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Abstract

The change of impedance per unit length in a single or double conductor line situated
parallel to an infinitely long two-layered metallic circular cylinder is found (within the
quasistatic approximation) in the form of an infinite series. The cylinder consists of an
inner core and an outer annulus. The properties of the inner core are assumed to be constant.
The relative magnetic permeability, n(r) = r", and the conductivity, a{r) = <7(0V", of the
outer annulus vary with respect to the radial coordinate, r, and a and K are arbitrary real
numbers. Numerical results are presented in the form of figures and tables.

1. Introduction

Eddy current methods are widely used for nondestructive testing of properties of
materials, for example, in quality control of thermal processing and measurement
of surface coverings. In many applications the external magnetic field modifies the
properties of the material and, in particular, the magnetic permeability fu, of the medium
(see, for example, [2], [1]). Since almost all known analytical or closed-form solutions
to eddy current testing problems deal with the cases where the properties of the material
are assumed to be constant [8], there is a need to construct analytical solutions in the
case where the properties of the medium vary with the spatial coordinates. For some
particular cases such solutions are known (see, for example, [4]-[6] and [9]).

In practice, eddy current probes have different configurations, the most common
one being the circular form. But, sometimes, it is useful to consider noncircular
configurations. A long rectangular excitation frame is an example of a noncircular
configuration. It is shown in [11] that a probe with a width-to-length ratio equal to 1:4
or smaller can be modelled by means of two infinitely long excitation wires instead
of a rectangular wire.
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This paper presents a series solution for the change of impedance in a double
conductor line parallel to a double-layered metallic cylinder in the case where the
relative magnetic permeability, /x(r), and the conductivity, o(r), of the outer cylinder
are functions of the radial coordinate, r, of the form /x(r) = ra, o(r) = a(0)rK, where
a and K are arbitrary real numbers. The solution is found, first, for the case of a single
wire and then, by means of the superposition principle, for the case of two wires.
Results of numerical computations are presented in the figures and tables.

2. Governing equations

Consider a double conductor line parallel to a two-layered metallic cylinder which
consists of two concentric circular parts, an inner core and an outer annular cylinder
of inner and outer radii p2 and pu respectively. In Figure 1, the two lines, w{ and
w2, are at distances r{ and r2, respectively, from the cylinder axis, and are shown as
lying above the cylinder in a horizontal plane perpendicular to the polar axis <p = 0
(indicated as the /--axis in the figure).

FIGURE 1. Double conductor line, in free space, lying in a horizontal plane above, and parallel to, a
two-layered conducting circular cylinder.

The conductivity, o2, and the relative magnetic permeability, fu,2, of the inner
cylinder are assumed to be constant, but for the outer cylinder, these are given by

<Ti(r) = ^ ^ • (r/l)K, t^i(r) = (r/l)a, (1)

where a and K are arbitrary real numbers, a(0) = const and / is the distance between
the wires. A solution to a similar problem for the case a^const, Aii=const is given

https://doi.org/10.1017/S0334270000000436 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000436


[3] Double conductor above a two-layered cylinder 3

in [10]. We introduce a system of cylindrical polar coordinates (r,cp,z) centered at O
and take the z-axis to be parallel to the axis of the cylinder; hence the two wires of the
double conductor line are parallel to the z-axis.

Since relatively low frequencies are typically used in eddy current applications, we
neglect the displacement current by making the quasistatic approximation in Max-
well's equations [7] which then reduce to the following three vector equations:

curlE = - — , (2)
3?

= or(r)E + r , (3)
B = HoH(r)H, (4)

where E and H are the electric and magnetic field intensities, respectively, B is the
magnetic induction vector, V is the external current density, a (r) is the conductivity of
the medium and /Lt0 and /x(r) are, respectively, the magnetic constant and the relative
magnetic permeability of the medium.

