ON SOME CLASSES OF PRIMARY BANACH SPACES

P. G. CASAZZA, C. A. KOTTMAN, and BOR-LUH LIN

Introduction. A Banach space X is called primary (respectively, prime) if for every (bounded linear) projection P on X either $P X$ or $(I-P) X$ (respectively, $P X$ with $\operatorname{dim} P X=\infty$) is isomorphic to X. It is well-known that c_{0} and $l_{p}, 1 \leqq p \leqq \infty[\mathbf{8} ; \mathbf{1 4}]$ are prime. However, it is unknown whether there are other prime Banach spaces. For a discussion on prime and primary Banach spaces, we refer the reader to [9].

If E is a Banach sequence space and $\left\{X_{n}\right\}$ is a sequence of Banach spaces, we shall let $\left(\sum_{n} X_{n}\right)_{E}=\left(X_{1} \oplus X_{2} \oplus \ldots\right)_{E}$ be the Banach space of all sequences $\left\{x_{n}\right\}$ such that $x_{n} \in X_{n}, n=1,2, \ldots$ and $\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right) \in E$ with the norm $\left\|\left\{x_{n}\right\}\right\|=\left\|\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right)\right\|_{E}$. It is known that $C[0,1][\mathbf{1 0}]$ and $L^{p}[0,1], 1<p<\infty[\mathbf{2}]$ are primary. Other known classes of primary Banach spaces are the \mathscr{L}_{p}-spaces $\left(X_{p} \oplus X_{p} \oplus \ldots\right)_{l_{p}},\left(l_{2} \oplus l_{2} \oplus \ldots\right)_{l_{p}}$ and $B_{p}, 1<$ $p<\infty[\mathbf{2}]$ and the spaces $C[1, \alpha]$ where α is a countable ordinal or the first uncountable ordinal $[\mathbf{1 ; 2 0}]$. Let X be a Banach space with symmetric basis $\left\{x_{n}\right\}$ and let X_{n} be the linear span of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, n=1,2, \ldots$ In this paper, we show that the following Banach spaces are primary:
(1) $(X \oplus X \oplus \ldots)_{E}, E=l_{p}, 1<p<\infty$ or c_{0} where X is not isomorphic to l_{1};
(2) $\left(X_{1} \oplus X_{2} \oplus \ldots\right)_{E}, E=l_{p}, 1<p<\infty$ or c_{0};
(3) $\left(l_{\infty} \oplus l_{\infty} \oplus \ldots\right)_{l_{p}}, 1 \leqq p<\infty$.

We shall follow the standard notation and terminology in the theory of Banach spaces [12]. In particular, for Banach spaces X and Y we write $X \sim Y$ if X is isomorphic to Y and $d(X, Y)=\inf \left\{\|T\| \cdot\left\|T^{-1}\right\|: T\right.$ is an isomorphism from X onto $Y\}$. For a sequence of elements $\left\{x_{n}\right\}$ in a Banach space X, we write $\left[x_{n}\right]$ or $\left[x_{1}, x_{2}, \ldots\right]$ to denote the closed linear subspace in X spanned by $\left\{x_{n}\right\}$. For the notation on basis theory, we refer the reader to [19]. Throughout this paper, if X is a Banach space with symmetric basis, we shall assume that X is equipped with the associated symmetric norm (cf. [19]).

1. In this section, we prove that if X is a Banach space with symmetric basis which is not isomorphic to l_{1} then the spaces $(X \oplus X \oplus \ldots)_{E}, E=l_{p}$, $1<p<\infty$ or c_{0} are primary.

Proposition 1. Let X be a Banach space with symmetric basis $\left\{x_{n}\right\}$ and let Y

[^0] Soc.
be any Banach space. If P is any projection on Y, then
\[

$$
\begin{aligned}
&(Y \oplus Y \oplus \ldots)_{X} \sim(P Y \oplus P Y \oplus \ldots)_{X} \\
& \oplus((I-P) Y \oplus(I-P) Y \oplus \ldots)_{x}
\end{aligned}
$$
\]

Proof. For any element $\left(y_{1}, y_{2}, \ldots\right)$ in $(Y \oplus Y \oplus \ldots)_{X}$, since $\left\|y_{n}\right\| \leqq$ $\left\|P y_{n}\right\|+\left\|(I-P) y_{n}\right\|, n=1,2, \ldots$, we have

$$
\begin{aligned}
\left\|\sum_{n}\right\| y_{n}\left\|x_{n}\right\| \leqq \| \sum_{n}\left(\|P\| \cdot\left\|y_{n}\right\|\right. & \left.+\|I-P\| \cdot\left\|y_{n}\right\|\right) x_{n} \| \\
\leqq\left\|\sum_{n}\right\| P\|\cdot\| y_{n}\left\|x_{n}\right\|+\| \sum_{n} & \|I-P\| \cdot\left\|y_{n}\right\| x_{n} \| \\
& =(\|P\|+\|I-P\|)\left\|\sum_{n}\right\| y_{n}\left\|x_{n}\right\| .
\end{aligned}
$$

This completes the proof of the proposition.
Lemma 2. Let $\left\{x_{n}, x_{n}^{*}\right\}$ be an unconditional basis of a Banach space X. Then no subsequence of $\left\{x_{n}\right\}$ spans a subspace isomorphic to l_{1} if and only if $\lim _{n} x_{k}{ }^{*}\left(T x_{n}\right)$ $=0, k=1,2, \ldots$, for any operator T on X.

Proof. For the necessity, see the proof of the theorem in [5]. Conversely, if $\left\{x_{n}\right\}$ is the unit vector basis of l_{1}, then it is easy to construct an operator T on l_{1} such that $\lim _{n} x_{k}{ }^{*}\left(T x_{n}\right) \neq 0$ for some $k=1,2, \ldots$.

Theorem 3. Let X be a Banach space with symmetric basis $\left\{x_{n}\right\}$ which is not isomorphic to l_{1}. Then the spaces $Y=(X \oplus X \oplus \ldots)_{E}, E=c_{0}$ or $l_{p}, 1<p<$ ∞ are primary.

Proof. For $i, j=1,2, \ldots$, let $y_{i, j}=\left(0,0, \ldots, 0, x_{j}, 0,0, \ldots\right)$ where x_{j} is in the i th coordinate. Let $\left\{y_{n}\right\}$ be the usual Cantor ordering of $\left\{y_{i, j}\right\}$. Then it is easy to show that $\left\{y_{n}\right\}$ is an unconditional basis of Y.

Let P be a projection on Y and let $P\left(y_{n}\right)=\sum_{k} a_{k}^{(n)} y_{k}=\sum_{i, j} a_{i, j}^{(n)} y_{i, j}$, $n=1,2, \ldots$ Now for any subsequence of $\left\{y_{n}\right\}$, there exists a subsequence, say $\left\{y_{n_{k}}\right\}$ such that either $\left[y_{n_{k}}\right]$ is isomorphic to l_{p} (or c_{0}) or $\left\{y_{n_{k}}\right\}$ is equivalent to a subsequence of $\left\{x_{n}\right\}$ and so $\left[y_{n_{k}}\right]$ is isomorphic to X. In either case, $\left[y_{n_{k}}\right]$ is not isomorphic to l_{1} and thus no subsequence of $\left\{y_{n}\right\}$ spans a subspace isomorphic to l_{1}. By Lemma 2 , we conclude that $\lim _{n} a_{k}{ }^{(n)}=0$ for all $k=1,2, \ldots$.

Now there exists $\epsilon>0$ (for example, $\epsilon=\frac{1}{2}$) such that for each $i=1,2, \ldots$ there exist infinitely many j with $\left|a_{i, j}{ }^{(i, j)}\right| \geqq \epsilon$ or $\left|1-a_{i, j}{ }^{(i, j)}\right| \geqq \epsilon$. Hence we may assume that there exist $i_{1}<i_{2}<\ldots$ and $j_{1}<j_{2}<\ldots$ such that $\left|a_{i_{k}, j_{h}}{ }^{\left(i_{k}, j_{h}\right)}\right| \geqq \epsilon, k, h=1,2, \ldots$ For each $k=1,2, \ldots$, since $\left\{x_{n}\right\}$ is symmetric, $\left[y_{i_{k}, j_{h}}\right]_{h}$ is isomorphic to X. We now follow the Cantor ordering and proceed as the proof of the theorem [5]; by taking subsequences of $\left\{i_{k}\right\}$ and $\left\{j_{h}\right\}$ if necessary, we conclude that $\left\{P y_{i_{k}, j_{h}}\right\}_{k, h}$ is equivalent to $\left\{y_{i_{k}, j_{h}}\right\}_{k, h}$ and the restriction of the natural projection from Y onto $\left[y_{i_{k}, j_{h}}\right]_{k, h}$ is an isomorphism from $\left[P y_{i_{k}, j_{h}}\right]_{k, h}$ onto $\left[y_{i_{k}, j_{h}}\right]_{k, h}$. Thus $\left[P y_{i_{k}, j_{h}}\right]_{k, h}$ is complemented in Y and is
isomorphic to Y. The proof that $P Y$ is isomorphic to Y is completed by Proposition 1 and Pelczynski's decomposition method.

Remark. For many projections P, there exists an $\epsilon>0$ such that both $\left|a_{n}{ }^{(n)}\right| \geqq \epsilon$ and $\left|1-a_{m}{ }^{(m)}\right| \geqq \epsilon$ for infinitely many n, m. In this case, the proof of the theorem yields that both $P Y$ and $(I-P) Y$ are isomorphic to Y.

Remark. Let $Z_{p}=\left(l_{2} \oplus l_{2} \oplus \ldots\right)_{l_{p}}, 1<p<\infty$. Schechtman [18] recently showed that every infinite dimensional complemented subspace X with unconditional basis of Z_{p} is isomorphic to either $l_{2}, l_{p}, l_{2} \oplus l_{p}$ or Z_{p}. The condition that X has unconditional basis was later removed by Odell [13]. Thus Z_{p} is primary. See [2] for another proof that Z_{p} is primary.
2. In this section, we prove that if X is a Banach space with symmetric basis $\left\{x_{n}\right\}$ and $X_{n}=\left[x_{1}, \ldots, x_{n}\right], n=1,2, \ldots$ then the spaces $\left(X_{1} \oplus X_{2} \oplus\right.$ $\ldots)_{E}, E=l_{p}, 1<p<\infty$ or $E=c_{0}$ are primary. We first prove a combinatorial lemma which is interesting in itself. We shall let N be the set of all natural numbers.

