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THE MULTIVALENT CLASS OF GEOMETRICALLY 
CLOSE-TO-CONVEX FUNCTIONS 

ABDALLAH LYZZAIK 

1. Introduction. The class of univalent close-to-convex functions, K, 
was introduced by Kaplan [4] and first studied by him. The first impor
tant extension to the class of multivalent close-to-convex functions, 
K(p) where p is a positive integer, was considered by Livingston [7]. 
Somewhat later, Styer [15] introduced the more general class, Kw(p), of 
weakly close-to-convex functions by simply taking the closure of Living
ston's class K(p) in the topology of locally uniform convergence in 
B = {z: \z\ < 1}. 

In 1936 Biernacki [2] introduced his class of linearly accessible 
functions. A function fis linearly accessible if fis univalent in B, / (0 ) = 
0, and C — / (B) where C is the complex plane, is a union of closed 
(Euclidean) rays with disjoint interiors. In an interesting result, Lewan-
dowski [6] showed that the classes of univalent close-to-convex functions 
and linearly accessible functions are equal. 

Let P be a nonconstant polynomial. A curve / is called a P-line if P maps 
/ one-to-one onto a straight line. We define (closed) P-rays similarly. 
Recently, Lyzzaik [8] extended the concept of a linear accessible function 
to the multivalent case. Accordingly, a function F is linearly accessible of 
orderp if F(Q) = 0, F' has exactly/? — 1 zeros (counting multiplicity) in B, 
and F = P o <j> where P is a polynomial of degree p and ^ is a univalent 
function in B such that <£(0) = 0 and C — (f>(B) is a union of P-rays of 
disjoint interiors. He also showed that every F e K(p) is linearly 
accessible of order p. However, the truth of the converse of this result still 
poses an open problem. 

The object of this paper is to consider several ways to define a 
multivalent class of close-to-convex functions that is equal to the class of 
linearly accessible functions of order p. This will extend Lewandowski's 
criteria of close-to-convexity completely to the multivalent case. 

2. Basic definitions. This section is devoted to the known classes of 
functions that we shall use. 

Definition 2.1. Let S be the familiar class of functions /univalent in B 
that satisfy / (0) = 0 and /'(O) = 1. 
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Definition 2,2. Let S* be the class of functions / t h a t satisfy one of the 
following conditions: 

(a) fis univalent in B, / (0 ) = 0, and / (B) is starshaped with respect to 
the origin. 

(b) / is analytic in B, admits one zero there (counting multiplicity), 
and 

Re(z/7/) > 0 for all z e B 

Note that the normalization f'(0) = 1 is not required in this 
definition. 

Throughout, the zeros of functions are counted according to multi
plicity. 

We will adopt the following definition of annular p-valent starlike 
Junctions (see [3] ). 

Definition 2.3. A function / i s said to belong to Sa(p) if / i s analytic in 
B, has p zeros there, and there is an annulus 

Ap = {z:p < \z\ < 1} 

such that Re(z/7/) > 0 for all z e Ap. 

Let 

*(z, 0 = (z - 0 0 - Sz)/z, 

and let *(z, 0) = 1. 
Hummel [3] has extended the class Sa(p) to weakly starlike functions of 

order p as follows: 

Definition 2.4. A function / i s said to belong to Sw(p) if / i s analytic in 
B, has p zeros there, and satisfies one of the conditions: 

(a) lim inf [min Re(z/7/) ] ^ 0. 

(b) There exists a sequence (fn)™=\ where fn e Sa(p) for all «, such 
that / —>/ locally uniformly in B. 

(c) There is h G S* such that 

/(z) = \h{z)rn*(z,z,\ iz,.i< i , i ^/-^/7. 
/ = i 

Observe that this class is not closed in the topology of locally uniform 
convergence in B. A useful extension of the class Sw(p) has been 
developed by Styer [15]. 

Definition 2.5. A function / i s said to belong to Swc(p) if / i s analytic in 
B and satisfies one of the conditions: 
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(a) There exists a sequence (ffl)^L^ where fn e Sa(p) for all n, such 
that fn -^ / local ly uniformly in B. 

