution can be
viewed as a compound Poisson (6) sum of Borel (X) distributions, we can
rewrite S as follows:

M B,

(11) S= X Y, where Y, = £ Zv.
/= I j= I
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Here M is a Poisson (9) random variable, Bt is a Borel (2.) random variable and
Zjj is an i.i.d. sequence of claim amounts. Each term Yt has a compound Borel
distribution.

If N has a GP (0, X) distribution, and S is as in (10), by (4) and (5) we
have

(12) Gs(u) = e»<MGz(«))-i) = eo(,-i) w i t h t s u c h t h a t / e - i ( ' - i ) = G z ( M ) .

This implicit description of the generating function of a compound Generalized
Poisson distribution will enable us to derive relations between its probabilities.
We do so in two steps. The first and most important step is to compute the
coefficients of GB(Gz(u)), which amounts to computing the probability
function of the compound Borel distributed Y, random variables. The second
step uses these coefficients to compute the coefficients of Gs(u), simply by
invoking Panjer's recursion formula.

Taking the derivative with respect to u of the logarithm of the second part of
(12) provides us with the following relation:

(13) . 1 log (/(«) *-'<•<«>-») = ^ - Xf{u) = - logGz(u) = ^
d {) d

g ( ( ) ) {) g z ( )
du t{u) du Gz(u)

Rearranging leads to the following equality:

(14) ,•(»). _IW_£|M.
l-Ar(ii) Gz(u)

We introduce the following notation for the coefficients of the power series
representations for the three factors appearing in (14):

(15)
n=l 1 - / U ( M ) n = 0 Gz(u) U « = 0

Since the coefficients of u" in (14) must be equal on both sides, we obtain the
following relation:

(16) aB

The coefficients rn depend on the known probability function of Z. We write
pn = P[Zj = n], n = 1, 2, ...; assume px > 0. So we have

(17) GZ(U)=

Using (17), rearranging the last equation of (15) and comparing coefficients of
u" leads to

https://doi.org/10.2143/AST.21.2.2005363 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.2.2005363


EVALUATING COMPOUND GENERALIZED POISSON DISTRIBUTIONS RECURSIVELY 197

(18)

(n+\)Pn+iu
n

Pn+\U"
U n = 0

(«+l)/7n+I = Y, rjPn+\-j, « = 0, 1, . . . .
7=0

Then the rn can be determined as follows:
n - l

(19)
1

P\
(n+\)pn+]~ YJ rjPn+\-j\ « = 0, 1, . . . .

7=0 /

The coefficients an are the probabilities of Yj to be determined. The auxiliary
coefficients /?„ can be expressed in a l 5 . . . , a B + i , using the same technique
leading to (18). Indeed the middle equation of (15) gives the result

txk+lu
n

(20)

«+i , « = 0, 1 , . . . .

Using (20) and the fact that r0 = 1, see (19), we may write (16) as follows:

n-\

(21) aB+,

The following expression for <xn+l is found

(22) «n+l=- Y rn-jPj+ <
n 7=0

n = 1,2, . . . .

The probabilities aB can now be computed successively. Indeed, if the
probabilities a 1 ; . . . , a n and the auxiliary quantities /?0, ...,/?„ _2 are known,
one computes jff«_i using (20), and next aB+1 using (22). Since P[Z, = 0] = 0,
the starting value at can be computed as follows:

B

(23) <*i = P\Y Z,- = 1 I = P[2? = 1] P [ Z , = ! ] = / > , e - x .

Note that by the requirement px > 0 we have a! > 0.
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Having computed the coefficients a!, a2 > • • •» which are the probabilities of
the random variables Yt, we can compute the probabilities of S simply by using
Panjer's recursion formula for the Poisson (8) case, starting from P [S = 0] =
P[N = 0] = e~°:

(24) P[S = s] = - X jctjP[S = s-j], s=\,2,....
S , /=l

Remark

Taking px = 1, pj• = 0 otherwise, one gets r;- = 0 for 7 =£ 0. Then (22) and (20)
lead to a recursion for the Borel (A) distribution (7); combining it with (23)
gives a recursion for the GP (9, X) distribution (8).

3. CONCLUSIONS

The Generalized Poisson distribution may be a useful model when the chance
mechanism used in the first section is appropriate, or any of the other models
in CONSUL (1989). It can be used as an alternative to the Negative Binomial
distribution when the tails of the counting distribution are thicker than those of
the Poisson. It is mathematically a more complex distribution than the
counting distributions usually assumed by actuaries (Binomial, Poisson or
Negative Binomial), but we think that using the lines of thought given in the
first section, actuaries will be able to use this distribution in their practical
work.

The possible objection that this counting distribution is not suitable for
actuarial calculations, which mostly involve compound sums, is removed by the
recursive algorithm given in Section 2.
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