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ON SOME CLASSES OF PRIMARY BANACH SPACES 

P. G. CASAZZA, C. A. KOTTMAN, AND BOR-LUH LIN 

In t roduc t ion . A Banach space X is called primary (respectively, prime) 
if for every (bounded linear) projection P on X either PX or (I — P)X 
(respectively, PX with dim PX = oo ) is isomorphic to X. It is well-known 
that Co .and lp, 1 ^ p ^ oo [8; 14] are prime. However, it is unknown whether 
there are other prime Banach spaces. For a discussion on prime and primary 
Banach spaces, we refer the reader to [9]. 

If £ is a Banach sequence space and {Xn} is a sequence of Banach spaces, 
we shall let (Y,n Xn)E = (Xi © X2 © . . .)E be the Banach space of all se
quences {xn} such that xn G Xn, n = 1, 2, . . . and (||xi||, ||x2 | |, . . .) Ç E with 
the norm | | {x j | | = ||(| |xi| |, ||#2||, • • -)IU- It is known that C[0, 1] [10] and 
Lp[0, 1], 1 < p < oo [2] are primary. Other known classes of primary Banach 
spaces are the =êfp-spaces (Xp © Xp © . . .) h, (/2 © U © . . .) h and Bp, 1 < 
p < oo [2] and the spaces C[l, a] where a is a countable ordinal or the first 
uncountable ordinal [1; 20]. Let X be a Banach space with symmetric basis 
{xn\ and let Xn be the linear span of {xi, x2, . . . , xn}, n = 1, 2, . . . . In this 
paper, we show that the following Banach spaces are primary: 

(1) (X © X © . . .)E, E = lp, 1 < p < oo or Co where X is not isomorphic 
toh; 

(2) (Xt © X2 © . . ,)E, E = lp, 1 < p < oo or c0; 
(3) ( L © ^ © . . . ) i „ 1 ^P < ° ° . 
We shall follow the standard notation and terminology in the theory of 

Banach spaces [12]. In particular, for Banach spaces X and F we write X ^ Y 
if X is isomorphic to F a n d d ( X , Y) = inf {||r|| • | | r _ 1 | | : T is an isomorphism 
from X onto Y\. For a sequence of elements {xn) in a Banach space X, we 
write [xj or [xi, x2, . . .] to denote the closed linear subspace in X spanned by 
{xn}. For the notation on basis theory, we refer the reader to [19]. Through
out this paper, if X is a Banach space with symmetric basis, we shall assume 
that X is equipped with the associated symmetric norm (cf. [19]). 

1. In this section, we prove that if X is a Banach space with symmetric 
basis which is not isomorphic to l\ then the spaces (X © X © . . .) E, E = lp, 
1 < p < oo or Co are primary. 

PROPOSITION 1. Let X be a Banach space with symmetric basis {xn} and let Y 
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be any Banach space. If P is any projection on Y, then 

(Y® Y® . . . ) x (PY®PY® . . . ) x 
© ((I - P)Y® (/ P)Y® ...)x. 

Proof. For any element (yi, yi, . . .) in ( F © Y ® . . .)x, since ||y„|| ^ 
\Pyn\\ + \\(I - P)yn\\, n = 1, 2, . . . , we have 

E lb-1 E(II^II-IWI + | | / - P | | . | W | ) . 

< Ell i ' l l - l ly . i l*»! + D ||7-P||- | |y„||*, 

(| |P||+|| /-P||) E Ib.l xn 

This completes the proof of the proposition. 

LEMMA 2. Let \xn, xn*} be an unconditional basis of a Banach space X. Then no 
subsequence of {xn} spans a subspace isomorphic to h if and only if \\mn xk*(Txn) 
= 0, k = 1, 2, . . . y for any operator T on X. 

Proof. For the necessity, see the proof of the theorem in [5]. Conversely, 
if {xn} is the unit vector basis of h, then it is easy to construct an operator T 
on l\ such that lim^ x^iTx^) ^ 0 for some k = 1 , 2 , . . . . 

THEOREM 3. Let X be a Banach space with symmetric basis {xn} which is not 
isomorphic to h. Then the spaces Y = (X 0 X 0 . . .)#, E = c0 or lp, 1 < p < 
oo are primary. 

, let yitj = (0, 0, . . . , 0, xj} 0, 0, . . .) where Xj is Proof. For i, j = 1,2,. 
in the ith. coordinate. Let {yn\ be the usual Cantor ordering of 
it is easy to show that \yn) is an unconditional basis of Y. 