Introducing the vector potential A by the relation

B = curl A (5)

and using (2) we obtain

curl^E + - j = O . (6)

Thus the vector with vanishing curl in (6) can be written as the gradient of the scalar
potential xjr:

L = — — grad y/. (7)

Using (3M5) and (7) we obtain

curlf curl A) = - a ( r ) cr(r)grad^ + T. (8)
\/io/i(/") / at

We assume that the functions A, ty and V in (8) are periodic in /, that is

A(r,cp, z,t)=A(r,(p,z)eia",

Y(r,<p,z,t)=\\r,<p,z)eiM,

where j = V— 1.
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Due to the geometry of the problem shown in Figure 1, we can assume that the
vector potential A is parallel to the z-axis,

A(r,<p,z) = (0,0, A(r,y)), (10)

and its z-component, A(r, <p), is independent of z.
Using (8)-(10) and basic formulae of vector calculus we obtain

1 1 ~ 1 dfj,
graddiv A AA — er x curl A

lxQix(r) fj,0[i(r)2 dr

• + r . ( i i )

If we use the gauge

1 ~ ~
grad div A = — a (r) grad ifr,

the z-component of the vector equation (11) becomes

d2A 1 8A 1 92A 1 dfi dA

dr2 r dr r2 d(p2 /i dr dr

Ie, (12)

where / ' is the z-component of the vector P , and a(r) and ix(r) are, respectively, the
conductivity and the relative magnetic permeability of the medium.

We need to solve equation (12) in the three regions Ro, Ri and R2 (see Figure 1)
where Ro is free space (containing air) described by pi < r < oo, 0 < (p < In,
—oo < z < oo, R\ is the outer metallic cylindrical layer, p2 < r < Pi, 0 < <p < lit,
—oo < z < oo, with O\ = <J\(r), ix\ = /iii(r), and R2 is the inner metallic cylinder,
0 < r < p ^ , 0 < < p < 2n, —oo < z < oo with a2 = const and [i.2 = const.

If we denote by /4,(r, <p),i = 0, 1, 2, the vector potential in each of the three regions
Ro, R\ and R2, respectively, then equation (12) splits into the three partial differential
equations

32AQ 1 8A0 1 3M 0

77 H ^ + iTT =dr2 r dr r2 o<p2

<p2), (13)

1 + V^ W O W M = 0, (14)
dr J dr r2 d<p2

82A2 1 8A2 1 82A2

TT ^ Z •" ~T TT ~ JuOilioViAi = 0. (15)
dr2 r dr r2 dtp2
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3. Mathematical analysis

We introduce the dimensionless variable r = r / / , where the distance, /, between
the wires is chosen as the unit of length, and recall from (1) that fi\{f) = r" and
CT](r) = amrK. Henceforth, tildes will be omitted. We note that now rx and r2 are
dimensionless parameters.

From (13)—(15), we obtain the following system of equations:

82A0 dA0

dr2 r dr

d2A0

'• dip2

(16)

d2Ax \-abAx 1 32A, , .
d r2 dip2T + Tr dr r2 dip

(17)

where

d2A2 1 8A2 1 d2A2
77 + - -r2 + 7773r2 r dr r2 dip2

The boundary conditions are

dr

= 0,

1 3A,

(18)

(19)

(20)
=Pl

where /xn = p" , /x,2 = p2 and p\ = Pi/l, p2 = p\/l.
Since system (16)—(18) is linear, its solution can be expressed as the sum of two

solutions corresponding to the presence of the wires u>i and w2, respectively. For the
first solution, only the first term on the right-hand side of (16) is present. For the
second solution, only the second term on the right-hand side of (16) is present and rx,
tpi and / are replaced by r2, ^ and —/, respectively, in the first solution. Finally, the
solution to (16)-(20) is the sum of these two solutions.

