1. Introduction

Let Ω be a bounded domain of n-dimensional Euclidean space \mathbb{R}^n $(n \geq 2)$. On Ω we consider the biharmonic equation

$$\Delta^2 u = \left(\sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} \right)^2 u = 0.\tag{1}$$

A function u in $C^4(\Omega)$ is called biharmonic in Ω if it satisfies the equation (1). In this note we shall deal with the following boundary value problems. Find a biharmonic function u in Ω such that the following couples of functions have boundary values given on the boundary of Ω:

(a) $\frac{\partial u}{\partial n}$, $\frac{\partial (\Delta u)}{\partial n}$;
(b) Δu, $\frac{\partial u}{\partial n}$;
(c) u, $\frac{\partial (\Delta u)}{\partial n}$.

J. L. Lions [4] treated these problems for the operator $\Delta^2 + I$ and gave solutions in case that Ω is a Nikodym domain. But in his method, the boundary of Ω or boundary functions are not referred to.

In this note we take as the boundary the Martin boundary M of Ω and define notations $\gamma_0(u)$ and $\gamma_1(u)$ for a function u on Ω as follows. If u has a fine boundary function f on M we denote f by $\gamma_0(u)$ and if u has φ, as generalized normal derivative of Doob [3] (in a slightly modified sense), we denote φ by $\gamma_1(u)$ (c.f. Definitions 1 and 2).

Now our boundary value problems are described as follows. Find a biharmonic function u in Ω such that the following couples of functions are equal to boundary functions given on the Martin boundary M:
Let $K(x, \xi)$ be the Martin kernel and μ be the harmonic measure on M. Define new measures $\tilde{\mu}$ and $\bar{\mu}$ on M by $d\tilde{\mu}(\xi) = k(\xi)d\mu(\xi)$ and $d\bar{\mu}(\xi) = \frac{1}{k(\xi)}d\mu(\xi)$, where $k(\xi) = \int K(x, \xi)dx$.

Then we shall show that for any $\varphi \in L^1(\bar{\mu})$ with $\int \varphi(\xi)d\mu(\xi) = 0$, there exists a square integrable harmonic function h on Ω with $D(h) < \infty$ such that $\gamma(\varphi) = \varphi$ if and only if φ is a Nikodym domain (Lemma 8). As an application of this fact we shall solve the above boundary value problems as follows.

Assume that Ω is a Nikodym domain, then

(a) for any φ and ψ in $L^1(\bar{\mu})$ with $\int \varphi(\xi)d\mu(\xi) = 0$ there exists a biharmonic function u such that $\gamma(\varphi) = \varphi$ and $\gamma(\Delta u) = \psi$;

(b) for any $f \in L^1(\bar{\mu})$ and $\varphi \in L^1(\bar{\mu})$ with $\int \varphi(\xi)d\mu(\xi) = -\int H_f(x)dx$ there exists a biharmonic function u such that $\gamma(\Delta u) = f$ and $\gamma(u) = \varphi$;

(c) for any $f \in L^1(\mu)$ and $\varphi \in L^1(\bar{\mu})$ with $\int \varphi(\xi)d\mu(\xi) = 0$ there exists a biharmonic function u such that $\gamma(\varphi) = f$ and $\gamma(\Delta u) = \varphi$.

Moreover the uniqueness of the above solutions will be shown.

2. Preliminaries

Let Ω be an arbitrary bounded domain of the n-dimensional Euclidean space $\mathbb{R}^n (n \geq 2)$ and $G(x, y)$ be it's Green function with respect to the equation $\Delta u = 0$, that is $(-\Delta)G(x, y) = \delta_x$ in Ω.

We shall mention the definition of the Martin boundary of Ω.

We put

$$K(x, y) = \frac{G(x, y)}{G(x_0, y)}$$

on $\Omega \times \Omega$ if $y \neq x_0$ and $K(x, x_0) = 0$ if $x \neq x_0$ and $K(x_0, x_0) = 1$, where x_0 is a fixed reference point in Ω.

We take a fixed exhaustion $\{\Omega_n\}$ of Ω such that $x_0 \in \Omega_1$, and put
\[d(x_1, x_2) = \sum_{n=1}^{\infty} \frac{1}{2^n} \sup_{x \in B_n} \left| \frac{K(x, x_1)}{1 + K(x, x_1)} - \frac{K(x, x_2)}{1 + K(x, x_2)} \right|. \]

Then \(d \) defines a metric on \(\Omega \). We denote by \(\Omega^* \) the completion of \(\Omega \) by this metric. For a point \(\xi \in \Omega^* - \Omega \), we can find a sequence \(\{y_n\} \) in \(\Omega \) such that \(d(\xi, y_n) \to 0 \) and so we can define

\[K(x, \xi) = \lim_{n \to \infty} K(x, y_n). \]

We say that \(\Omega^* \) is the Martin compactification of \(\Omega \) and the set \(M = \Omega^* - \Omega \) is called the Martin boundary of \(\Omega \). The function \(K(x, \xi) \) on \(\Omega \times \Omega^* \) is called the Martin kernel. We denote by \(\mu \) the harmonic measure on \(M \) with respect to the fixed reference point \(x_0 \).