Lemma 4. If $M=\left\{m_{i}\right\}$ is a sequence of positive integers such that $\lim \sup _{i}$ $m_{i}=\infty$ then there exist rearrangements of N and M into two sequences each, $\left\{n_{1}{ }^{\prime}, n_{2}{ }^{\prime}, \ldots ; n_{1}{ }^{\prime \prime}, n_{2}{ }^{\prime \prime}, \ldots\right\}$ and $\left\{m_{1}{ }^{\prime}, m_{2}{ }^{\prime}, \ldots ; m_{1}{ }^{\prime \prime}, m_{2}{ }^{\prime \prime}, \ldots\right\}$ such that $n_{2 i-1}{ }^{\prime}+n_{2 i}{ }^{\prime}=m^{\prime}{ }^{\prime}$ and $m_{2 i-1}{ }^{\prime \prime}+m_{2}{ }^{\prime \prime}=n_{i}{ }^{\prime \prime}$ for all $i=1,2, \ldots$

Proof. We construct the rearrangements simultaneously and inductively.
Let $n_{1}{ }^{\prime}=1$ and $n_{2}{ }^{\prime}=\min \left\{n \in N: n \neq n_{1}^{\prime}\right.$ and $\left.n_{1}^{\prime}+n \in M\right\}$. Let $\gamma_{1}=$ $\min \left\{i \in N: n_{1}{ }^{\prime}+n_{2}{ }^{\prime}=m_{i} \in M\right\}$ and $m_{1}{ }^{\prime}=m_{\gamma_{1}}$. Now, let

$$
\alpha_{1}=\min \left\{i \in N: m_{i} \in M \backslash\left\{m_{1}^{\prime}\right\}\right\}
$$

and

$$
\beta_{1}=\min \left\{i \in N: i \neq \alpha_{1}, m_{i} \in M \backslash\left\{m_{1}{ }^{\prime}\right\} \text { and } m_{i}+m_{\alpha_{1}} \in N \backslash\left\{n_{1}{ }^{\prime}, n_{2}{ }^{\prime}\right\}\right\} .
$$

Define $m_{1}{ }^{\prime \prime}=m_{\alpha_{1}}, m_{2}{ }^{\prime \prime}=m_{\beta_{1}}$, and $n_{1}{ }^{\prime \prime}=m_{1}{ }^{\prime \prime}+m_{2}{ }^{\prime \prime}$.
Assume that $n_{1}{ }^{\prime}, n_{2}{ }^{\prime}, \ldots, n_{2 k}{ }^{\prime} ; n_{1}{ }^{\prime \prime}, n_{2}{ }^{\prime \prime}, \ldots, n_{k}{ }^{\prime \prime}$ and $m_{1}{ }^{\prime}, m_{2}{ }^{\prime}, \ldots, m_{k}{ }^{\prime}$; $m_{1}{ }^{\prime \prime}, m_{2}{ }^{\prime \prime}, \ldots, m_{2 k}{ }^{\prime \prime}$ are chosen such that $n_{2 i-1}{ }^{\prime}+n_{2 i}{ }^{\prime}=m_{i}{ }^{\prime}$ and $m_{2 i-1}{ }^{\prime \prime}+$ $m_{2 i}{ }^{\prime \prime}=n_{i}{ }^{\prime \prime}, i=1,2, \ldots, k$. Let

$$
\begin{aligned}
n_{2 k+1}{ }^{\prime}=\min \left\{n \in N: n \neq n_{i}{ }^{\prime}, i=1,2, \ldots, 2 k \text { and } n \neq n_{i}{ }^{\prime \prime},\right. & \\
& i=1,2, \ldots, k\}
\end{aligned}
$$

and

$$
\begin{aligned}
& n_{2 k+2}{ }^{\prime}=\min \left\{n \in N: n \neq n_{i}^{\prime}, i=1,2, \ldots, 2 k+1, n \neq n_{i}{ }^{\prime \prime},\right. \\
& \left.i=1,2, \ldots, k \text { and } n_{2 k+1}{ }^{\prime}+n \in M \backslash\left\{m_{1}^{\prime}, \ldots, m_{k}^{\prime} ; m_{1}^{\prime \prime}, m_{2}^{\prime \prime}, \ldots, m_{2 k}{ }^{\prime \prime}\right\}\right\} .
\end{aligned}
$$

Since $\lim \sup _{i} m_{i}=\infty, n_{2 k+2}$ is well-defined. Now let

$$
\begin{aligned}
\gamma_{k+1}=\min \left\{j \in N: m_{j}=n_{2 k+1}{ }^{\prime}+n_{2 k+2^{\prime}}, m_{j} \neq m_{i}^{\prime}, i\right. & =1,2, \ldots, k \\
\text { and } m_{j} \neq m_{i}^{\prime \prime}, i & =1,2, \ldots, 2 k\} .
\end{aligned}
$$

Define $m_{2 k+1}{ }^{\prime}=m_{\gamma_{k+1}}$. Finally, let

$$
\alpha_{k+1}=\min \left\{i \in N: m_{i} \in M \backslash\left\{m_{1}{ }^{\prime}, \ldots, m_{k+1}{ }^{\prime} ; m_{1}{ }^{\prime \prime}, m_{2}{ }^{\prime \prime}, \ldots, m_{k}{ }^{\prime \prime}\right\}\right\}
$$

and

$$
\begin{aligned}
& \beta_{k+1}=\min \left\{i \in N: i \neq \alpha_{k+1}, m_{i} \in M \backslash\left\{m_{1}{ }^{\prime}, \ldots, m_{k+1^{\prime}} ; m_{1}{ }^{\prime \prime}, \ldots, m_{k}{ }^{\prime \prime}\right\}\right. \\
&\left.\quad \text { and } m_{i}+m_{\alpha_{k+1}} \in N \backslash\left\{n_{1}, \ldots, n_{2 k+2^{\prime}} ; n_{1}{ }^{\prime \prime}, \ldots, n_{k}{ }^{\prime \prime}\right\}\right\} .
\end{aligned}
$$

Define $m_{2 k+1}{ }^{\prime \prime}=m_{\alpha_{k+1}}, m_{2 k+2^{\prime}}{ }^{\prime \prime}=m_{\beta_{k+1}}$ and $n_{k+1}{ }^{\prime \prime}=m_{2 k+1}{ }^{\prime \prime}+m_{2 k+2^{\prime}}{ }^{\prime \prime}$. By induction, the proof of Lemma 4 is complete.

Proposition 5. Let $\left\{B_{n}\right\}$ be a sequence of finite dimensional Banach spaces and let X be a Banach space with symmetric basis. If $\left\{n_{1}{ }^{\prime}, n_{2}{ }^{\prime}, \ldots \ldots ; n_{1}{ }^{\prime \prime}, n_{2}{ }^{\prime \prime}, \ldots\right\}$ is a rearrangement of N then $\left(B_{1} \oplus B_{2} \oplus \ldots\right)_{X}$ is isomorphic to $\left(B_{n_{1}} \oplus B_{n_{2}}\right.$, $\oplus \ldots)_{X} \oplus\left(B_{n_{1}{ }^{\prime}} \oplus B_{n_{2}{ }^{\prime}} \oplus \ldots\right)_{X}$.

We omit the simple proof of the proposition.
Theorem 6. If $\left\{B_{n}\right\}$ is a sequence of finite dimensional Banach spaces such that $\sup _{n, m} d\left(B_{n} \oplus B_{m}, B_{n+m}\right)<\infty$ and if X is a Banach space with symmetric basis then $\left(B_{1} \oplus B_{2} \oplus \ldots\right)_{X}$ is isomorphic to $\left(B_{m_{1}} \oplus B_{m_{2}} \oplus \ldots\right)_{X}$ for any sequence $\left\{m_{i}\right\}$ in N such that $\lim \sup _{i} m_{i}=\infty$.

Proof. By Lemma 4, there exist rearrangements of N and $\left\{m_{i}\right\}$ into two sequences each, $\left\{n_{1}{ }^{\prime}, n_{2}{ }^{\prime}, \ldots ; n_{1}{ }^{\prime \prime}, n_{2}{ }^{\prime \prime}, \ldots\right\}$ and $\left\{m_{1}{ }^{\prime}, m_{2}{ }^{\prime}, \ldots ; m_{1}{ }^{\prime \prime}, m_{2}{ }^{\prime \prime}, \ldots\right\}$ such that $n_{2 i-1}{ }^{\prime}+n_{2 i}{ }^{\prime}=m_{i}{ }^{\prime}$ and $m_{2 i-1}{ }^{\prime \prime}+m_{2 i}{ }^{\prime \prime}=n_{i}{ }^{\prime \prime}, i=1,2, \ldots$ Since X is a Banach space with symmetric basis, by Proposition 5 and the fact that $\sup _{n, m} d\left(B_{n} \oplus B_{m}, B_{n+m}\right)<\infty$, it follows that

$$
\begin{aligned}
& \left(\sum_{n} B_{n}\right)_{X} \sim\left(\sum_{i} B_{n i^{\prime}}\right)_{X} \oplus\left(\sum_{i} B_{n i^{\prime \prime}}\right)_{X} \\
& \sim\left(\sum_{i}\left(B_{n 2 i-1^{\prime}} \oplus B_{n 2 i^{\prime}}\right)\right)_{X} \oplus\left(\sum_{i} B_{m_{2 i-1^{\prime \prime}}+m_{2 i^{\prime \prime}}}\right) \\
& \sim\left(\sum_{i} B_{n 2 i^{\prime}-1+n 2 i^{\prime}}\right)_{X} \oplus\left(\sum_{i}\left(B_{m 2 i-1^{\prime \prime}} \oplus B_{m_{2 i^{\prime}} \prime}\right)\right)_{X} \\
& \sim\left(\sum_{i} B_{m i^{\prime}}\right)_{X} \oplus\left(\sum_{i} B_{m i^{\prime \prime}}\right)_{X} \sim\left(\sum_{i} B_{m_{i}}\right)_{X}
\end{aligned}
$$

Corollary 7. Let $\left\{B_{n}\right\}$ be a sequence of finite dimensional Banach spaces such that $\sup _{n, m} d\left(B_{n} \oplus B_{m}, B_{n+m}\right)<\infty$ and let X be a Banach space with symmetric basis. Let $Y=\left(\sum_{n} B_{n}\right)_{X}$. Then
(i) the Banach spaces $Y, Y \oplus Y$ and $(Y \oplus Y \oplus \ldots)_{X}$ are isomorphic; and
(ii) for any projection P on Y, Y is isomorphic to $Y \oplus P(Y)$.