(b) There is h e S* such that 

f(z) = \h(z)rnnz,z,), \z,\^\,\^i^P. 
i = \ 

Note that functions / e Swc(p) may have any number of zeros less than 
or equal to/?; and that / e SW(P) if and only if f e Swc(p) and / h a s 
exactly /? zeros in B. 

Next we define Livingston's class of multivalent close-to-convex func
tions. 

Definition 2.6. A function F belongs to K(p) if F is analytic in B, 
F(0) = 0, and F satisfies one of the conditions: 

(a) There is / e Sa(p), with / (0 ) = 0, and an annulus Ap such that 
Re(zF'//) > 0 for all z G ^p . 

(b) Ff has/? — 1 zeros in B, and for any 6X < 62 and p < r < 1 

J I Re(l + reieF"{rëe)/F\rëe))dQ > -77. 

Note that i^(l) = ,K, and that AT(/?) is not closed in the topology of 
locally uniform convergence in B. This has led to the following extension, 
the class of weakly close-to-convex functions of order p (see [15] ). 

Definition 2.7. Let F be a nonconstant function analytic in B with 
F(0) = 0. F is said to belong to Kw(p) if one of the following conditions is 
satisfied: 

(a) There is / <= Sw(p\ with / (0) = 0, such that 

lim inf[min Re(zF'/f) ] ^ 0. 
/ — I " \z\=r 

(b) There are functions Fn e ^(/?) and fn e Sa(p), with each / ( 0 ) = 0, 
such that Fn -^ F and / —»/, locally uniformly in B, / e Sw(p), a n d 

ReizFn'/fn) > 0 for all z, 0 < pw < |z| < 1. 

(c) F is the limit of a sequence of functions in K(p) in the topology of 
locally uniform convergence in B. 

(d) There is H e K and g e Swr(/? - 1) such that 

F(z) = Jo g(z)H\z)dz. 

(e) There is / e SHr(/?), with / (0 ) = 0, such that 

Re(zF'//) > 0 in B. 

(f) There is /z e S* such that 

lim inf[min Re(zF'(z)/[h(z)]p)] ^ 0. 
r->l | z |= r 

https://doi.org/10.4153/CJM-1987-013-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-013-0


300 ABDALLAH LYZZAIK 

3. The class K^(p). In this section we consider several ways to define 
the multivalent class of geometrically close-to-convex functions, K (p). 
To do so we prove: 

THEOREM 3.1. Let F be a nonconstant function analytic in B with 
F(0) = 0. The following conditions are equivalent: 

(A) F' has p — 1 zeros in B, and F e Kw(p). 
(B) F' hasp — 1 zeros in B, and there is f e Sw(p), with / (0 ) = 0, such 

that 

lim inf[min Re(zF7/) ] ^ 0. 
r-*r \z\=r 

(C) JF /jos p — 1 zeros /'« B, and there are functions Fn G K(p) and 
f G Sa(p), withffl(0) = 0 /or all n, such that Fn —> F and fn -* f locally 
uniformly in B, / e Sw(p)> and 

Re(zFn'/fi) > 0 /or a// z, 0 < pn < |z| < 1. 

(D) Ff has p — 1 zeros in B, and F is the limit of a sequence of functions in 
K(p) in the topology of locally uniform convergence in B. 

(E) There exists H e K and g e Sw(p ~~ 1) sucn that 

H*) = / 0 g(z)H\z)dz. 

(F) There exists f e Sw(p), with / ( 0 ) = 0, such that 

Re(zFVf) > 0 in B. 

(G) There are functions Fn e AT(/?) #«<i p, 0 < p < 1, swc/z //*#/ //ze 
modulus of every zero of Ft[ is at most p for all n, and Fn —» F locally 
uniformly in B. 

(H) F is the limit in the topology of locally uniform convergence in B of a 
sequence of functions 

/

, m(n) 

0 n (i - f„,/)(i - znJty^ 

x n (/ - pnJ)(\ - pnit)du 

w/z<?re ^ ; ï ^ 0, the numbers f,u, fA/ 2, . . . , ^ „ I ( w ) awrf z w J , z/; 2, . . . , znm{n) 

are located alternately on B, and for all n and 1 = j = p we have 

\PnJ < p < 1 and 1 ^ ywJ ^ 2/J + 1. 