Now let \(G_\lambda(x, y) \) be the Green function of \(\Omega \) with respect to the equation \((\Delta - 1)u = 0\), that is \((-\Delta y + 1)G_\lambda(x, y) = \varepsilon_\lambda\) in \(\Omega \). For \(x \in \Omega \) and \(\xi \in M \), we put

\[K_\lambda(x, \xi) = K(x, \xi) - \int G_\lambda(x, y)K(y, \xi)dy. \]

We set for \(f \in L^1(\mu) \),

\[H_f(x) = \int K(x, \xi)f(\xi)d\mu(\xi) \]

and

\[H_\lambda f(x) = \int K_\lambda(x, \xi)f(\xi)d\mu(\xi). \]

Denote by \(D(u) \) the Dirichlet integral of \(u \) on \(\Omega \). For measurable functions \(f \) and \(g \) on \(M \), we put

\[D(f, g) = \frac{1}{2} \int M \int M (f(\xi) - f(\eta))(g(\xi) - g(\eta))\theta(\xi, \eta)d\mu(\xi)d\mu(\eta) \]

and \(D(f) = D(f, f) \), where \(\theta(\xi, \eta) \) is the Naim kernel (c.f. [7]).

The following lemma is obtained by Doob [3].

Lemma 1. If \(u \) is a harmonic function with \(D(u) < \infty \), then \(u \) has a fine boundary function \(u' \) and \(D(u') = D(u) \). Conversely if \(f \) is an arbitrary measurable function on \(M \) with \(D(f) < \infty \), then \(f \in L^1(\mu) \) and \(D(H_f) = D(f) \).
Put \(k(\xi) = \int K(x, \xi)dx \), and \(k(\xi) \) is a strictly positive lower semicontinuous function on \(M \) and so \(\inf_{\xi \in M} k(\xi) = c > 0 \). Since

\[
\int k(\xi)d\mu(\xi) = \int \left(\int K(x, \xi)d\mu(\xi) \right)dx = |\Omega| \quad \text{(area of } \Omega) ,
\]

we see that \(k(\xi) \in L^1(\mu) \).

Define new measures \(\bar{\mu} \) and \(\bar{\bar{\mu}} \) on \(M \) by \(d\bar{\mu}(\xi) = k(\xi)d\mu(\xi) \) and \(d\bar{\bar{\mu}}(\xi) = \frac{1}{k(\xi)}d\mu(\xi) \) respectively, and we have the following relations

(6) \(B(M) \subset L^1(\bar{\mu}) \subset L^1(\mu) \subset \mathbb{L}(\bar{\bar{\mu}}) \subset L^1(\mu) \),

where \(B(M) \) is the space of all bounded measurable functions on \(M \). We also see that

(7) \(\| f \|_{L^1(\bar{\mu})} \leq \frac{1}{\sqrt{c}} \| f \|_{L^1(\mu)} \leq \frac{1}{c} \| f \|_{L^1(\bar{\mu})} \)

for any \(f \in L^1(\bar{\mu}) \).

By the Fubini theorem, \(\int H_{\mu}(x)dx < \infty \) for any \(f \in L^1(\bar{\mu}) \). Hence we know

\[
\int H_{\|f\|}(x)H_{\|g\|}(x)dx \leq \int H_{\|f\|}(x)H_{\|g\|}(x)dx \\
\leq \left(\int (H_{\|f\|}(x))^2dx \cdot \int (H_{\|g\|}(x))^2dx \right)^{1/2} \\
\leq \left(\int H_{\|f\|}(x)dx \cdot \int H_{\|g\|}(x)dx \right)^{1/2} < \infty
\]

for any \(f \) and \(g \) in \(L^1(\bar{\mu}) \).

Lemma 2. Let \(f \) and \(g \) be in \(L^1(\bar{\mu}) \). Then

(8) \(\int H_f(x)H_g^*(x)dx = \int H_f(x)H_g^*(x)dx \)

and

(9) \(\int H_f(x)H_g^*(x)dx \leq \int (H_f(x))^2dx \leq c' \int H_f(x)H_g^*(x)dx \)

for some constant \(c' \geq 1 \).