Proof. (i) Obvious.
(ii) We use the same argument as the proof of Corollary 5 [5].

$$
\begin{aligned}
Y & \sim(Y \oplus Y \oplus \ldots)_{X} \\
& \sim(P(Y) \oplus P(Y) \oplus \ldots)_{X} \oplus((I-P) Y \oplus(I-P) Y \oplus \ldots)_{X} \\
& \sim P(Y) \oplus(P(Y) \oplus P(Y) \oplus \ldots)_{X}
\end{aligned}
$$

$$
\oplus((I-P) Y \oplus(I-P) Y \oplus \ldots)_{X}
$$

$$
\sim P(Y) \oplus(Y \oplus Y \oplus \ldots)_{X} \sim P(Y) \oplus Y
$$

Remarks. (1) If $B_{n}=\left[e_{1}, e_{2}, \ldots, e_{n}\right], n=1,2, \ldots$, where $\left\{e_{n}\right\}$ is a symmetric basis, then it is clear that $\sup _{n, m} d\left(B_{n} \oplus B_{m}, B_{n+m}\right)<\infty$. However, the converse is not true. For example, let $\left\{e_{n}\right\}$ be the unit vector basis of the James' quasi-reflexive Banach space J.
(2) When $X=l_{p}, 1<p<\infty$, a similar result was stated in [7, Lemma 5].

The following lemma is a consequence of Ramsey's combinatorial lemma; for a proof see [17, p. 45].

Lemma 8. Let m be an arbitrary positive integer. Then every (0,1)-matrix A of a sufficiently large order n contains a principal submatrix of order m of one of the following four types:

$$
\left[\begin{array}{ccc}
* & & 0 \tag{!}\\
\cdot & & \\
& \cdot & \\
0 & \cdot & *
\end{array}\right],\left[\begin{array}{lll}
* & & 0 \\
\cdot & & \\
& \cdot & \\
& \cdot & \\
1 & & *
\end{array}\right],\left[\begin{array}{lll}
* & & 1 \\
\cdot & & \\
& \cdot & \\
& \cdot & \\
0 & & *
\end{array}\right],\left[\begin{array}{lll}
* & & 1 \\
\cdot & & \\
& \cdot & \\
& \cdot & \\
1 & & \\
& &
\end{array}\right]
$$

The asterisks on the main diagonal denote 0 's and 1 's, but the entries above the main diagonal and the entries below the main diagonal are all 0 's or all 1 's as illustrated in (!).

Corollary 9. Let k and m be arbitrary positive integers. Then there exists an integer $N(k, m)$ such that for every $n \geqq N$ and for every $(0,1)$-matrix $A=\left(a_{i j}\right)$ of order n with $a_{i i}=1, i=1,2, \ldots, n$ and $\sum_{i=1}^{n} \alpha_{i j} \leqq m, j=1,2, \ldots, n$, there is a principal submatrix $\left(a_{p_{i} p_{j}}\right)$ or order k such that $a_{p_{i p_{j}}}=\delta_{i j}$ for all $i, j=1,2, \ldots, k$ where $\delta_{i j}$ is the Kronecker delta.

Theorem 10. Let $\left\{x_{n}\right\}$ be a symmetric basis of a Banach space X and let B_{n}, $n=1,2, \ldots$ be the linear span of $x_{1}, x_{2}, \ldots, x_{n}$ in X. Then the spaces $Y=$ $\left(\sum_{n} B_{n}\right)_{E}, E=c_{0}$ or $l_{p}, 1<p<\infty$ are primary.

Proof. Let $y_{i}{ }^{n}=\left(0, \ldots, 0, x_{i}, 0, \ldots\right), i=1,2, \ldots, n ; n=1,2, \ldots$ where x_{i} is in the nth coordinate of $y_{i}{ }^{n}$. It is easy to see that $\left\{y_{i}{ }^{n}\right\}_{i=1,2, \ldots, n ; n=1,2, \ldots}$
is an unconditional basis of Y. Let P be a projection on Y and let

$$
P\left(y_{i}{ }^{n}\right)=\sum_{l=1}^{\infty}\left(\sum_{j=1}^{l} \alpha_{j}^{l}(n, i) y_{j}{ }^{l}\right), \quad i=1,2, \ldots, n ; n=1,2, \ldots \ldots
$$

Fix k. Let $\frac{1}{2} \geqq \epsilon>0$ and let

$$
\begin{equation*}
0<\epsilon_{k}<\epsilon / k^{2} 2^{k}, \quad k=1,2, \ldots \tag{1}
\end{equation*}
$$

be such that for any scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$,

$$
\begin{equation*}
\epsilon_{k} k \sum_{i=1}^{k}\left|\lambda_{i}\right| \leqq \frac{1}{4}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\| \tag{2}
\end{equation*}
$$

Case I. X is not isomorphic to l_{1}.
Let $K=\max \{\|\mid P\|,\|I-P\|\}$. Since X is not isomorphic to l_{1}, there exists an integer m_{k} such that

$$
\begin{equation*}
\left\|\sum_{i=1}^{m_{k}} x_{i}\right\|<\frac{m_{k} \epsilon_{k}}{K} \tag{3}
\end{equation*}
$$

Let $N\left(k, m_{k}\right)$ be an integer determined by Corollary 9 and fix $n \geqq 2 N\left(k, m_{k}\right)$. For each $i=1,2, \ldots, n$, either $\left|\alpha_{i}{ }^{n}(n, i)\right| \geqq \frac{1}{2}$ or $\left|1-\alpha_{i}{ }^{n}(n, i)\right| \geqq \frac{1}{2}$. Since $\left\{x_{n}\right\}$ is symmetric, by taking a subsequence and considering $I-P$ if necessary, we may assume that $\left|\alpha_{i}{ }^{n}(n, i)\right| \geqq \frac{1}{2}$ for $i=1,2, \ldots, n / 2$ (or $(n-1) / 2$ if n is odd).

Define

$$
\beta_{i j}=\left\{\begin{array}{ll}
1 & \text { if }\left|\alpha_{i}^{n}(n, i)\right| \geqq \epsilon_{k} \\
0 & \text { if }\left|\alpha_{j}^{n}(n, i)\right|<\epsilon_{k}
\end{array}, \quad 1 \leqq i, j \leqq n / 2 .\right.
$$

We claim that $\left(\beta_{i j}\right)$ is an $(0,1)$-matrix of order $n / 2$ such that $\sum_{i=1}^{n / 2} \beta_{i j}<m_{k}$ for all $j=1,2, \ldots, n / 2$. Suppose for some $j, \sum_{i=1}^{n / 2} \beta_{i j} \geqq m_{k}$. Hence $\beta_{i_{l} j}=1$ for some $l=1,2, \ldots, m_{k}$. Let $\epsilon_{i_{l}}=\operatorname{sgn} \alpha_{j}{ }^{n}\left(n, i_{l}\right), l=1,2, \ldots, m_{k}$. Then

$$
\left\|\sum_{l=1}^{m_{k}} \epsilon_{i_{l}} y_{i_{l}}{ }^{n}\right\| \cdot\|P\| \geqq\left\|\sum_{l=1}^{m_{k}} \epsilon_{i_{l}} P\left(y_{i_{l}}{ }^{n}\right)\right\| \geqq\left|\sum_{l=1}^{m_{k}} \epsilon_{i_{l}} \alpha_{j}{ }^{n}\left(n, i_{l}\right)\right| \geqq m_{k} \epsilon_{k} .
$$

Hence

$$
\left\|\sum_{l=1}^{m k} x_{l}\right\|=\left\|\sum_{l=1}^{m k} \epsilon_{i_{l}} x_{i_{l}}\right\|=\left\|\sum_{l=1}^{m k} \epsilon_{i_{l}} y_{i_{l}}\right\| \| \frac{m_{k} \epsilon_{k}}{\|P\|} \geqq \frac{m_{k} \epsilon_{k}}{K}
$$

which contradicts (3).
By Corollary 9 , there is a $k \times k$ submatrix $\left(\beta_{p_{i} p_{j}}\right)=\left(\delta_{i j}\right)$ of $\left(\beta_{i j}\right)$. Thus
(4) $\left|\alpha_{p_{j}}{ }^{n}\left(n, p_{i}\right)\right|<\epsilon_{k}, 1 \leqq i \neq j \leqq k$ and

$$
\left|\alpha_{p_{i}}{ }^{n}\left(n, p_{i}\right)\right| \geqq \frac{1}{2}, i=1,2, \ldots, k .
$$

For any scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$,

$$
\begin{aligned}
& \|P\| \cdot\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\|=\|P\| \cdot\left\|\sum_{i=1}^{k} \lambda_{i} y_{p_{i}}{ }^{n}\right\| \geqq\left\|\sum_{i=1}^{k} \lambda_{i} P\left(y_{p_{i}}{ }^{n}\right)\right\| \\
& \quad \geqq\left\|\sum_{j=1}^{k} \sum_{i=1}^{k} \lambda_{i} \alpha_{p_{j}}{ }^{n}\left(n, p_{i}\right) x_{p_{j}}\right\| \\
& \quad \geqq\left\|\sum_{j=1}^{k} \lambda_{j} \alpha_{p_{j}}{ }^{n}\left(n, p_{j}\right) x_{p_{j}}\right\|-\left\|\sum_{j=1}^{k}\left(\sum_{\substack{i=1 \\
i \neq j}}^{k} \lambda_{i} \alpha_{p_{j}}{ }^{n}\left(n, p_{i}\right)\right) x_{p_{j}}\right\| \\
& \quad \geqq \frac{1}{2}\left\|\sum_{i=1}^{k} \lambda_{i} x_{p_{i}}\right\|-\sum_{j=1}^{k}\left|\sum_{\substack{i=1 \\
\neq j}}^{k} \lambda_{i} \alpha_{p_{j}}{ }^{n}\left(n, p_{i}\right)\right| \\
& \quad>\frac{1}{2}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\|-\epsilon_{k} \sum_{j=1}^{k} \sum_{\substack{i=1 \\
i \neq j}}^{k}\left|\lambda_{i}\right| \\
& \quad>\frac{1}{2}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\|-k \epsilon_{k} \sum_{i=1}^{k}\left|\lambda_{i}\right|>\frac{1}{2}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\|-\frac{1}{4}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\| \\
& \quad=\frac{1}{4}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\| .
\end{aligned}
$$

Hence we have proved that for every k there exists an integer $N(k)$ such that for all $n \geqq N(k)$, there are $1 \leqq p_{1}<p_{2}<\ldots<p_{k} \leqq n$ so that

$$
\begin{equation*}
{ }^{\frac{1}{4}}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\| \leqq\left\|\sum_{i=1}^{k} \lambda_{i} P\left(y_{p_{i}}{ }^{n}\right)\right\| \leqq\|P\| \cdot\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\| \tag{5}
\end{equation*}
$$

for any scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Notice that the norm of this isomorphism is independent of k.