To obtain the first solution, we expand Dirac's delta function in a Fourier series,

1

n
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1/2, n = 0,

1, « = 1,2

and seek the solution to (16)-(20) in the form

1 °°
Aj(r, cp) = - y^8nain(r)cosn(<p -<p{). (21)

n=0

Substituting (21) into (16)-(20) we obtain the following system of ordinary differential
equations:

dr2 ' r dr
d2a.\n 1 — a da1n n2

7?

d2a0n 1 daOn n2 ,
H : z aOn = -ixolr8(r - r , ) ,

r dr rL

d2a2n i_ da2n _ n2^
7 1 '

dr2

r dr

with the boundary conditions:

aOn\r=fi, = Q\n\r=p

= 0,

(22)

(23)

(24)

(25)

(26)

We begin by finding bounded general solutions to equations (22), (23) and (24).
The structure of the solution to (22) depends on the value of n. It will be convenient

to split region Ro into two subregions /?oo and flOi» namely,

daOn

dr

daXn

At n

dain da
2n

R
Oi

Pi < f < f\< 0 < <p < 2n, — oo < z < oo, and

r > ru 0 < <p < 2n, —oo < z < oo.

First, if n = 0, we denote the general solution of (22) in Rm and /?Oi by a^(r) and
a^(r), respectively. Bounded general solutions to (22) in these two regions can be
written, respectively, in the form

C2o, (27)

<&\r) = C30. (28)

Second, if n ^ 0, bounded general solutions to (22) in /?oo and /?Oi are, respectively,

a™(r) = Clnr" + C2nr-", (29)

e&\r) = C3nr-«. (30)
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The general solution to equation (23) can be expressed in terms of Bessel functions
(see [3]):

fllfl(r) = C4nr°Jp(brc) + C5nr
aYp(brc), (31)

where

a = | , c = l+(a+*0/2, b = ply/^]/c, p = y/a2+An2/{K+a+2).

A bounded general solution to (24) has the form

a2(r) = C6nJn(kr), (32)

where & = fh*/—J-
Note that the structure of (31) and (32) remains the same for n = 0, 1, 2 , . . . , except

for the case a + K = —2, where equation (23) degenerates into Euler's equation.
We now use the boundary conditions (25) and (26) to determine the arbitrary

constants in the general solutions (27)-(32).
First, we consider the case n = 0. Since the vector potential is continuous at r = rx

we have

a^{r,) = a^{rx), or Cialnr, + C20 = C30. (33)

Multiplying (22) by r, integrating with respect to r from r\ — s to r{ + e and taking
the limit as £ -> +0, we obtain

da02

dr

da<'o\
r=n dr

= -Mo//2- (34)

Using (25), (26), (33) and (34) to determine the constants C10, C 2 0 , . . . . Ceo in (27),
(28), (31) and (32) for n = 0, we obtain

C20 = PlldoJp (bpl) + Yp (bpftCso - Mo//2/-i 1"P.-

C30 = C20 + C10 In /"i,

C40 = ^oCso,

do[aJp (bp\) + bcp\J'p (bpty + aYp (ftpf) + bcp\Y'p {bp\) '

bPi) + CsoYp i
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where

(bpc
2) - ^Mk^naY, (bpc

2) + bcpc
2Y'p

(bpc
2) - IXiUkPl)[aJp {bpc

2) + bcp\J'p (bpc
2)]'

Since we are interested in the change of impedance in the double conductor line
due to the presence of the conducting cylinder, by (10) we need only determine the
z-component, A0(r, cp), of the vector potential in Ro.

In free space Ro, A0(r, <p) can be written as the sum of two terms,

A0(r, <p) = Ae
o

mpl\r, <p) + Al
o

nd(r, <p),

where the first term is the vector potential due to the double conductor line in empty
unbounded free space and the second term is the induced vector potential due to the
conducting cylinder. We shall be concerned only with the induced term because it is
the important term in eddy current testing.

Again, in Ro, the induced potential A'Qd{r, cp) can be written as the sum of two
parts:

where the first and second terms on the right-hand side correspond to the wires w\
and w2, respectively. In Figure 1, the cylindrical polar coordinates of the /th wire are
r = r,, (p = <pi, —oo < z < oo, for i = 1,2.