Proof. By the definition of \(K_i(x, \xi) \) and the resolvent equation,
(10) \[H'_f(x) = H_f(x) - \int G_1(x, y)H_f(y)dy \]
and
(11) \[H_f(x) = H'_f(x) + \int G(x, y)H'_f(y)dy . \]

Hence
\[
\int H_\phi(x)H'_f(x)dx = \int H_\phi(x)\left(H_f(x) - \int G_1(x, y)H_f(y)dy \right)dx \\
= \int H_\phi(x)H_f(x)dx - \int H_f(y)\left(\int G_1(x, y)H_\phi(x)dx \right)dy \\
= \int H_\phi(x)H_f(x)dx - \int H_f(y)(H_\phi(y) - H'_f(y))dy \\
= \int H_f(x)H'_f(x)dx
\]

and
(12) \[
\int (H_f(x))^2dx - \int H_f(x)H'_f(x)dx = \int H_f(x)(H_f(x) - H'_f(x))dx \\
= \int H_f(x)\left(\int G_1(x, y)H_f(y)dy \right)dx \\
= \int \int G_1(x, y)H_f(x)H_f(y)dxdy \geq 0 .
\]

By (11)
\[
\int (H_f(x))^2dx - \int H_f(x)H'_f(x)dx = \int H_f(x)\left(\int G(x, y)H'_f(y)dy \right)dx
\]

and hence
\[
\left(\int (H_f(x))^2dx - \int H_f(x)H'_f(x)dx \right)^2 \\
\leq \int (H_f(x))^2dx \cdot \left(\int \int G(x, y)dy \cdot \int G(x, y)(H'_f(y))^2dy \right)dx \\
\leq c_0^2 \cdot \int (H_f(x))^2dx \cdot \int (H'_f(x))^2dx
\]

where \(c_0 = \sup_{x \in \bar{a}} \int G(x, y)dy \). Similarly to (12), we know
\[
\int H_f(x)H'_f(x)dx - \int (H'_f(x))^2dx \geq 0 ,
\]
and so we have an inequality
\[
\int (H_f(x))^2 dx - \int H_f(x)H'_f(x) dx \\
\leq c_0 \left(\int (H_f(x))^2 dx \right)^{1/2} \left(\int H_f(x)H'_f(x) dx \right)^{1/2}.
\]
Hence
\[
\int (H_f(x))^2 dx \leq c' \int H_f(x)H'_f(x) dx
\]
for some constant \(c' \geq 1 \). This completes the proof.

Now we set
\[
\tilde{H}(M) = \{ f ; f \in L^2(\mu) \text{ and } D(f) < \infty \},
\]
and define two inner products on \(\tilde{H}(M) \) by
\[
(f, g)_1 = D(f, g) + \int H_f(x)H_g(x) dx
\]
and
\[
(f, g)_2 = D(f, g) + \int H_f(x)H'_g(x) dx
\]
for functions \(f \) and \(g \) in \(\tilde{H}(M) \). By the above lemma, we know that \((\cdot, \cdot)_2\) is an inner product on \(\tilde{H}(M) \). We put \(\| f \|_2^2 = (f, f)_1 \) and \(\| f \|_2 = (f, f)_2 \) for \(f \in \tilde{H}(M) \). Then we have

Lemma 3. Norms \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) are equivalent and \(\tilde{H}(M) \) is a Hilbert space with respect to these norms.

Proof. By the above lemma,
\[
\| f \|_2 \leq \| f \|_1 \leq \left(\max (1, c') \right)^{1/2} \| f \|_2,
\]
and so these norms are equivalent. Let \(f \) be in \(\tilde{H}(M) \). Then by the Riesz decomposition of \(-(H_f)^2 \) we have
\[
(H_f)^2 = H_{1\mathcal{A}} - \int G(\cdot, y)d\nu_f(y).
\]
Since \(D(H_f) = \frac{1}{2} \int d\nu_f \), we have
\(\| f \|_{L^2(\Omega)} = \int H_f(x) \, dx \)
\[\begin{align*}
&= \int ((H_f(x))^2 + \int G(x, y) \, dv_f(y)) \, dx \\
&\leq \int (H_f(x))^2 \, dx + c_\Phi \int dv_f \\
&\leq \max (1, 2c_\Phi) \left(\int (H_f(x))^2 \, dx + D(H_f) \right) \\
&= \max (1, 2c_\Phi) \left(\int (H_f(x))^2 \, dx + D(f) \right) \\
&= \max (1, 2c_\Phi) \| f \|_1^2.
\end{align*} \]

Hence we see that \(\tilde{H}(M) \) is a Hilbert space.

3. **Definitions of \(\gamma_o(u) \) and \(\gamma_1(u) \) for a function \(u \) on \(\Omega \)**

 We shall define \(\gamma_o(u) \) and \(\gamma_1(u) \) for a function \(u \) on \(\Omega \) as follows.