Now, since $p \neq 1$, no subsequence of $\left\{y_{i}{ }^{n}\right\}$ spans a subspace isomorphic to l_{1}, by Lemma 2 , for all $j=1,2, \ldots, l ; l=1,2, \ldots$,
(6) $\quad \lim _{n \rightarrow \infty} \alpha_{j}^{l}(n, i)=0$.

By (5), (6), and the standard "gliding hump" process, given $\epsilon>0$, we can construct inductively a sequence

$$
\begin{equation*}
Z_{p_{i}}{ }^{n k}=\sum_{l=q k^{\prime}}^{q k} \sum_{j=1}^{l} \alpha_{j}^{l}\left(n_{k}, p_{i}\right) y_{j}{ }^{l}, \quad i=1,2, \ldots, k ; k=1,2, \ldots \tag{7}
\end{equation*}
$$

where $q_{1}{ }^{\prime}<n_{1}<q_{1}<q_{2}{ }^{\prime}<n_{2}<q_{2}<\cdots<q_{k}{ }^{\prime}<n_{k}<q_{k}<\cdots$ such that
(i) for each $k=1,2, \ldots,\left\{P\left(y_{p_{i}}{ }^{{ }_{k}}\right)\right\}_{i=1,2, \ldots, k}$ satisfies (5);
(ii) $\left\|Z_{p_{i}}{ }^{n_{k}}-P\left(y_{p_{i}}{ }^{n}\right)\right\| \leqq \epsilon / k^{2} 2^{k}, \quad i=1,2, \ldots, k ; k=1,2, \ldots$,
(Hence $\sum_{k} \sum_{i=1}^{k}\left\|Z_{p_{i}}{ }^{n_{k}}-P\left(y_{p_{i}}{ }^{{ }^{k}}\right)\right\|<\epsilon$ and so $\left\{Z_{p_{i}}{ }^{n_{k}}\right\}_{i=1,2, \ldots, k ; k=1,2, \ldots}$ is
equivalent to $\left\{P\left(y_{p_{i}}{ }^{n_{k}}\right)\right\}_{i=1,2, \ldots, k ; k=1,2, \ldots}$ for sufficiently small ϵ).
(iii) $\left\|\sum_{k} \sum_{i=1}^{k} \lambda_{p i}{ }^{n k} z_{p i}{ }^{n k}\right\|=\left\{\begin{array}{l}\left(\sum_{k}\left\|\sum_{i=1}^{k} \lambda_{p i}{ }^{n k} z_{p i}{ }^{n k}\right\|\right)^{1 / p} \begin{array}{c}\text { (when } E=l_{p}, \\ 1<p<\infty)\end{array} \\ \sup _{k}\left\|\sum_{i=1}^{k} \lambda_{p i}{ }^{n k} z_{p i}{ }^{n k}\right\| \\ \text { (when } E=c_{0} \text {) }\end{array}\right.$
for any scalars $\lambda_{p i}{ }^{{ }^{n}}$.
By (5), for each $k=1,2, \ldots,\left\{P\left(y_{p_{i}}{ }^{{ }^{k}}\right)\right\}_{t=1,2, \ldots}$ is uniformly equivalent to $\left\{x_{1}, \ldots, x_{k}\right\}$. Therefore, by (ii) and (iii), we conclude that $\left\{z_{p_{i}}{ }^{{ }^{k}}\right\}_{i=1,2, \ldots, k ; k=1,2, \ldots}$ spans a subspace isomorphic to Y.

Case II. X is isomorphic to l_{1}. Then X is not isomorphic to c_{0} and so there exists an integer m such that

$$
\begin{equation*}
\left\|\sum_{i=1}^{m} x_{i}\right\|>\frac{k}{\epsilon_{k}} \tag{8}
\end{equation*}
$$

We now proceed as in Case I. Construct the $(0,1)$-matrix $\left(p_{i j}\right)$ of order $n / 2$ and using (8) instead of (3) to prove that $\sum_{j=1}^{n / 2} p_{i j}<m$ for all $i=1,2, \ldots, n / 2$ (instead of $\sum_{i=1}^{n / 2} p_{i j}<m, j=1,2, \ldots, n / 2$). The rest of the proof is like Case I. Thus in both cases, we obtain a sequence $\left\{z_{p_{i}}{ }^{{ }^{k}}\right\}_{i=1,2, \ldots, k ; k=1,2, \ldots}$ satisfying conditions (i), (ii), and (iii).

By Pelczynski's decomposition method and by Corollary 7, it remains to show that, by taking a suitable subsequence if necessary, $\left\{z_{p_{i}}{ }^{\left.{ }_{k}\right\}_{i=1,2, \ldots, k ; k=1,2, \ldots}}\right.$ spans a complemented subspace in Y.

For $i=1,2, \ldots, k ; k=1,2, \ldots$, define

$$
\begin{equation*}
w_{p_{i}}^{n_{k}}=\sum_{\substack{l=q_{k} \\ l \neq n_{k}}}^{q_{k}} \sum_{j=1}^{l} \alpha_{j}^{l}\left(n_{k}, p_{i}\right) y_{j}{ }^{l}+\sum_{\substack{j=1 \\: \neq p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{k}}}^{n k} \alpha_{j}^{n k}\left(n_{k}, p_{i}\right) y_{j}^{n k} . \tag{9}
\end{equation*}
$$

Then

$$
\begin{aligned}
&\left\|z_{p_{i}}{ }^{n k}-w_{p_{i}}{ }^{n_{k}}\right\|=\left\|\sum_{\substack{j=1 \\
j \neq p_{i}}}^{k} \alpha_{j}^{n_{k}}\left(n_{k}, p_{i}\right) y_{j}^{n_{k}}\right\| \leqq \sum_{\substack{j=1 \\
i \neq p_{i}}}^{k}\left|\alpha_{j}^{n_{k}}\left(n_{k}, p_{i}\right)\right| \\
&<(k-1) \epsilon_{k}<\frac{\epsilon}{k 2^{k}}
\end{aligned}
$$

Hence

$$
\sum_{k=1}^{\infty} \sum_{i=1}^{k}\left\|z_{p_{i}}{ }^{n_{k}}-w_{p_{i}}^{n_{k}}\right\| \leqq \sum_{k=1}^{\infty} \frac{\epsilon}{2^{k}}=\epsilon
$$

and so by choosing ϵ sufficiently small, $\left\{z_{p_{i}}{ }^{{ }^{k}}\right\}$ \} is equivalent to $\left\{w_{p_{i}}{ }^{{ }^{k}}\right\}$, and [$\left.z_{p_{i}}{ }^{n}\right]$ is complemented if and only if $\left[w_{p_{i}}{ }^{{ }_{k}}\right]$ is complemented in Y. Define $Q: Y \rightarrow\left[w_{p_{i}}{ }^{n_{k}}\right]$ by

$$
Q\left(\sum_{n=1}^{\infty} \sum_{i=1}^{n} \beta_{i}^{n} y_{i}^{n}\right)=\sum_{k=1}^{\infty} \sum_{i=1}^{k} \frac{\beta_{p_{i}}^{n_{k}}}{\alpha_{p_{i}}^{n_{k}\left(n_{k}, p_{i}\right)} w_{p_{i}}{ }^{n_{k}} ~ . ~}
$$

Since $\left|\alpha_{p_{i}}{ }^{n_{k}}\left(n_{k}, p_{i}\right)\right| \geqq \frac{1}{2}$ for all $i=1,2, \ldots, k ; k=1,2, \ldots\left\{y_{i}{ }^{n}\right\}$ is an unconditional basis and by the construction $\left\{w_{p_{i}}{ }^{k_{k}}\right\} \approx\left\{z_{p_{i}}{ }^{{ }^{n} k}\right\} \approx\left\{y_{p_{i}}{ }^{{ }_{k}}\right\}$, it is easy to show that Q is a bounded projection from Y onto $\left[w_{p_{i}}{ }^{n}\right]$. This completes the proof of the theorem.

By combining Theorems 3 and 10, we obtain
Corollary 11. Let $\left\{x_{n}\right\}$ be a symmetric basis of a Banach space X and for each $n=1,2, \ldots$, let $B_{n}=X$ or the linear span of $x_{1}, x_{2}, \ldots, x_{n}$ in X. Then the Banach spaces $\left(\sum B_{n}\right)_{E}, E=c_{0}$ or $l_{p}, 1<p<\infty$, are primary.

Remarks. (1) Since $\left\{y_{i}{ }^{n}\right\}$ is an unconditional basis of Y, letting P_{0} be the natural projection from Y onto $\left[y_{p_{i}}{ }^{n_{k}}\right]_{i=1,2, \ldots, k ; k=1,2, \ldots}$, it can be proved that the restriction of P_{0} is an isomorphism from $\left[z_{p_{i}}{ }^{n}\right]$ onto $\left[y_{p_{i}}{ }^{n}\right]$. Hence $\left[z_{p_{i}}{ }^{{ }^{k}}\right]$ is complemented in Y.
(2) We don't know whether the theorem is true when $p=1$ or ∞. The first half of the proof includes the cases $p=1$ or ∞. Namely, if T is an operator on $Y=\left(\sum B_{n}\right)_{l_{p}}, 1 \leqq p \leqq \infty$, then for every k, there exists an integer $N(k)$ such that for any $n \geqq N$, there are $1 \leqq p_{1}<p_{2}<\cdots<p_{k} \leqq n$ such that $\left\{T\left(y_{p_{i}}{ }^{n}\right)\right\}_{i=1,2, \ldots, k}$ spans a subspace isomorphic to B_{k}.
3. In this section, we show that if X is a Banach space with symmetric basis which is isomorphic to a complemented subspace of a Banach space E, then for any operator T on E, either $T E$ or $(I-T) E$ contains a complemented subspace which is isomorphic to X. The technique is similar to the one used by Bessaga and Pelczynski [4] in generalizing some results of R. C. James. This technique also enables us to generalize some of the results in Sections 1 and 2. We first prove a stronger result when X is c_{0} or $l_{p}, 1 \leqq p<\infty$.

Theorem 12. Let E be a Banach space which contains a subspace X isomorphic to c_{0} or $l_{p}, 1 \leqq p<\infty$. Then for any operator $T: E \rightarrow E$, either $T E$ or $(I-T) E$ contains a subspace isomorphic to c_{0} or $l_{p}, 1 \leqq p<\infty$.