The first term of the Fourier series of A^"'\r, <p) is equal to C2o and can be written
in the form

(«,,, = A6o/x,1//V1p2-yr[4./P {bp\) + Yp [bp<Q]
°° {K) do[aJp (bp\) + bcp\J'p (bp<i)] + aYp (bp\) + bcp\Y'p {bp\) '

Second, we determine the arbitrary constants in the cases n = 1,2, As in the
case n = 0, we obtain additional conditions at r = rx in the form

U, =«i»|Wl, (35)
da•In

dr

dau

dr
(36)

Using (25), (26), (35) and (36) to determine the constants Cln, C^, . . . , C6n in
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(29M32), we obtain

r — ^° /;2f-n+1

Cin = an/ai2,

Cin = C2n + C\nTx ,

Cnn = dn Csn i

c

where

V n p 2 n ( p 2 ) p {bpc
2) - tM2Jn(kp2)laYp {bpc

2) + p 2 ; ( p 2 ) ]

" ~ kJ^k)J {bpc
2) - n2Jn(kp2)[aJp {bpc

2) + bcpc
2Jp (b$)]'

au ^

- dn[aJp {bp\) + bcp\J'p (bp<)] - aYp {bp\) - bcp\Yp {bp\)\,

=nun[dnJp {bpfi + Yp {bp')] + dn[aJp {bp\)

+ bcp\J' {bp<)] + aYp (bp() + bcp\Y' {bpc
x) .p

Thus, with q = OC/(K + a + 2), we have

{bp\) + Yq {bp\

do[aJq {bp\) + bcp\J'q {bp\)} + aYq {bp\) + bcp\Y'q {bp\)

( 3 8 )

where

bn =Hun[dnJp {bp\) + Yp {bpc
x)] - dn[aJp (bp\) + bcp\J'p (bpft

- aYp (bpi) - bcp\Y'p (bp\),

6I2 =filin[dnJp {bp\) + Yp {bpty + dn[aJp {bp\) + bcp\J'p {bp\)]

+ aYp{bp\) + bcp\Y'p{bp\),

and dn is defined by (37).
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To obtain the second part, A(^2)(r, q>), of the induced vector potential which cor-
responds to the second term on the right-hand side of (16), in (38) we replace ru <px

and / with r2, <p2 and —/, respectively.
Adding A^"\r, <p) and A^"2\r,(p), we obtain the induced vector potential in the

form

do[aJp {bp\) + bcp\J'p (bp\)] + aYp (bp\) + bcp\Y'p (bp\)

' 1 '

- ^ *» t M

— cos/z(<p - <p2) \. (39)-»»].
The change of impedance in the double conductor line due to the conducting cylinder
can be found by the formula

iVii C

{™d(r,(p)dl, (40)

where L is the contour of integration. In our model we assume that integration takes
place along the two wires in the opposite directions over one unit of length. Hence,
from (39) and (40) we obtain

•jind

lit

where

^=jT^-U(PA +r2
\r2

r2) (^-\ (?f\ cosn(^, - <p2) |. (41)

4. Numerical results

Formula (41) was used to compute the change of impedance in the double conductor
line for different values of the parameters of the problem. The series in (41) was
computed by means of MATHEMATICA (version 2.2.2) on a Sun Sparc 10, because
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this package easily allows the evaluation of Bessel functions of fractional order for a
complex argument. The graphs in Figures 2-4 correspond to the case where

/z.,(r) = r", a,(r) = a(0) = const (K = 0),

//,, = p", Ai,2 = p", Hi = 1, ft = 1.

In Figures 2-5, the variable x = rt sinipi + 1/2 describes the horizontal shift of the
centre of the double conductor line measured from the vertical axis <p = 0 (denoted
as the r-axis in Figure 1).

In Figure 2, the modulus |Z0| of Zo is plotted against x for different values of the
parameter ft. The remaining paramaters are set at

p, = l.i, p2 = 1.0

As can be seen, |Z0| increases with ft.

h=0A,

FIGURE 2. |Z0 | against A: for p{ = 1,2, 3.