 DEFINITION 1. If a function \(u \) on \(\Omega \) has a fine boundary function \(f \) on \(M \), we denote \(f \) by \(\gamma_o(u) \).

 The definition of \(\gamma_1(u) \) is a slight modification of the definition of the generalized normal derivative of \(u \) (c.f. Doob [3]).

 DEFINITION 2. Consider the function \(u(x) = H_f(x) + u_p(x) \), where \(f \) is a measurable function on \(M \) with \(D(f) < \infty \) and \(u_p \) is a potential of a measure \(\nu \) on \(\Omega \). We assume that for any \(g \in H(M), H_\Phi \) is integrable on \(\Omega \) with respect to the absolute variation of \(\nu \). If there exists a function \(\varphi \) on \(M \) such that \(\int \varphi(\xi) g(\xi) d\mu(\xi) < +\infty \) and

 \[D(f, g) = -\int \varphi(\xi) g(\xi) d\mu(\xi) + \int H_\Phi(x) dv(x) \]

 for any \(g \in \tilde{H}(M) \), we denote \(\varphi \) by \(\gamma_1(u) \).

 We shall show the following

 LEMMA 4. Let \(\varphi \) be in \(L(\tilde{\Omega}) \). Then there exists a unique function \(f \in \tilde{H}(M) \) such that \(\gamma_1(u) = \varphi \), where

 \[u(x) = H_f(x) - \int G(x, y) H_f(y) \, dy. \]

 Proof. In the Hilbert space \(\tilde{H}(M) \) with the norm \(\| \cdot \|_1 \), the mapping
g \rightarrow -\int g(\xi)\varphi(\xi)d\mu(\xi) is a linear functional. By the Schwarz inequality and (17), we have
\[\left| -\int g(\xi)\varphi(\xi)d\mu(\xi) \right|^2 \leq \left(\int |g(\xi)|^2 \frac{1}{k(\xi)^{1/2}} |\varphi(\xi)| d\mu(\xi) \right)^2 \]
\[\leq \|\varphi\|_{L^2(\mathfrak{F})} \cdot \|g\|_{L^2(\mathfrak{F})} \]
\[\leq \max (1, 2c_\varphi) \|\varphi\|_{L^2(\mathfrak{F})} \cdot \|g\|_{L^2}^2 .\]

Hence the above mapping is bounded on \(\hat{H}(M) \). Therefore there exists a unique function \(f \in \hat{H}(M) \) such that \((f, g)_1 = -\int \varphi(\xi)g(\xi)d\mu(\xi) \), namely
\[\mathcal{D}(f, g) = -\int \varphi(\xi)g(\xi)d\mu(\xi) + \int H_f(x)(-H_f(x))dx\]
for any \(g \in \hat{H}(M) \). If we put \(u(x) = H_f(x) - \int G(x, y)H_f(y)dy \), then from the definition we have \(\gamma(\mu)(u) = \varphi \).

Similarly we have

Lemma 5. Let \(\varphi \) be in \(L^2(\mathfrak{F}) \). Then there exists a unique function \(f \in \hat{H}(M) \) such that \(\gamma_1(H_f) = \varphi \).

Proof. By Lemma 3, the mapping \(g \rightarrow -\int g(\xi)\varphi(\xi)d\mu(\xi) \) is a bounded linear functional on the Hilbert space \(\hat{H}(M) \) with the norm \(\| \cdot \|_2 \).
Hence there exists a unique function \(f \in \hat{H}(M) \) such that
\[\mathcal{D}(f, g) = -\int \varphi(\xi)g(\xi)d\mu(\xi) + \int H_f(x)(-H_f(x))dx\]
for any \(g \in \hat{H}(M) \). Since \(H_f(x) = H_f(x) - \int G(x, y)H_f(y)dy \), we have \(\gamma_1(H_f) \)
\[= \varphi .\]

We set
\[\hat{H}(M) = \{ f \in \hat{H}(M) \; ; \; \text{there exists} \; \gamma_1(H_f) \in L^2(\mathfrak{F}) \} .\]

Then we have similarly to Folgesatz 17.27 in [1] and Theorem 6 in [6] the following

Lemma 6. \(\hat{H}(M) \) is dense in \(\hat{H}(M) \).
Proof. Let \(f_0 \) be in \(\tilde{H}(M) \) and \((f_0, g)_i = 0 \) for any \(g \in \tilde{H}(M) \). Then we have

\[
D(f_0, g) + \int H_{f_0}(x) H_g(x) dx = 0.
\]

Since \(f_0 \) is in \(L^2(\mathbb{R}) \), by Lemma 4 there exists \(f_0' \in \tilde{H}(M) \) such that

\[
\gamma_i \left(H_{f_0} - \int G(\cdot, y) H_{f_0}(y) dy \right) = f_0.
\]