Proof. If X is isomorphic to l_{1}, then the theorem follows immediately from the beautiful result of Rosenthal [16] that a Banach space contains a subspace isomorphic to l_{1} if and only if it contains a bounded sequence with no weak Cauchy subsequence.

Now, suppose that X is not isomorphic to l_{1}. Let $\left\{x_{n}\right\}$ be a symmetric basis of X.

Case I. There is a subsequence $\left\{x_{n i}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{i}\left\|T x_{n i}\right\|=0$ or $\lim _{i}\left\|(I-T) x_{n i}\right\|=0$.

If $\lim _{i}\left\|T x_{n i}\right\|=0$, by choosing a subsequence if necessary, we have $\sum_{i}\left\|x_{i}{ }^{*}\right\| \cdot\left\|x_{n i}-(I-T) x_{n i}\right\|=\sum_{i}\left\|x_{i}{ }^{*}\right\| \cdot\left\|T x_{n i}\right\|<1$ where $\left\{x_{i}{ }^{*}\right\}$ is the coefficient functionals of $\left\{x_{i}\right\}$. Hence $\left\{(I-T) x_{n i}\right\}$ is equivalent to $\left\{x_{n i}\right\}$. That is, $(I-T) E$ contains a subspace isomorphic to X.

Similarly, if $\lim _{i}\left\|(I-T) x_{n i}\right\|=0$ then $T E$ contains a subspace isomorphic to X.

Case II. Both $\inf _{n}\left\|T x_{n}\right\|>0$ and $\inf \left\|(I-T) x_{n}\right\|>0$. Since X is not isomorphic to l_{1}, hence $\left\{x_{n}\right\}$ is weakly convergent to 0 and so is $\left\{T x_{n}\right\}$. In this case, we have assumed that inf $\left\|T x_{n}\right\|>0$, hence there exists a basic subsequence $\left\{T x_{n i}\right\}$ of $\left\{T x_{n}\right\}$. Since $\left\{x_{n i}\right\}$ dominates $\left\{T x_{n i}\right\}$ and every basic sequence dominates the unit vector basis of c_{0}, we conclude that [$T x_{n_{i}}$] is isomorphic to c_{0} when X is isomorphic to c_{0}.

Suppose $1<p<\infty$ and no subsequence of $\left\{T x_{n}\right\}$ is equivalent to $\left\{x_{n}\right\}$. Then there exists a sequence $\left\{\alpha_{i}\right\}$ such that $\sum_{i} \alpha_{i} T x_{n i}$ converges and $\sum_{i}\left|\alpha_{i}\right|^{p}=$ ∞. Choose $p_{1}<p_{2}<\cdots$ such that

$$
1 \leqq \sum_{i=p_{n}+1}^{p_{n+1}}\left|\alpha_{i}\right|^{p} \leqq 2
$$

and let

$$
y_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} \alpha_{i} x_{n i}, \quad n=1,2, \ldots
$$

Then since $\sum \alpha_{i} T x_{n i}$ converges, we conclude that $\lim _{n}\left\|T y_{n}\right\|=0$. Furthermore, $\left\{y_{n}\right\}$ is a bounded block basic sequence of $\left\{x_{n i}\right\}$, hence is equivalent to $\left\{x_{n}\right\}$. By Case I, we obtain that $(I-T) E$ contains a subspace isomorphic to l_{p}.

Corollary 13. Let E be a Banach space with unconditional basis which is not weakly complete. Then for any operator $T: E \rightarrow E$ either $T E$ or $(I-T) E$ is not weakly complete.

Proof. This follows immediately from the theorem and a result of Bessaga and Pelczynski [3] that if X is a subspace of a Banach space with unconditional basis then X is weakly complete if and only if Y contains no subspace which is isomorphic to c_{0}.

We don't know whether Theorem 12 is true or not when X is an arbitrary Banach space with symmetric basis. However, we have the following:

Theorem 14. Let $\left\{x_{n}\right\}$ be a symmetric basic sequence in a Banach space E. If $\left\{x_{n}\right\}$ spans a complemented subspace X in E, then for any operator $T: E \rightarrow E$ either TE or $(I-T) E$ contains a subspace F which is complemented in E and is isomorphic to X.

Proof. Let $P: E \rightarrow X$ be a projection. Then $\left.P T\right|_{X}: X \rightarrow X$. By [5] when X is not isomorphic to l_{1} and Rosenthal's result [16] when X is isomorphic to l_{1}, we may assume that there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{P T\left(x_{n_{i}}\right)\right\}$ is equivalent to $\left\{x_{i}\right\}$. Since $\left\{x_{i}\right\}>\left\{x_{n i}\right\}>\left\{T x_{n i}\right\}>\left\{P T x_{n i}\right\} \approx\left\{x_{i}\right\}$, we conclude that $\left\{T x_{n i}\right\}$ is equivalent to $\left\{x_{i}\right\}$ and P maps $\left[T x_{n i}\right]$ isomorphically onto [$\left.P T x_{n i}\right]$. Since $\left[P T x_{n i}\right]$ is complemented in X and X is complemented in E,
hence $\left[P T x_{n i}\right.$] is complemented in E and thus [$T x_{n i}$] is complemented in E and is isomorphic to X.

Remark. It is known that if E is a Banach space with unconditional basis and Y is a subspace of E which is isomorphic to l_{1} then there exists a subspace F in Y which is isomorphic to l_{1} and is complemented in E. However, c_{0} is not complemented in l_{∞} and there exist reflexive Orlicz sequence spaces which contain subspaces isomorphic to $l_{p}, 1<p<\infty$ but no complemented subspaces which are isomorphic to $l_{p}, 1<p<\infty[\mathbf{1 1]}$.

Using the same technique and the results in Sections 1 and 2, we have:
Theorem 15. Let $Y=(X \oplus X \oplus \cdots)_{c_{0}}$ or $(X \oplus X \oplus \cdots)_{l_{p}}, 1<p<\infty$ (respectively $\left(\sum B_{n}\right)_{l_{p}}, 1<p<\infty$ or $\left(\sum B_{n}\right)_{c_{0}}$) where X is a Banach space with symmetric basis which is not isomorphic to l_{1} (respectively, $B_{n}=\left[x_{1}, \ldots, x_{n}\right], n=1,2, \ldots$ and $\left\{x_{n}\right\}$ is a symmetric basis of a Banach space). If E is a Banach space which contains a complemented subspace isomorphic to Y then for every operator $T: E \rightarrow E$, either $T E$ or $(I-T) E$ contains a complemented subspace isomorphic to Y.
4. In this section, we show that the spaces $\left(l_{\infty} \oplus l_{\infty} \oplus \ldots\right)_{l_{p}}, 1<p<\infty$ are primary. The proof is similar to the one used by Lindenstrauss [8] in proving that l_{∞} is prime. Throughout this section, we shall let $Y=\left(l_{\infty} \oplus l_{\infty} \oplus \cdots\right)_{l_{p}}$, $1<p<\infty$.

Lemma 16. Let $y_{n}=\left(x_{1}{ }^{n}, x_{2}{ }^{n}, \ldots, x_{i}{ }^{n}, \cdots\right), n=1,2, \ldots$, be elements in Y where $x_{i}{ }^{n}=\left(x_{i}{ }^{n}(1), x_{i}{ }^{n}(2), \ldots, x_{i}{ }^{n}(k), \ldots\right)$. If $\sup _{n}\left\|\sum_{j=1}^{n} \epsilon_{j} y_{j}\right\|<\infty$ for all $\left|\epsilon_{j}\right|=1, j=1,2, \ldots$, then for any $\epsilon>0$, there exists an integer I such that

$$
\sum_{n=1}^{\infty}\left|x_{i}{ }^{n}(k)\right| \leqq \epsilon
$$

for all $i \geqq$ I and every $k=1,2, \ldots$.
Proof. Suppose there exist $\epsilon_{0}>0, i_{1}<i_{2}<\cdots$ and $k_{j}, j=1,2, \ldots$ such that

$$
\sum_{n=1}^{\infty}\left|x_{i j}^{n}\left(k_{j}\right)\right|>\epsilon_{0}, \quad j=1,2, \ldots
$$

Choose m_{1} such that $\sum_{n=1}^{m}\left|x_{i_{1}}{ }^{n}\left(k_{1}\right)\right|>\epsilon_{0} / 2$ and $\sum_{n=m_{1}+1}^{\infty}\left|x_{i_{1}}{ }^{n}\left(k_{1}\right)\right|<\epsilon_{0} / 8$. This can be done since for some $\left\{\epsilon_{n}\right\}$ with $\left|\epsilon_{n}\right|=1$,

$$
\sum_{n=1}^{\infty}\left|x_{i}{ }^{n}(k)\right|=\sum_{n=1}^{\infty} \epsilon_{n} x_{i}{ }^{n}(k) \leqq \sup _{n}\left\|\sum_{i=1}^{n} \epsilon_{j} y_{j}\right\|<\infty
$$

Note that for each $n=1,2, \ldots, \lim _{i}\left\|x_{i}{ }^{n}\right\|=0$. Hence for sufficiently large i, we have

$$
\sum_{n=1}^{m_{1}}\left|x_{i}^{n}(k)\right| \leqq \sum_{n=1}^{m_{1}}\left\|x_{i}^{n}\right\|<\frac{\epsilon_{0}}{8}
$$

for all $k=1,2, \ldots$ Thus by taking a subsequence of $\left\{i_{j}\right\}_{j=1,2, \ldots}$ if necessary, we may assume that

$$
\sum_{n=1}^{m_{1}}\left|x_{i_{2}}{ }^{n}\left(k_{2}\right)\right|<\frac{\epsilon_{0}}{8} .
$$

Now, choose $m_{2}>m_{1}$ such that

$$
\sum_{n=1}^{m_{2}}\left|x_{i_{2}}{ }^{n}\left(k_{2}\right)\right|>\frac{\epsilon_{0}}{2} \text { and } \sum_{n=m_{2}+1}^{\infty}\left|x_{i_{2}}{ }^{n}\left(k_{2}\right)\right|<\frac{\epsilon_{0}}{8}
$$

By induction and by choosing a subsequence of $\left\{i_{j}\right\}_{j=1,2, \ldots}$ if necessary, there exist $0=m_{0}<m_{1}<m_{2}<\ldots$ such that for all $j=1,2, \ldots$,
(i) $\sum_{n=1}^{m_{j}}\left|x_{i_{j}}{ }^{n}\left(k_{j}\right)\right|>\frac{\epsilon_{0}}{2}$,
(ii) $\sum_{n=m_{i+1}}^{\infty}\left|x_{i j}{ }^{n}\left(k_{j}\right)\right|<\frac{\epsilon_{0}}{8}$,
(iii) $\sum_{n=1}^{m_{j}}\left|x_{i_{j+1}}{ }^{n}\left(k_{j+1}\right)\right|<\frac{\epsilon_{0}}{8}$.