Furthermore, for each n 

2 Y,,,, = 2/7 + m(fl). 
7' = ! 
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(I) Ff has p — \ zeros in B, and 

lim inf 
/—M ~ 

min / ' R e ( l + réeF"(rée)/F\reie))d0 

(J) F' has p — 1 zeros in B, <2/7<i //zer^ is a pair P, <f> where P is a 
polynomial of degree p and </> e S such that F = P o <$>. In this case, 
C — <J>(B) is a union of P-rays of disjoint interiors each of which starts from 
a<HB). 

(K) F is linearly accessible of order p. 
(L) F' has p — 1 zeros in B, and there is a pair P, $ where P is a 

polynomial degree p and <f> e S such that F = P o <£. In this case, C — <j>(B) 
is a union of P-rays such that for any two rays either they have disjoint 
interiors or one is a subset of the other. 

(M) F' has p — \ zeros in B, and there is a pair P, <j> where P is a 
polynomial of degree p and <j> G S such that F = P o <J>. In this case, for any 
two points in 8<J>(B) we can find a P-ray or two P-rays containing the points 
and not meeting in C — </>(B). 

Finally, if F satisfies any of the above conditions, then there is a 
unique pair P, <j> where P is a polynomial of degree p and </> e S such that 
F = P o 4>. 

Before proving the theorem we make some remarks and give three 
lemmas. Conditions (A), (B), (C), (D), (E), (F), and (G) are motivated by 
Definition 2.7. Conditions (H), (J), (K), and (L) are suggested by [8] and 
[9]. Condit ion (I) is an extention of Kaplan's criteria for the class K, 
and later Livingston's criteria for the class K(p) (see [4] and [7] ). Condi
tion (M) is motivated by the work of Sheil-Small on linear accessibility 
(see [14] ). 

L E M M A 3.1. Let 6 = 0, and let Tbe a real-valued function on( — oo, oo) that 
satisfies 

(a) T(0 + 2T7) - T(0) = 2pm for all 0, and 

(b) 7X0,) - T(62) < IT + c for all 0, < 02. 

Then there exists a real-valued function on ( — oo, oo) which is nondecreasing 
and satisfies 

(c) S(0 + 2T7) - S(0) = 2/?77 for all 0, and 

(d) \S(0) - T(0) | ^ (77 -4- c)/2 for all 0. 

Furthermore, if T is continuous, then S is also continuous. 

This lemma slightly generalizes a result of Kaplan [4], and its proof is 
essentially the same as the latter. 

Via this lemma, and a procedure established by Kaplan [4, pp. 172-177] 
and later used by Livingston [7, pp. 165-169], we conclude 
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LHMMA 3.2. Suppose F is a function analytic in the closure of B, C1(B), 
with p — 1 critical values in B. Also, suppose T is a real-valued function on 
( — oo, oo) defined by 

T(Q) = 0 + arg F'(ée) 

and T satisfies 

T(0X) - T(02) < 77 + €, for all 6X < 02. 

Then there exists a function f e Sw(p) sucn that f is analytic in C1(B) 
and 

|arg(zF7/) | < (77 + e)/2 m C1(B). 

The following is an extension of a result due to Sheil-Small [14, 
pp. 270-272], and its proof is essentially the same. So, we give it without 
proof. 

LEMMA 3.3. Let P be a polynomial and D be a domain. Suppose that j or 
any two points in dD we can find a P-ray or two disjoint P-rays containing 
the points and not meeting D. Then for any n points Zj, z2, . . . , zn in dD there 
exist a finite number of mutually disjoint P-rays containing the points and not 
meeting D. 

Proof of theorem. The theorem would follow if we prove the follow
ing sequence of equivalences and implications: (A) <̂> (B), (A) <=> (C), 
(A) « (D), (A) « (E), (A) « (F), (A) « (G), (F) « (I), (G) => (H) =» (A), 
(A) => (J) =* (K) => (L) => (M) => (A). 

It is straightforward from Definition 2.7 that condition (A) is equivalent 
to each of the conditions (B), (C), and (D). 

(A) <̂> (E). Let F e Kw(p), and suppose F' has exactly/? — 1 zeros in B. 
From Definition 2.7 (d) there exist H G K and g G Swc(p — 1) such that 
F' = gW in B. Since H' =£ 0 in B, g has exactly p — 1 zeros in B. Hence 
f <= Syv(p) and F satisfies condition (E). 