On the other hand

\[
\gamma_i \left(\int G(\cdot, y) H_{f_0}(y) dy \right) = \int K(x, \cdot) H_{f_0}(x) dx
\]

and

\[
\left\| \int K(x, \cdot) H_{f_0}(x) dx \right\|_{L^2(\mathbb{R})} \leq \| f_0' \|_{L^2(\mathbb{R})} < \infty.
\]

Hence \(\gamma_i \left(H_{f_0} \right) \in L^2(\mathbb{R}) \) and \(f_0' \) is in \(\tilde{H}(M) \). By (19), we have

\[
D(f_0, f_0') + \int H_{f_0}(x) H_{f_0}(x) dx = 0
\]

and by (20),

\[
D(f_0, f_0') = -\int f_0'(\xi) d\mu(\xi) - \int H_{f_0}(x) H_{f_0}(x) dx
\]

therefore we know that \(f_0 = 0 \). This completes the proof.

4. Nikodym domain

In this section we shall treat the problem whether we are able to find \(f \in \tilde{H}(M) \) such that \(\gamma_i (H_f) = \varphi \) for any \(\varphi \in L^2(\mathbb{R}) \) with \(\int \varphi(\xi) d\mu(\xi) = 0 \).

DEFINITION 3. (Deny-Lions [2]) We shall say that \(\Omega \) is a Nikodym domain if every distribution \(T \) with \(\frac{\partial}{\partial x_i} T \in L^2(\Omega) \) \((1 \leq i \leq n) \) is in \(L^2(\Omega) \).

We set \(\mathcal{S}_{L^2}(\Omega) = \left\{ u; \ u \in L^2(\Omega) \text{ and } \frac{\partial}{\partial x_i} u \in L^2(\Omega) \ (1 \leq i \leq n) \right\} \).

A necessary and sufficient condition for \(\Omega \) to be a Nikodym domain is given by the following inequality of Poincaré: there exists a constant \(P(\Omega) \) such that
\[\int (u(x))^2 dx - \frac{1}{|\Omega|} \left| \int u(x) dx \right|^2 \leq P(\Omega) D(u) \]

for any \(u \in \mathcal{E}_1^L(\Omega) \) (c.f. [2]).

Deny-Lions [2] gives another characterization of a Nikodym domain by setting
\[
\mathcal{N} = \left\{ u \in \mathcal{E}_1^L(\Omega); \, \Delta u \in L^1(\Omega) \text{ and } (-\Delta u, v)_{L^2(\Omega)} = D(u, v) \right\}
\]
for any \(v \in \mathcal{E}_1^L(\Omega) \).

Lemma 7. (Deny-Lions) For any \(F \in L^1(\Omega) \) with \(\int F(x) dx = 0 \) we can find \(u \) in \(\mathcal{N} \) (unique up to an additive constant) such that \(-\Delta u = F \) if and only if \(\Omega \) is a Nikodym domain.

The following lemma gives an answer to our above problem and it gives a characterization of a Nikodym domain.

Lemma 8. For any \(\phi \in L^1(\tilde{\mu}) \) with \(\int \phi(\xi)d\tilde{\mu}(\xi) = 0 \) we can find \(f \) in \(\tilde{H}(M) \) (unique up to an additive constant) such that \(\gamma(I_1) = \phi \) if and only if \(\Omega \) is a Nikodym domain.

Proof. Assume that \(\Omega \) is a Nikodym domain. Let \(\phi \) be in \(L^1(\tilde{\mu}) \) with \(\int \phi(\xi)d\tilde{\mu}(\xi) = 0 \). Then by Lemma 4 there exists a unique function \(f_\phi \in \tilde{H}(M) \) such that
\[
\gamma(I_1) \left(H_{f_\phi} - \int G(\cdot, y)H_{f_\phi}(y)dy \right) = \phi .
\]

Hence
\[
D(f_\phi, g) = -\int \phi(\xi)g(\xi)d\tilde{\mu}(\xi) + \int H_\phi(x)(-H_{f_\phi}(x))dx
\]
for any \(g \in \tilde{H}(M) \). We put \(g = 1 \) in (21), then \(\int H_{f_\phi}(x)dx = 0 \) from the condition \(\int \phi(\xi)d\tilde{\mu}(\xi) = 0 \).