Choose $\left|\epsilon_{n}\right|=1$ such that $\epsilon_{n} x_{i j}{ }^{n}\left(k_{j}\right)=\left|x_{i j}{ }^{n}\left(k_{j}\right)\right|, m_{j-1}<n \leqq m_{j}, j=1,2, \ldots$. Then for every $j=1,2, \ldots$,

$$
\begin{aligned}
& \left\|\sum_{n=1}^{m_{j}} \epsilon_{n} y_{n}\right\|=\sum_{i=1}^{\infty}\left\|\sum_{n=1}^{m_{j}} \epsilon_{n} x_{i}{ }^{n}\right\|^{p} \\
& \quad \geqq \sum_{n=1}^{j}\left\|\sum_{n=1}^{m_{j}} \epsilon_{n} x_{i n}{ }^{n}\right\|^{p} \geqq \sum_{h=1}^{j}\left|\sum_{n=1}^{m_{j}} \epsilon_{n} x_{i h}{ }^{n}\left(k_{h}\right)\right|^{p} \\
& \geqq \\
& \quad \sum_{h=1}^{j}\left[\left|\sum_{n=m_{h-1+1}}^{m_{h}} \epsilon_{n} x_{i_{h}}{ }^{n}\left(k_{h}\right)\right|-\left|\sum_{n=1}^{m_{h-1}} \epsilon_{n} x_{i h}{ }^{n}\left(k_{h}\right)\right|-\left|\sum_{n=m h+1}^{m_{j}} \epsilon_{n} x_{i h}{ }^{n}\left(k_{h}\right)\right|^{p}\right. \\
& \quad>\sum_{n=1}^{j}\left[\sum_{n=1}^{m_{h}}\left|x_{i h}{ }^{n}\left(k_{h}\right)\right|-\sum_{n=1}^{m_{h-1}}\left|x_{i h}{ }^{n}\left(k_{h}\right)\right|-\frac{\epsilon_{0}}{8}-\frac{\epsilon_{0}}{8}\right]^{p} \\
& \quad>\sum_{n=1}^{j}\left(\frac{\epsilon_{0}}{2}-\frac{\epsilon_{0}}{8}-\frac{\epsilon_{0}}{4}\right)^{p}=\left(\frac{\epsilon_{0}}{8}\right)^{p} j,
\end{aligned}
$$

which is a contradiction to the hypothesis that $\sup _{m}\left\|\sum_{n=1}^{m} \epsilon_{n} y_{n}\right\|<\infty$ for all $\left|\epsilon_{n}\right|=1, n=1,2, \ldots$.

Lemma 17. Let $x_{n}=\left(x_{n}(1), \ldots, x_{n}(k), \ldots\right), n=1,2, \ldots$ be elements in l_{∞}. If $\sup \left\|\sum_{i=1}^{n} \epsilon_{j} x_{j}\right\|<\infty$ for all $\left|\epsilon_{i}\right|=1, i=1,2, \ldots$, then for any $\epsilon>0$ and $\left\{k_{i}\right\}$ there exist an integer n and a subsequence $\left\{k_{i j}\right\}$ of $\left\{k_{i}\right\}$ such that $\left|x_{n}\left(k_{i j}\right)\right|<\epsilon$ for all $j=1,2, \ldots$.

Proof. Suppose there exists $\epsilon_{0}>0$ such that for each $n=1,2, \ldots,\left|x_{n}\left(k_{i}\right)\right|$ $\geqq \epsilon_{0}$, for all except finitely many i. Let n be an integer such that $n \epsilon_{0}>\sup _{n}$ $\left\|\sum_{j=1}^{n} \epsilon_{j} x_{j}\right\|$. Then for each $j=1,2, \ldots, n$, since $\left|x_{j}\left(k_{i}\right)\right|<\epsilon_{0}$ for only finitely
many i, hence there exists i_{0} such that $\left|x_{j}\left(k_{i_{0}}\right)\right| \geqq \epsilon_{0}$ for all $j=1,2, \ldots, n$. Let $\epsilon_{j}=\operatorname{sgn} x_{j}\left(k_{i_{0}}\right), j=1,2, \ldots, n$. Then

$$
\left\|\sum_{j=1}^{n} \epsilon_{j} x_{j}\right\| \geqq\left|\sum_{j=1}^{n} \epsilon_{j} x_{j}\left(k_{i_{0}}\right)\right|=\sum_{j=1}^{n}\left|x_{j}\left(k_{i_{0}}\right)\right| \geqq n \epsilon_{0}>\sup _{n}\left\|\sum_{j=1}^{n} \epsilon_{j} x_{j}\right\|,
$$

which is a contradiction.
The following lemma is proved by Lindenstrauss (see the proof of $\mathbf{8}$, Lemma 5).

Lemma 18. Let $\left\{x_{n}=\left(x_{n}(1), \ldots, x_{n}(k), \ldots\right)\right\}$ be a sequence of elements in l_{∞} such that for some constant $k>0,\left\|\sum_{i=1}^{n} \lambda_{i} x_{i}\right\| \leqq K \sup \left|\lambda_{i}\right|$ for all $\lambda_{i} \in R$, $i=1,2, \ldots, n$. If $\left\|x_{n}\right\|>2$ for all $n=1,2, \ldots$, then for any $1 / 3>\epsilon>0$ there exists subsequences $\left\{n_{k}\right\}$ and $\left\{i_{k}\right\}$ of N such that for all $k=1,2, \ldots$, $\left|x_{n_{k}}\left(i_{k}\right)\right| \geqq 5 / 3$ and $\sum_{j \neq k}\left|x_{n_{j}}\left(i_{k}\right)\right|<\epsilon$.

Lemma 19. Let $\left\{y_{i, j}=\left(x_{i, j}{ }^{1}, \ldots, x_{i, j}{ }^{n}, \ldots\right)\right\}_{i, j}$ be elements in Y for which there is a constant $K>0$ such that for each $i=1,2, \ldots$,

$$
\left\|\sum_{j=1}^{n} \lambda_{j} y_{i, j}\right\| \leqq K \sup _{j}\left|\lambda_{j}\right|
$$

for all $\lambda_{j} \in R, j=1,2, \ldots, n$. If $\left\|x_{i, j}{ }^{i}\right\|>2$ for all $i, j=1,2, \ldots$, then for any $1 / 3>\epsilon>0$ there exists a subsequence $\{i(l)\}_{l=1,2, \ldots}$ of N and double sequences of integers $\{j(i(l), q)\}_{l, q=1,2, \ldots}$ and $\{k(i(l), q)\}_{l, q=1,2, \ldots}$ such that for all $l, q=1,2, \ldots$,
(i) $\left|x_{i(l), j(i(l), q)}^{i(l)}(k(i(l), q))\right| \geqq \frac{5}{3}$
(ii) $\sum_{(h, s) \neq(l, q)}\left|x_{i(h), j(i(h), s)}^{i(l)}(k(i(h), q))\right| \leqq \frac{\epsilon}{2^{l}}$.

Proof. Given $1 / 3>\epsilon>0$, applying Lemma 18 to $\left\{x_{i, j}{ }^{i}\right\}_{j=1,2, \ldots}$ for each fixed $i=1,2, \ldots$, there exist subsequences $\{j(i, q)\}_{q=1,2, \ldots}$ and $\{k(i, q)\}_{q=1,2, \ldots}$ such that
(1) $\left|x_{i, j(i, q)}^{i}(k(i, q))\right| \geqq \frac{5}{3}$ for all q
and
(2) $\sum_{s \neq q}\left|x_{i, j(i, s)}^{i}(k(i, q))\right| \leqq \frac{\epsilon}{2^{2 i}}$.

Notice that (1) implies (i) for all $l, q=1,2, \ldots$ We shall choose a subsequence $\{i(l)\}$ of $\{i\}_{i=1,2, \ldots}$ which satisfies (ii).

Let $i(1)=1$ and apply Lemma 16 to $\left\{y_{i(1), j}\right\}_{j=1,2, \ldots}$ there exists $i(2)>i(1)$ such that

$$
\begin{equation*}
\sum_{j}\left|x_{i(1), j}^{i(2)}(k)\right| \leqq \frac{\epsilon}{2^{2}}, \quad k=1,2, \ldots \tag{3}
\end{equation*}
$$

Now,

$$
\sum_{j}\left|x_{i(2), j}^{i(1)}(k(1,1))\right| \leqq\left\|\sum_{j} \epsilon_{j} x_{i(2), j}^{i(1)}\right\| \leqq\left\|\sum_{j} \epsilon_{j} y_{i(2), j}\right\| \leqq K
$$

for suitable $\left|\epsilon_{j}\right|=1$. Hence there exists n such that for all $j \geqq n$

$$
\begin{equation*}
\left|x_{i(2), j}^{i(1)}(k(1,1))\right| \leqq \epsilon / 2^{4} . \tag{4}
\end{equation*}
$$

Applying Lemma 17 to $\left\{x_{i(2), j}^{i(1)}\right\}_{j \geq n}$, there is an integer, denoted by $j(i(2), 1)$ again, such that for some subsequence of $\{k(i(1), q)\}_{q>1}$ (which we will denote again by $\left.\{k(i(1), q)\}_{q>1}\right)$, we have

$$
\begin{equation*}
\left|x_{i(2), j(i(2), 1)}^{i(1)}(k(i(1), q))\right| \leqq \epsilon / 2^{4}, \quad q=2,3, \ldots \tag{5}
\end{equation*}
$$

We continue our induction along the usual Cantor's ordering of $\{i, j\}_{i, j=1,2, \ldots}$. For $l=1, q=2,3$, let $j(i(l), q)=j(i(1), 2)$ and $j(i(1), 3)$, respectively. We choose $j(i(2), 2)$ as follows. By hypothesis,

$$
\sum_{j}\left|x_{i(2), j}^{i(1)}(k(i(1), q))\right| \leqq\left\|\sum_{j} \epsilon_{j} y_{i(2), j}\right\|<K, \quad q=1,2,3 .
$$

Hence there exists n such that for all $j \geqq n$,

$$
\begin{equation*}
\left|x_{k(2), j}^{i(1)}(k(i(1), q))\right| \leqq \epsilon / 2^{5}, \quad q=1,2,3 . \tag{6}
\end{equation*}
$$