Conversely, (E) => (A) follows by reversing the previous argument. 
(A) <=> (F). Let F G Kw(p), and suppose F' has/? — 1 zeros in B. From 

Definition 2.7 (e) there exist / e Swc(p), with f(0) = 0, and a function h 
of. positive real part such that zF' = fh in B. Since Ff has exactly p — 1 
zeros in B, / h a s exactly p zeros in B. Hence / e Sw(p) a n d F satisfies 
condition (F). 

Conversely, (F) => (A) follows by reversing the previous argument. 
(A) <=> (G). This is straightforward from Definition 2.7 (c) and the 

argument principle. 
(G) => (H). Suppose F satisfies condition (G). Then there are functions 

Fn G K(p) and p, 0 < p < 1, such that the modulus of every zero of Fn' is 
less than p for all n, and Fn -* F locally uniformly in B. As a result of 
Lemma 3.3 and the proof of Theorem 4.1 in [8], for every F there is a 
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sequence of those functions appearing in the statement of condition (H) 
which converges to Fn locally uniformly in B. This implies that there is a 
similar sequence that converges to F locally uniformly in B. Hence F 
satisfies condition (H). 

(H) => (A). As an implication of the proof of Theorem 4.1 of [8] 
functions Fn appearing in the statement of condition (H) belong to Kw(p). 
If Fn —* F locally uniformly in B, then F e Kw(p) since Kw(p) is closed. 
Also, by the argument principle F' has exactly p — 1 zeros in B, and F 
satisfies condition (A). 

(F) <̂> (I). First we show (F) =» (I). Suppose F and / are as in the 
statement of condition (F). Let e > 0. From Definition 2.4 (a) it follows 
that there is r0 such that 

Re(rei0f'(re>0)/f(reie)) ^ -e/lir 

for all r, 0 < r0 < r < 1, and all 6. This gives 

9i Re(reldf'(rel6)/f(rel6))d0^ - c 

whenever 6l < 02 because 
/ : 

f: " Re(re'ef'(re'e)/f(re'e) )d0 = 2p-n. 

Since e is arbitrary 

lim inffmin )] Re(réef'{rée)/f(reld) )d0\ ^ 0. 
/•->1~ 1-0, < 0 2

 J °\ J 

Let p be the maximum of the moduli of all the zeros of / , and let 
p < r < 1. From condition (F) we have 

|arg(zF7/) | < TT/2 in B. 

This implies 

arg re'e2F'(re102) - arg rëe'F\re1^) 

^ -77 -f a r g / W ' ) - a r g / W * ' ) 

for all 0X < 02. That is 

jo 
/ : I Re(l + révF"(re"')/F'{re"') )d6 

â -* + J^ Kt(réef'(re'e)/f(re'e))d6. 

By taking the minimum of both sides of inequality over all intervals [6X, 62] 
followed by limit infimum over r we conclude that F satisfies condi
tion (I). 

Conversely, suppose F is a function that satisfies condition (I), and let 
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zr \ ^ /' ^ p — 1, be the zeros of F' in B. There is a sequence (z;,)^,, 
with 

max{ \ZJ\:\ ^ / ^ p — 1} < rn 

for all w, and rn —> 1 ~, such that for all 0l5 #2̂  #i < #2 an<^ a ^ n 

J I Re(l + rne?eF'\rné
e)/F'(rné

e))dO ^ -ir - \/n. 

For every n let /;?(z) = F(rnz). Then 7;7 is analytic in C1(B) and F}[ has 
p — 1 zeros £,//;,, 1 = i = p — 1. Moreover, if for every « we choose 

Tn(0) = 0 + arg W ) 

as a differentiable function, then Tn resembles T in Lemma 3.1 with 
e = \/n. From Lemma 3.2 it follows that there are functions fn e Sw(p) 
such that 

|arg(z7;?7/) | < TT/2 + l/2«, z G B. 