Since \(f_\phi \) is in \(\tilde{H}(M) \), \(H_{f_\phi} \in L^1(\Omega) \) and \(D(H_{f_\phi}) = D(f_\phi) < \infty \). Therefore by Lemma 7, we can find \(u \) in \(\mathcal{N} \) (unique up to an additive constant) such that \(-\Delta u = H_{f_\phi} \). Hence we know that \(\Delta u = 0, \, u \in L^1(\Omega) \) and \(D(u) < \infty \) and so by the uniqueness of the Royden decomposition of \(u \), we have
\[
\begin{align*}
 u(x) &= h(x) - \int G(x,y)\Delta u(y)dy \\
 &= h(x) + \int G(x,y)H_f(y)dy
\end{align*}
\]

for some harmonic function \(h \in L^1(\Omega) \) with \(D(h) < \infty \). From (17), \(h \) has a fine boundary function \(h' \) in \(L^1(\partial) \) and so \(h = H_{h'} \) with \(h' \in \tilde{\mathcal{H}}(M) \).

Since \(u \) is in \(N \) and \(\{H_g : g \in \tilde{\mathcal{H}}(M)\} \subset \mathcal{E}_L(\Omega) \), we have

\[
\int H_g(x)(-\Delta u(x))dx = D(u,H_g)
\]

for any \(g \in \tilde{\mathcal{H}}(M) \). Hence we have

\[
D(h', g) - \int H_g(x)H_f(x)dx
\]

\[
= D(h, H_g) - \int H_g(x)(-\Delta u(x))dx
\]

\[
= D(h, H_g) - D(u, H_g)
\]

\[
= D(h - u, H_g)
\]

\[
= D\left(\int G(\cdot , y)\Delta u(y)dy, H_g\right) = 0
\]

for any \(g \in \tilde{\mathcal{H}}(M) \) and so \(\gamma_1(u) = 0 \).

Now we put \(f = f_0 + h' \), then \(f \) is determined (uniquely up to an additive constant) in \(\tilde{\mathcal{H}}(M) \) and we have

\[
\gamma_1(H_f) = \gamma_1(H_{f_0} + h)
\]

\[
= \gamma_1\left(H_{f_0} - \int G(\cdot, y)H_f(y)dy + u\right)
\]

\[
= \varphi.
\]

Conversely assume that for any \(\varphi \in L^1(\partial) \) with \(\int \varphi(\xi)d\mu(\xi) = 0 \) we can find \(f \) in \(\tilde{\mathcal{H}}(M) \) such that \(\gamma_1(H_f) = \varphi \). We shall show that for any \(v \in L^1(\Omega) \) with \(\int v(x)dx = 0 \), we can find \(u \) in \(N \) (unique up to an additive constant) such that \(-\Delta u = v \). Then by Lemma 7 we conclude that \(\Omega \) is a Nikodym domain. Let \(v \) be in \(L^1(\Omega) \) with \(\int v(x)dx = 0 \). Since

\[
\int |v(x)|\cdot|H_g(x)| dx < \infty
\]

for any \(g \in \tilde{\mathcal{H}}(M) \), we know
\[\gamma_1 \left(-\int G(\cdot, y)v(y)dy \right) = -\int K(x, \cdot)v(x)dx . \]

Put \(\varphi_v = \gamma_1 \left(-\int G(\cdot, y)v(y)dy \right) \), and we know
\[
\int \varphi_v(\xi)d\mu(\xi) = \int \left(-\int K(x, \xi)v(x)dx \right)d\mu(\xi) = -\int v(x)dx = 0 .
\]

Hence we can find \(f \) in \(\tilde{H}(M) \) (unique up to an additive constant) such that \(\gamma_1(H_f) = \varphi_v \). We put
\[u(x) = H_f(x) + \int G(x, y)v(y)dy \]
thus \(u \) is determined (uniquely up to an additive constant) in \(\mathcal{E}^1_{L^1}(\Omega) \), \(-\Delta u = v\) and \(\Delta u \in L^1(\Omega) \).

Now we shall show that \(u \) is in \(N \), that is \(D(u, w) = (-\Delta u, w)_{L^2(\Omega)} \) for any \(w \) in \(\mathcal{E}^1_{L^1}(\Omega) \).

We have the following decomposition of \(\mathcal{E}^1_{L^1}(\Omega) \):
\[\mathcal{E}^1_{L^1}(\Omega) = \{H_v; g \in \tilde{H}(M)\} \oplus L^2D_0(\Omega) , \]
where \(L^2D_0(\Omega) \) is the closure of \(C_0^\infty(\Omega) \) with respect to the norm \(D(\cdot) + ||\cdot||_{L^2(\Omega)} \). In case \(w = H_v \) for some \(g \in \tilde{H}(M) \), we have
\[
D(u, w) = D(u, H_v) \\
= D(H_f, H_v) - D \left(\int G(\cdot, y)v(y)dy, \int G(\cdot, y)H_v(y)dy \right) \\
= D(f, g) - \int v(x) \left(\int G(x, y)H_v(y)dy \right)dx .
\]