Now, applying Lemma 19 to $\left\{x_{i(2), j}^{i(1)}\right\}_{j \geq n}$, there exists an integer, denoted by $j(i(2), 2)$ again, such that for some subsequence of $\{k(i(1), q)\}_{q>3}$, denoted by $\{k(i(1), q)\}_{q>3}$ again, we have

$$
\begin{equation*}
\left|x_{i(2), j(i(2), 2)}^{i(1)}(k(i(1), q))\right| \leqq \epsilon / 2^{5}, \quad q=4,5, \ldots \tag{7}
\end{equation*}
$$

By (6) and (7), we conclude
(8) $\quad\left|x_{i(2), j(i(2), 2)}^{i(1)}(k(i(1), q))\right| \leqq \epsilon / 2^{5}, \quad q=1,2, \ldots$

To find the next term, by applying Lemma 16 to both $\left\{y_{i(1), j}\right\}_{j}$ and $\left\{y_{i(2), j}\right\}_{j}$, there exists $i(3)>i(2)$ such that

$$
\begin{equation*}
\sum_{j}\left|x_{i(l), j}^{1(3)}(k)\right| \leqq \epsilon / 2^{4+l}, \quad l=1,2 ; k=1,2, \ldots \tag{9}
\end{equation*}
$$

By hypothesis,

$$
\sum_{j}\left|x_{i(3), j}^{i(l)}(k(i(l), q))\right| \leqq\left\|\sum_{j} \epsilon_{j} y_{i(3), j}\right\| \leqq K
$$

for $l=1, q=1,2,3$ and $l=2, q=1,2$, respectively. Hence there exists n such that for all $j \geqq n$

$$
\begin{equation*}
\left|x_{i(3), j}^{i(l)}(k(i(l), q))\right| \leqq \frac{\epsilon}{2^{4+\imath}}, \quad l=1, q=1,2,3 \text { and } \quad l=2, q=1,2, \text { respectively } \tag{10}
\end{equation*}
$$

Applying Lemma 17 to $\left\{x_{i(3), j}^{i(1)}\right\}_{j \geqq n}$ and $\left\{x_{i(3), j}^{i(2)}\right\}_{j \geqq n}$ simultaneously, there is an integer, denoted by $j(i(3), 1)$ again such that for some subsequences of
$\{k(i(1), q)\}_{q \geq 4}$ and $\left\{k(i(2), q\}_{q \geq 3}\right.$ which we again denote the same way, we have

$$
\begin{equation*}
\left\lvert\, x_{i(3), j(l(3), 1)}^{i(l)}\left(k(i(3), q) \left\lvert\, \leqq \frac{\epsilon}{2^{4+l}}\right., \quad l=1, q \geqq 4 \text { and } \quad l=2, q \geqq 3,\right. \text { respectively }\right. \tag{11}
\end{equation*}
$$

By (10) and (11), we conclude
(12) $\left|x_{i(2), j(i(3), 1)}^{i(l)}(k(i(3), q))\right| \leqq \epsilon / 2^{4+l}, \quad l=1,2 ; q=1,2, \ldots$

Continuing by induction, we get $\{i(l)\}_{l=1,2, \ldots},\{j(i(l), q)\}_{l, q=1,2, \ldots}$, and $\{k(i(l), q)\}_{l, q=1,2, \ldots}$ such that

$$
\begin{equation*}
\left|x_{i(h), j(i(h), s)}^{i(l)}(k(i(l), q))\right| \leqq \epsilon / 2^{l+h+s}, \quad l, h, s, q=1,2, \ldots \text { and } l \neq h . \tag{13}
\end{equation*}
$$

(Equation (9) yields the case $h>l$ and (12) yields the case $h<l$.) Now, for all $l, q=1,2, \ldots$,

$$
\begin{aligned}
& \quad \sum_{(h, s) \neq(l, q)}\left|x_{i(h), j(i(h), s)}^{i(l)}(k(i(h), q))\right| \\
& \quad=\sum_{h \neq l} \sum_{s}\left|x_{i(h), j(i(h), s)}^{i(l)}(k(i(h), q))\right|+\sum_{s \neq q}\left|x_{i(l), j(i(l), s)}^{i(l)}(k(i(l), q))\right| \\
& \quad \leqq \sum_{h \neq l} \sum_{s} \frac{\epsilon}{2^{l+h+s}}+\frac{\epsilon}{2^{2 i(l)}}<\sum_{h \neq l} \frac{\epsilon}{2^{l+h}}+\frac{\epsilon}{2^{2 l}}=\frac{\epsilon}{2^{l}} .
\end{aligned}
$$

This shows that (ii) is satisfied and the proof is completed.
Corollary 20. Let $\left\{y_{i, j}\right\}_{i, j}$ be elements in Y which satisfy the condition in Lemma 19. Then there exist sequences of integers $\{i(l)\}_{l}$ and $\left\{j(i(l), q\}_{l, q}\right.$ such that for all sequences $\left\{\lambda_{i, j}\right\}_{i, j}$ with $\left.\sum_{i} \sup _{j}\left|\lambda_{i, j}\right|\right)^{p}<\infty$, it is true that

$$
\left\{\sum_{l=1}^{\infty}\left(\sup _{q}\left|\lambda_{l, q}\right|\right)^{p}\right\}^{1 / p} \leqq\left\|\sum_{l} \sum_{q} \lambda_{l, q} y_{l(l), j(i(l), q)}\right\|
$$

Proof. Choose sequences of integers $\{i(l)\}_{l},\left\{j(i(l), q\}_{l, q}\right.$, and $\{k(i(l), q)\}_{l, q}$ satisfying Lemma 19 with $\epsilon>0$ and $\epsilon\left\{\sum_{l=1}^{\infty}\left(1 / 2^{l}\right)^{p}\right\}^{1 / p}<1 / 3$.

Let $\left\{\lambda_{i, j}\right\}$ be any sequence such that $\left\|\sum_{l, q} \lambda_{l, q} y_{i(l), j(i(l), q)}\right\|=1$. For each $l=1,2, \ldots$, choose q_{l} such that $\left|\lambda_{l, q_{l}}\right| \geqq(4 / 5) \sup _{q}\left|\lambda_{l, q}\right|$. Then

$$
\begin{aligned}
1= & \left\|\sum_{h, s} \lambda_{h, s} y_{i(h), j(i(h), s)}\right\|=\left\{\sum_{l} \| \sum_{h, s} \lambda_{h, s} i\left(i(h), j(i(h), s) \|^{p}\right\}^{1 / p} .\right. \\
& \geqq\left\{\sum_{l}\left|\sum_{h, s} \lambda_{h, s} x_{i(h), j(i(h), s)}^{i(l)}\left(k\left(i(h), q_{l}\right)\right)\right|^{p}\right\}^{1 / p} \\
& \geqq\left\{\sum_{l}\left|\lambda_{l, q_{l}} x_{i(l), j\left(i(l), q_{l}\right)}^{i(l)}\left(k\left(i(l), q_{l}\right)\right)\right|^{p}\right\}^{1 / p} \\
& -\left\{\sum_{l} \mid \sum_{(h, s) \neq\left(l, q_{l}\right)} \lambda_{h, s} i\left(h(h),\left.j(i(h), s)\left(k\left(i(l), q_{l}\right)\right)\right|^{p}\right\}^{1 / p}\right. \\
& \geqq\left\{\left.\sum_{l}\left|\frac{5}{3} \lambda_{l, q_{l}}\right|\right|^{p}\right\}^{1 / p}-\left\{\sum_{l}\left(\frac{\epsilon}{2^{l}}\right)^{p}\right\}^{1 / p} \\
& \geqq \frac{5}{3}\left\{\sum_{l}\left(\frac{4}{5} \sup _{p}\left|\lambda_{l, q}\right|\right)^{p}\right\}^{1 / p}-\frac{1}{3} \\
& =\frac{4}{3}\left\{\sum_{l}\left(\sup _{q}\left|\lambda_{l, q}\right|\right)^{p}\right\}^{1 / p}-\frac{1}{3} .
\end{aligned}
$$

Hence

$$
\left\|\sum \lambda_{l, q} y_{i(l), j(i(l), q)}\right\| \geqq\left\{\sum_{l}\left(\sup _{q}\left|\lambda_{l, q}\right|\right)^{p}\right\}^{1 / p}
$$

Proposition 21. Let $\left\{y_{i, j}\right\}_{i, j=1,2, \ldots}$ be a sequence of elements in Y such that for all $\lambda_{i, j}$ in R,

$$
\left\|\sum_{i, j=1}^{n} \lambda_{i, j} y_{i, j}\right\| \leqq K\left(\sum_{i=1}^{n}\left(\sup _{1 \leqq j \leqq n}\left|\lambda_{i, j}\right|\right)^{p}\right)^{1 / p}
$$

for some constant K and for all n. Then for all $\left\{\lambda_{i, j}\right\}_{i, j} \in Y, \sum_{i, j} \lambda_{i, j} y_{i, j}$ converges in the w^{*}-topology of Y to some element in Y with norm less than or equal to $K\left(\sum_{i}\left(\sup _{j}\left|\lambda_{i, j}\right|\right)^{p}\right)^{1 / p}$.