It is evident that each fn can be normalized so that the first nonzero 
coefficient of its Maclaurian's expansion is of modulus 1. Let Qfl = zFn'/fn. 
Observe that {Qfl(0):n e N} is bounded. Hence, because of the latter 
inequality there is an increasing sequence (n(k) )^Li of positive integers 
and a function Q of positive real part such that Qf1^) ~> Q locally uniform
ly in B. If we write fn = zFn7Qn, then since Fn —> F locally uniformly in B 
and Q, Qu are never zero for all n, 

locally uniformly in B. Note that / (0 ) = 0 and / h a s exactly p zeros in B. 
By Definition 2.4 / e Sw(p). Since 

Re(zFVf) = Re Q > 0, 

F satisfies condition (F). 
(A) =» (J). Suppose F satisfies condition (A). It follows directly from 

Theorem 2.8 in [9] that there exists a pair of P, <j> where P is a polynomial 
of degree/? and <$> e S, such that C — <J>(B) is a union of a collection, W, of 
P-rays with the properties: Each ray starts from the boundary of <£(B), and 
for any two rays either they have disjoint interiors or one is a subset of the 
other. 

We construct via W a ruling, ££, of C — <J>(B) consisting of P-rays which 
start from 3̂ >(B) and have mutually disjoint interiors. 

Let-^o be the collection of all P-rays or lines, /, such that / is the limit in 
the Riemann sphere of a sequence in W. It is easy to see that no two 
members of «£Q intersect; and that every / e J^} starts from 8<J>(B) if it is a 
ray, and meets 9<J>(B) if it is a line. Because <f>(B) is connected, there are at 
most 2p disjoint lines in J^. Delete from J£Q every ray that is contained in a 
line in J2Q, and let JZ\ be the resulting collection. Consider the relation 
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R \im' for any /, ï e &x if either / c /' or /' c /. It is easy to verify that ^ 
is an equivalence relation on J^. 

Let J^2 be the collection of all P-rays or lines, /, such that / is the set 
union of all members of an equivalence class of J^. Note that no ray of J^, 
is contained in another, a line belongs to J^ if and only if it belongs toJ^, 
and Ĵ 2 c J^J. Moreover, «££> may contain pairs /, /' such that / n /' is a 
proper line segment with end points the initial points of / and /'. Then 
d = I U /' is a /Mine. Observe that /, /' is the only pair of lines in ££2 that 
determines d\ and that any two lines d, d! are either disjoint or coinciding. 
But there are at most 2p TMines in C meeting 3<£(B). Therefore, by 
replacing every pair /, /' above and every line in J^ by a P a i r °f r a y s °f 
disjoint interiors starting from 8<|>(B) and whose union is d and the line, 
respectively, we obtain the desired collection J£ This completes the 
proof. 

(J) ^> (K) =» (L) => (M). This is trivial. 
(M) =» (A). Suppose F satisfies condition (M). Since 8<J> is an infinite 

and closed subset of C, there is a countable dense subset {zfl}
(^] of 3<J> 

whose closure is 8<J>. By virtue of Lemma 3.3, for every n there is a finite set 
of mutually disjoint P-rays containing the points z b z2, . . . , zn and not 
meeting <KB). Let <j> be the conformai map from B onto the plane cut along 
these rays such that 4>n(0) = 0 and <^(0) > 0; and let 

Fn = Po 4v 

It follows directly from the Carathéodory Kernel Theorem that <j>f1 —> <j> 
locally uniformly in B, and consequently Fn—> F locally uniformly in B. 
But from Theorem 2.8 in [9] every Fn G KW(P). Since Kw is closed, F 
belongs to KW{P), and F satisfies condition (A). 

The proof of the last part of the theorem follows from [10]. This 
completes the proof. 

We close this section by the following: 

Definition 3.1. Let K (p) be the class of functions F analytic in B, with 
F(0) = 0, such that F' has exactly p — 1 zeros in B, and F satisfies one of 
the conditions (A), (B), . . . , (M). We call Kg(p) the class of geometrically 
close-to-convex functions of order p. 

4. K (p) and Bazilevic functions. We deal here with the special class, 
B'(a), of Bazilevic functions of order a. 

Definition. 4.1. Let B\a), 0 < a < oo, be the class of all functions 

where /z(f) = £ + . . . e S*, and g(f) = 1 + a,f + . . . satisfies 

R e ( ^ g ) > 0 for some j8 <E R. 
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The class Kg(p) leads to the following subclass of S: 

Definition 4.2. Let Bg(p) be the class of all functions <J> e S such that 
Po(f) G Kg(p) for some polynomial P of degree/?. 