Since \(\gamma_1(u) = \gamma_1(H_f) + \int K(x, \cdot)v(x)dx = \varphi_v - \varphi_v = 0 \), we know
\[D(f, g) = \int v(x)H_v(x)dx \]
for any \(g \in \mathcal{H}(M) \). Hence we have

\[
D(u, H_\partial) = \int v(x) \left(H_\partial(x) - \int G(x, y)H_\partial(y)dy \right) dx \\
= -\int \Delta u(x)H_\partial(x)dx.
\]

In case \(w \) is in \(C_0^\infty(\Omega) \) we know that

\[
w(x) = \int G(x, y)(-\Delta w(y))dy.
\]

Hence

\[
D(u, w) = D\left(\int G(\cdot, y)v(y)dy, \int G(\cdot, y)(-\Delta w(y))dy \right) \\
= \int v(x) \left(\int G(x, y)(-\Delta w(y))dy \right) dx \\
= -\int \Delta u(x)w(x)dx.
\]

For any \(w \) in \(L^2D_0(\Omega) \), we can find a sequence \(\{w_n\} \) in \(C_0^\infty(\Omega) \) such that \(w_n \rightarrow w \) in \(L^2D_0(\Omega) \). Since \(D(u, w_n) = -\int \Delta u(x)w_n(x)dx \), letting \(n \rightarrow \infty \), we have \(D(u, w) = -\int \Delta u(x)w(x)dx \). Therefore we know

\[
D(u, w) = (-\Delta u, w)_{L^2(\Omega)},
\]

for any \(w \in \mathcal{D}'_{L^2}(\Omega) \) and so \(u \) is in \(N \). This completes the proof.

5. Boundary value problems

In this section we shall solve the boundary value problems described in section 1 as an application of Lemma 8. We put

\[
\mathcal{S}_1 = \{ u \in C^4(\Omega); \ u \text{ and } \Delta u \text{ are in } \mathcal{D}'_{L^2}(\Omega) \},
\]

\[
\mathcal{S}_2 = \{ u \in C^4(\Omega); \ u \text{ is in } \mathcal{D}'_{L^2}(\Omega) \text{ and } \Delta u \text{ is in } L^2(\Omega) \}
\]

and

\[
\mathcal{S}_3 = \{ u \in C^4(\Omega); \ \Delta u \text{ is in } \mathcal{D}'_{L^2}(\Omega) \}.
\]

Then we shall show

THEOREM. Assume that \(\Omega \) is a Nikodym domain, then

(a) for any \(\varphi \) and \(\psi \) in \(L^2(\Omega) \) with \(\int \psi(\xi)d\mu(\xi) = 0 \), there exists \(u \) in
\mathcal{P}_1 unique up to an additive constant such that $\Delta u = 0$, $\gamma_1(u) = \varphi$ and $\gamma_1(\Delta u) = \psi$;

(b) for any f in $L^2(\mu)$ and φ in $L^2(\mu)$ with

\begin{equation}
\int \varphi(\xi)d\mu(\xi) = -\int H_f(x)dx,
\end{equation}

there exists u in \mathcal{P}_2 unique up to an additive constant such that $\Delta u = 0$, $\gamma_1(\Delta u) = f$ and $\gamma_1(u) = \varphi$;

(c) for any f in $L^2(\mu)$ and φ in $L^2(\mu)$ with $\int \varphi(\xi)d\mu(\xi) = 0$, there exists u in \mathcal{P}_2 such that $\Delta u = 0$, $\gamma_1(\Delta u) = \varphi$.

Proof. (a) For any φ and ψ in $L^2(\mu)$ with $\int \varphi(\xi)d\mu(\xi) = 0$, by Lemma 8 there exists f in $\tilde{H}(M)$ such that $\gamma_1(H_f) = \psi$ and

\begin{equation}
\int \left(\varphi(\xi) + \int K(x, \xi)H_f(x)d\mu(\xi) \right)d\mu(\xi) = 0.
\end{equation}

Since $\varphi + \int K(x, \cdot)H_f(x)d\mu$ is in $L^1(\mu)$ and (23), there exists f_0 in $\tilde{H}(M)$ such that $\gamma_1(H_{f_0}) = \varphi + \int K(x, \cdot)H_f(x)d\mu$.

We put

$$u(x) = H_{f_0}(x) - \int G(x, y)H_f(y)dy.$$

Then we know that u is in \mathcal{P}_1, $\Delta u = 0$, $\gamma_1(u) = \varphi$ and $\gamma_1(\Delta u) = \psi$.