In Figure 3, |Z0| is plotted against x for a =
values of the remaining parameters are

p ,=0 .4 , = 0.3,

— 1, -3 /2 , - 3 , respectively. The

A = 0.1.

It is seen that |Z0| increases as the change of magnetic permeability across the layer
p2 < r < p\ becomes stronger, a fact which is important in qualitative analysis of
eddy current testing of media with varying properties.

Another interesting phenomenon can be seen in Figure 4, where |Z0| is plotted
against x for different values of pi and p\.

If the radii of the cylinders are small in comparison with the distance between the
wires of the double conductor line, then the local minimum of |Z0| (as a function of x)
is shifted away from the origin (see Figures 4—5). This may be useful for quantitative
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0.2 0.4 0.6 0.8 1.0 1.2

FIGURE 3. \Z0\ against x for magnetic permeability ii\(r) = r" of medium R\, where a
- 1 , - 3 / 2 , - 3 .

Iz,

FIGURE 4. |Z0| against x for h = 0.1 and the following values of px and fa: (a) p\ = 0.4, p2 = 0.3,
(b) p, = 0.3, pz = 0.2, (c) p, = 0.2, p2 = 0.1.

control of materials with varying properties. The other parameters in Figure 4 are set
at

In Figure 5, |Z0| is plotted against x for the case

lMl(r) = r-\ p, =0 .3 , p2 = 0.2, = 0.1,

The conductivity, ô  (r), of /?! is of the form CT, (r) = a(0)r" for «: = - 1 , - 2 , - 3 .
Comparing Figures 3 and 5, one sees that the values of a and K have an opposite

effect on the value of |Z0|. It is seen from Figure 3 that \Z0\ increases if the magnetic
permeability is decreasing more rapidly in the radial direction (that is, if a decreases
from — 1 to —3). On the other hand, Figure 5 shows that |Z0| decreases if K decreases
from — 1 to —3 (that is, the conductivity, a(/•), is decreasing more rapidly in the radial
direction).
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/

0.2

0.1

K

K =

K= -1

.3 ^N\

0.2 0.4 0.6 0.8 *

FIGURE 5. \Zg\ against* for conductivity O\ (r) = CT(°V* of medium Ru where K = — 1, —2, —3.

Since |Z0| changes slowly in a neighbourhood of x = 0 we present two tables of
data, rounded to four decimal places, corresponding to Figures 4-5.

X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pi = 0.4, p2 = 0.3
0.4149
0.4145
0.4119
0.4023
0.3766
0.3253
0.2511
0.L743
0.1131
0.0714

Pi

IZol
= 0.3, p2 = 0.2

0.3059
0.3066
0.3074
0.3032
0.2843
0.2390
0.1718
0.1077
0.0630
0.0365

Pi = 0.2, p2 = 0.1
0.1756
0.1771
0.1808
0.1828
0.1737
0.1402
0.0885
0.0467
0.0236
0.0122

TABLE 1. |ZQ| against x for shown values of radii, p\ and fa, of cylinders, and h = 0.1.

5. Conclusion

The change of impedance, per unit length, in a double conductor line due to
the presence of an infinitely long two-layered conducting circular cylinder which is
situated parallel to the conductor line is found in the case the magnetic permeability,
fi(r) — r", and the conductivity, a(r) = ai0)rK, of the outer cylindrical layer are not
constant, where a(0) = const, and a and K are arbitrary real numbers. This problem
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X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

IZol
K = -\

0.3722
0.3735
0.3760
0.3738
0.3544
0.3012
0.2177
0.1365
0.0797
0.0461

K = -2

0.2965
0.2981
0.3016
0.3027
0.2908
0.2505
0.1825
0.1145
0.0668
0.0385

K = -3

0.2130
0.2146
0.2184
0.2217
0.2166
0.1897
0.1395
0.0876
0.0509
0.0292

TABLE 2. |Z0| against* for conductivity cr, (r) = a(0)r* of medium R,, where K = —1, —2, - 3 .

is solved by means of an infinite series containing Bessel functions. Computational
results are presented in the form of figures.
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