We relate the classes B\p) and Bip) as follows: 

THEOREM 4.1. (a) 5'(1) = Bg(\) = K. 

(b) For p ^ 2, P ' (p) Is a proper subset of Bip). In particular, 

B\p) = {<t> e S : ^ G # g (p ) , a <E C}. 

Proof (a) This follows at once from the above two definitions, 
(b) We show first the set equality. Let (j> G B'(p). Because of Definition 

4.1 we can write: 

R e { ^ z ( [h(z) ]p)'/[<l>(z) }p) > 0, z e B, 

where /z(z) - z + . . . G 5*. Since hp e £„(/?) c SH,(/>), Theorem 3.1 

implies 

Conversely, if for some function <>, ^ 4 ^ e K (p), then again by Theorem 
3.1 (condition (F) ) <j> <E B\p). This proves our set equality. 

It remains to show that B\p) is a proper subset of Bip). We do so by 
constructing a function <$> e B (p). Let 0 be a polynomial of degree /?, 
with Q(0) = 0, which is not of the form azp. It is not hard to see that there 
is a £?-ray, L, starting from the origin which is neither a euclidean ray nor 
contains any of the critical values of Q except, possibly, zero. Let / be a 
proper subray of L, and let ^ b e a conformai map from B onto C — / such 
that i/<0) - 0. Also, let 

<p = W(0) and P(z) = QW(0)z), 

so that <j> belongs to S and it maps B univalently onto the complex plane 
minus a P-ray which is a rotation of /. According to Theorem 3 (Condition 
(J), (K), or (L) ) P o (j> <E Kg(p). Hence <> G Bf

g(p). On the other hand, if 
<t>p e K (p), then / is a z^-ray. This implies that L is also a z^-ray. Since L 
starts from the origin, L must be a radial slit; a contradiction. 

Because of the randomness of P and / in the proof, one concludes that 
Bg(p) is too large in comparison with B\p). 

COROLLARY 4.1. Bf(p) is a subset of S. 

This is a special case of a more general result due to Bazilevic [1] (see 
also [11]). 

COROLLARY 4.2. A univalent function <j> belongs to B\p) if and only ij 
C — <KB) is a union of zp-rays of disjoint interiors. 
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This result was first proved in the general for all p, 0 < p < oo, by 
Prokhorov [12]. Prokhorov's proof uses Sheil-Small's characterization of 
Bazilevic functions (see [13] ) and Lewandowski's method of constructing 
a subordinating homotopy chain. 

Here we give an alternative proof. The proof is based on Corollary 4.2 
and uses a couple of lemmas. The first is geometric in nature and is not 
difficult to prove. So, we state it without proof. The second is due to 
Keogh and Miller [5], and it is analogous to the first for the classes 
B\a). 

LEMMA 4.1. Let a be a positive real number, and let m be a positive 
integer. Suppose that f e S. Let g be the m-fold symmetric function of f 
that is, 

g(z) = [f(zm)]u">. 

The C — / (B) is a union of za m-rays of disjoint interiors if and only if 
C — g(B) is a union of za-rays of disjoint interiors. 

LEMMA 4.2. Under the assumptions of the above lemma, the function g 
belongs to B\a) if and only if f belongs to B\a/m). 

Now we have: 

Proof of Corollary 4.2 for any positive real p. It suffices to consider the 
case when/7 = n/m, where n and m are positive integers, for the irrational 
case would then follow by a natural limiting procedure (see [12] ). Suppose 
that / e B\n/m\ and let 

g = [/(z™)] , / lw. 

By Lemma 4.2 g e B\n). Then from Corollary 4.2 and Lemma 4.1 it 
follows at once that C — / (B) is a union of za/m-rays of disjoint interiors. 
Conversely, suppose that /satisfies the latter property. Then from Lemma 
4.1 it follows that /satisfies that C — g(B) is a union of z"-rays of disjoint 
interiors. Again, by Corollary 4.2 g G B\n). This by Lemma 4.2 puts / i n 
B\n/m), and the proof is complete. 
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