Next we shall show the uniqueness of the solution. Let w be in \mathcal{P}_1 such that $\Delta w = 0$, $\gamma_1(w) = 0$ and $\gamma_1(\Delta w) = 0$. By the uniqueness of the Royden decomposition of w, there exists f_w and g_w in $\tilde{H}(M)$ such that

$$w = H_{f_w} - \int G(\cdot, y)\Delta w(y)dy$$

and $\Delta w = H_{g_w}$. Since $\gamma_1(w) = 0$, we have

\begin{equation}
D(H_{f_w}, H_\varphi) + \int \Delta w(x)H_\varphi(x)dx = 0
\end{equation}

for any g in $\tilde{H}(M)$. Hence
(25) \[D(w, w) = D(H_{f_w}, H_{f_w}) + \iint G(x, y) \Delta w(x) \Delta w(x) dx dy \]
\[= -\int \Delta w(x) H_{f_w}(x) dx + \int \Delta w(x) \left(\int G(x, y) \Delta w(y) dy \right) dx \]
\[= -\int \Delta w(x) w(x) dx . \]

Since \(\gamma_1(\Delta w) = 0 \), we have

(26) \[D(\Delta w, H_g) = 0 \]
for any \(g \) in \(\tilde{H}(M) \). We put \(g = g_w \) in (24) and \(g = f_w \) in (26), then we know that \(\Delta w = 0 \) and so \(w = \text{constant} \) by (25).

(b) First we shall remark that the condition (22) is necessary for the existence of the solution. Let \(u \) be a solution, then

\[u(x) = H_{f_u}(x) - \int G(x, y) \Delta u(y) dy \]

for some \(f_u \in \tilde{H}(M) \). Since \(\gamma_0(\Delta u) = f \) and \(\gamma_1(u) = \varphi \), we know \(\Delta u = H_f \) and

(27) \[D(H_{f_u}, H_g) = -\int \varphi(\xi) g(\xi) d\mu(\xi) + \int H_g(x)(-\Delta u(x)) dx \]
for any \(g \in \tilde{H}(M) \). Put \(g = 1 \) in (27) and we have (22).

For any \(f \) in \(L^2(\tilde{\mu}) \) and \(\varphi \) in \(L^2(\tilde{\mu}) \) we know that \(\int K(x, \cdot) H_f(x) dx \) is in \(L^2(\tilde{\mu}) \) and by (22)

\[\int \left(\varphi(\xi) + \int K(x, \xi) H_f(x) dx \right) d\mu(\xi) = 0. \]

Hence there exists \(f_0 \) in \(\tilde{H}(M) \) such that

\[\gamma_1(H_{f_0}) = \varphi + \int K(x, \cdot) H_f(x) dx . \]

We put

\[u(x) = H_{f_0}(x) - \int G(x, y) H_f(y) dy . \]

Then \(u \) is in \(\mathcal{F}_z, D u = 0, \gamma_0(\Delta u) = f \) and \(\gamma_1(u) = \varphi \).

The uniqueness of the solution is shown in a similar manner to (a).

Let \(w \) be in \(\mathcal{F}_z \) such that \(D w = 0, \gamma_0(\Delta w) = 0 \) and \(\gamma_1(w) = 0 \), then we have
\[D(w, w) + \int \Delta w(x) w(x) dx = 0. \]

Since \(\Delta w \) is harmonic and \(\gamma_{\phi}(\Delta w) = 0 \), we know \(\Delta w = 0 \) and so \(w = \) constant.

(c) Put
\[u(x) = H_{\phi}(x) - \int G(x, y) H_{\phi}(y) dy, \]
where \(\phi \) is in \(\mathcal{H}(M) \) such that \(\gamma_{\phi}(H_{\phi}) = \varphi \), and \(u \) is the desired solution. This completes the proof.

Remark 1. In the case of (c) the uniqueness of the solution is interpreted as follows. If \(u_0 \) is a solution of (c), then every solution is given by \(u_0 + a \int G(\cdot, y) dy \), where \(a \) is some constant.

In fact if \(w \) is in \(\mathcal{S} \), \(\Delta w = 0 \), \(\gamma_{\phi}(\Delta w) = 0 \) and \(\gamma_{\phi}(\Delta w) = 0 \), then \(h(x) = w(x) + \int G(x, y) \Delta w(y) dy \) is harmonic and \(\gamma_{\phi}(h) = 0 \). Hence we have
\[w(x) = -\int G(x, y) \Delta w(y) dy. \]
Since \(\gamma_{\phi}(\Delta w) = 0 \), we know \(w(x) = a \int G(x, y) dy \) for some constant \(a \).

Remark 2. Lemma 8 asserts that if one of the above boundary value problems has always a solution, then \(\Omega \) is necessarily a Nikodym domain. Hence the above problems are solved if and only if \(\Omega \) is a Nikodym domain.

REFERENCES

Department of Mathematics
Saitama University