Proof. Suppose for some $f \in X=\left(\sum l_{1}\right)_{E}, E=c_{0}$ or $l_{q},(1 / p+1 / q=1)$ such that $\left\{f\left(\sum_{i, j=1}^{n} \lambda_{i, j} y_{i, j}\right)\right\}_{n}$ diverges. Then $\sum_{i, j=1}^{\infty}\left|\lambda_{i, j} f\left(y_{i, j}\right)\right|=\infty$. Let $\epsilon_{i, j}=1$ such that $\epsilon_{i, j} \lambda_{i, j} f\left(y_{i, j}\right)=\left|\lambda_{i, j} f\left(y_{i, j}\right)\right|, i, j=1,2, \ldots$ Then

$$
\left\|\sum_{i, j=1}^{n} \epsilon_{i, j} \lambda_{i, j} y_{i, j}\right\| \leqq K\left(\sum_{i=1}^{\infty}\left(\sup _{j}\left|\lambda_{i, j}\right|\right)^{p}\right)^{1 / p}<\infty
$$

But $\lim _{n} f\left(\sum_{i, j=1}^{n} \epsilon_{i, j} \lambda_{i, j} y_{i, j}\right)=\infty$, which is impossible.
Let $\left\{f_{i, j}\right\}_{j}$ be the natural basis of l_{1} which is in the i th coordinate of X. Then $\left\{f_{i, j}\right\}_{i, j}$ with the usual Cantor ordering, is an unconditional basis for X. Let $\alpha_{k, l}=\lim _{n} f_{k, l}\left(\sum_{i, j=1}^{n} \lambda_{i, j} y_{i, j}\right), k, l=1,2, \ldots$ and let $y=\left(x_{1}, x_{2}, \ldots\right)$ where $x_{i}=\left(\alpha_{i, 1}, \alpha_{i, 2}, \ldots, \alpha_{i, j}, \ldots\right), i=1,2, \ldots$ Since $\left\{f_{i, j}\right\}$ is a basis of X, hence the bounded sequence $\left\{\sum_{i, j=1}^{n} \lambda_{i, j} y_{i, j}\right\}_{n}$ converges in the w^{*}-topology to y. It is well-known (cf. Banach, p. 123) that

$$
\|y\| \leqq \lim _{n} \sup \left\|\sum_{i, j=1}^{n} \lambda_{i, j} y_{i, j}\right\| \leqq K\left\{\sum_{i}\left(\sup _{j}\left|\lambda_{i, j}\right|\right)^{p}\right\}^{1 / p} .
$$

Remark. The proof of the proposition yields that if $\left\{x_{n}, f_{n}\right\}$ is an unconditional basis of a Banach space X, then for any sequence $\left\{y_{n}\right\}$ in $\left[f_{n}\right]$ such that for some constant $k>0,\left\|\sum_{i=1}^{n} \lambda_{n} y_{n}\right\| \leqq K\left\|\sum_{i=1}^{n} \lambda_{i} f_{i}\right\|$ for all scalars $\left\{\lambda_{i}\right\}$, then for any $\sum_{n} \lambda_{n} f_{n} \in\left[f_{n}\right], \sum_{i=1}^{n} \lambda_{i} y_{i}$ converges in the w^{*}-topology to some element in X^{*} with norm less than or equal to $K\left\|\sum_{n=1}^{\infty} \lambda_{n} f_{n}\right\|$.

Theorem 22. For any operator T on Y either $T Y$ or $(I-T) Y$ contains a subspace isomorphic to Y which is complemented in Y.

Proof. Let $\left\{e_{i, j}\right\}_{j}$ be the natural basis of c_{0} in its n natural embedding of the i th coordinate of Y. Let $y_{i, j}=T e_{i, j}=\left(x_{i, j}{ }^{(1)}, \ldots, x_{i, j}{ }^{(n)}, \ldots\right), i, j=1,2, \ldots$. By Theorem 12, and by taking a subsequence if necessary, we may assume that $\left\|x_{i, j}{ }^{(i)}\right\| \geqq \frac{1}{2}, i, j=1,2, \ldots$ Since

$$
\left\|\sum_{i, j=1}^{n} \lambda_{i, j} y_{i, j}\right\| \leqq\|T\|\left(\sum_{i=1}^{n}\left(\sup _{1 \leqq j \leqq n}\left|\lambda_{i, j}\right|\right)^{p}\right)^{1 / p}
$$

for all $\lambda_{i, j}$ in R, let $K=4\|T\|$ and apply Corollary 20 to $\left\{4 y_{i, j}\right\}_{i, j}$. We obtain sequences $\{i(l)\}_{l}$ and $\{j(i(l), q)\}_{l, q}$ such that

$$
\left\|\sum_{l} \sum_{q} \lambda_{l, q} y_{i(l), j(t(l), q)}\right\| \geqq\left(\sum_{l}\left(\sup _{q}\left|\lambda_{l, q}\right|\right)^{p}\right)^{1 / p}
$$

for all $\left\{\lambda_{l, q}\right\}$ such that $\sum_{l, q} \lambda_{l, q} e_{l, q} \in Y$. Hence, by Proposition 21, the subspace of Y which consists of all w^{*}-limits of $\sum_{l, q} \lambda_{l, q} y_{i(l), j(i(l), q)}$ where $\sum \lambda_{l, 8} e_{l, \ell}$ $\in Y$ is isomorphic to Y. We now mimic the proof of the theorem in [8] to obtain a subspace in $T Y$ which is isomorphic to Y. Let $\left\{N_{\gamma}\right\}_{\gamma \in \Gamma}$ be an uncountable collection of infinite subsets of N such that $N_{\alpha} \wedge N_{\beta}$ is finite for all $\alpha \neq \beta$. For each $\gamma \in \Gamma$, let X_{γ} be all w^{*}-limits of $\sum_{l} \sum_{q \in N \gamma} \lambda_{l, q} y_{i(l), j(t(l), q)}$ where $\sum \lambda_{l, q} e_{l, q} \in Y$. Then X_{γ} is isomorphic to Y for all $\gamma \in \Gamma$. Suppose for each $\gamma \in \Gamma$ there exists $\left\|x_{\gamma}\right\|=1$ in $X_{\gamma} \backslash T Y$. Let $x_{\gamma}=\sum_{l} \sum_{q \in N \gamma} \lambda_{l, q}^{(\gamma)}$ $y_{i(l), j(i(l), q)}$. By the same reasoning as in [8], we conclude that for each $l=$ $1,2, \ldots$,

$$
\left\|\sum_{k=1}^{n} \epsilon_{k}(I-T) \sum_{q \in N \gamma_{k}} \lambda_{l, q}^{\left(\gamma_{k}\right)} y_{i(l), j(i(l), q)}\right\| \leqq\|I-T\| \cdot\|T\|
$$

for all $\left|\epsilon_{k}\right|=1$ and all finite $\gamma_{1}, \ldots, \gamma_{n}$. Since Y has a countable total subset $\left\{f_{k}\right\}$ in $Y^{*},\left\|f_{k}\right\|=1, k=1,2, \ldots$, hence there exists a $\gamma \in \Gamma$ such that

$$
f_{k}\left[(I-T) \sum_{\eta \in N \gamma} \lambda_{l, q}^{(\gamma)} y_{i(l), j(i(l), q)}\right]=0, \quad l, k=1,2, \ldots
$$

Now

$$
\sum_{l}\left(\sup _{q \in N \gamma}\left|\lambda_{l, q}^{(\gamma)}\right|\right)^{p}<\infty
$$

and given $\epsilon>0$, there exists an n such that

$$
\left(\sum_{l=n+1}^{\infty} \sup _{g \in N \gamma}\left|\lambda_{l, q}^{(\gamma)}\right|^{\mid}\right)^{1 / p}<\epsilon .
$$

Hence

$$
\begin{array}{r}
\left|f_{k}(I-T) x_{\gamma}\right|=\left|f_{k}(I-T)\left(x_{\gamma}-\sum_{l=1}^{n} \sum_{q \in N \gamma} \lambda_{l, q}^{(\gamma)} y_{i(l), j(i(l), q)}\right)\right| \\
=\left|f_{k}(I-T) \sum_{l=n+1}^{\infty} \sum_{q \in N \gamma} \lambda_{l, q}^{(\gamma)} y_{i(l), j(i(l), q)}\right| \\
\leqq\left\|f_{k}\right\| \cdot\|I-T\| \cdot\|T\| \cdot\left(\sum_{l=n+1}^{\infty}\left(\sup _{q \in N \gamma}\left|\lambda_{l, q}^{(\gamma)}\right|\right)^{p}\right)^{1 / j} \\
<\left\|f_{k}\right\| \cdot\|I-T\| \cdot\|T\| \cdot \epsilon .
\end{array}
$$

Thus $f_{k}(I-T) x_{\gamma}=0$ for all $k=1,2, \ldots$, which is a contradiction since $\left\{f_{k}\right\}$ is total and $x_{\gamma} \neq T x_{\gamma}$. Thus we have proved that $T Y$ contains a subspace
X_{γ} which is isomorphic to Y. Since $Y \sim Y \oplus Y$, to show that $T Y \sim Y$, it remains to observe that X_{γ} is complemented in Y. This follows immediately since the restriction of the natural projection P from Y to the subspace $E=$ $\left[e_{i(l), j(i(l), q)}\right]_{l, q \in N \gamma}$ is an isomorphism from X_{γ} onto E.

Corollary 24. The Banach spaces $\left(l_{\infty} \oplus l_{\infty} \oplus \ldots\right)_{l_{p}}, 1 \leqq p<\infty$ are primary.

References

1. D. Alspach and Y. Benyamini. On the primariness of spaces of continuous functions on ordinals, Notices Amer. Math. Soc. 23 (1976), 731-46-27.
2. D. Alspach, P. Enflo and E. Odell, On the structure of separable \mathscr{L}_{p} spaces $(1<p<\infty)$, to appear, Studia Math.
3. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
4. - A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165-174.
5. P. G. Casazza and B. L. Lin, Projections on Banach spaces with symmetric bases, Studia Math. 52 (1975), 189-193.
6. P. G. Casazza, C. A. Kottman and B. L. Lin, On primary Banach spaces, Bull. Amer. Math. Soc., 82 (1976), 71-73.
7. I. Edelstein and B. S. Mityagin, Homogopy type of linear groups of two classes of Banach spaces, Functional Analysis and its Appl. 4 (1970), 221-231.
8. J. Lindenstrauss, On complemented subspaces of m, Israel J. Math. 5 (1967), 153-156.
9. -Decompositions of Banach spaces, Indiana Univ. Math. J. 20 (1971), 917-919.
10. J. Lindenstrauss and A. Pelczynski, Contributions to the theory of the classical Banach spaces, J. Functional Analysis 8 (1971), 225-249.
11. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces II, Israel J. Math. 11 (1972), 355-379.
12. - Classical Banach spaces, Lecture Notes in Math. 338 (Springer-Verlag, 1973).
13. E. Odell, On complemented subspaces of $\left(\sum l_{2}\right)_{l_{p}}$, Israel J. Math. 23 (1976), 353-367.
14. A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
15. H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.
16. H. P. Rosenthal, A characterization of Banach spaces containing l^{1}, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
17. H. J. Ryser, Combinatorial mathematics, The Carus Mathematical Monographs (Math. Assoc. Amer., 1963).
18. G. Schechtman, Complemented subspaces of $\left(l_{1} \oplus l_{2} \oplus \ldots\right)_{p}(1<p<\infty)$ with an unconditional basis, Israel J. Math. 20 (1975), 351-358.
19. I. Singer, Bases in Banach spaces I (Springer-Verlag, 1970).
20. P. Billard, Sur la primarite des espaces $C([1, \alpha])$, C.R. Acad. Sci. Paris 281 (1975), 629-631.

The University of Alabama in Huntsville, Huntsville, Alabama;
Oregon State University, Corvallis, Oregon;
The University of Iowa, Iowa City, Iowa

[^0]: Received October 7, 1976. The results of this paper have been announced in Bull. Amer. Math.