\yt. Then 

Let P be a projection on Y and let P(yn) = 2 ^ (n) Jjc = Hi,i aij{n)Ji, 
n = 1, 2, . . . . Now for any subsequence of {;yn}, there exists a subsequence, 
say {ynjc} such that either \ynk\ is isomorphic to lv (or CQ) or {ynk\ is equivalent 
to a subsequence of {xn} and so [ynk] is isomorphic to X. In either case, [ynk] is 
not isomorphic to h and thus no subsequence of {yn} spans a subspace iso
morphic to l\. By Lemma 2, we conclude that limw ak

{n) = 0 for all k = 1 , 2 , . . . . 
Now there exists e > 0 (for example, e = ^) such that for each i = 1 ,2 , . . . 

there exist infinitely many j with \aitj
{i"j)\ ^ e or (1 — aitj

{i,j)\ ^ e. Hence 
we may assume that there exist i\ < ii < . . . and ji < j 2 < . . . such that 

\ah'i. 
(ikJh)\ ^ e, fe, h = 1, 2, For each fe = 1, 2, since \xn\ is sym

metric, [y^jjh is isomorphic to X. We now follow the Cantor ordering and 
proceed as the proof of the theorem [5]; by taking subsequences of [ik] and 
[jh\ if necessary, we conclude that {Pyikjh}k,h is equivalent to {yikjh}k,h and 
the restriction of the natural projection from F onto [y^jjk.n is an isomorphism 
from [Pytkjj)k,h onto [y^jj*,». Thus [Pyik,jh]k,h is complemented in Y and is 
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isomorphic to Y. The proof that P Y is isomorphic to Y is completed by Propo
sition 1 and Pelczynski's decomposition method. 

Remark. For many projections P , there exists an e > 0 such that both 
kw(w)| ^ e and |1 — ajm)\ ^ e for infinitely many n, m. In this case, the proof 
of the theorem yields that both PY and (I — P)Y are isomorphic to Y. 

Remark. Let Zv = (l2 © h © . . •) ip, 1 < £ < °° • Schechtman [18] recently 
showed that every infinite dimensional complemented subspace X with un
conditional basis of Zp is isomorphic to either l2, lp, /?. © lp or Zp. The condition 
that X has unconditional basis was later removed by Odell [13]. Thus Zp is 
primary. See [2] for another proof that Zv is primary. 

2. In this section, we prove that if X is a Banach space with symmetric 
basis {xn} and Xn = [xi, . . . , xn], n = 1, 2, . . . then the spaces (Xi © X2 © 
. . .)E, E = lp, 1 < £ < oo or £ = ô are primary. We first prove a combina
torial lemma which is interesting in itself. We shall let N be the set of all 
natural numbers. 

LEMMA 4. If M = {m^ is a sequence of positive integers such that lim sup* 
mt = oo then there exist rearrangements of N and M into two sequences each, 
{ni , n2, . . . ; n / ' , n2

f/, . . .) and {ra/, m2 , . . . ; m/ ' , m2", . . .} swcft //&a£ 
n2i-\ -\- fi2i = m/ andni2i-i" + w 2 / ' = n/' for alii = 1, 2, . . . . 

Proof. We construct the rearrangements simultaneously and inductively. 
Let n / = 1 and w/ = min {̂  G N : n 9e ni and n / + w G M}. Let 71 = 

min {i G N : ni -\- n2 = ra^ G .M} and m / = m7 . Now, let 

ai = min {i G iV : Wj G M\{m/}j 

and 

iSi = min {i £ N : i j£ oLutHi £ M\{mi} and ra* + mai G iV\{w/, w2'}}. 

Define m / ' = mai, w2
/r = ra^, and w/' = w / ' + ra2". 

Assume that ni , n2 , . . . , w2A/; n\\ n2", . . . , w/' and w / , m/ , . . . , m / ; 
w / ' , m2', . . . , ^ 2 / ' are chosen such that n2i-\ + w2/ = m( and m2i-i" + 
w 2 / ' = w/', i = 1,2, . . . , k. Let 

nn+i = min {n ^ N : n 9e n/, i = 1, 2, . . . , 2& and w ^ w/', 

i = 1,2, . . . ,k} 
and 

W2A;+2' = min {n £ N : n ^ n/, i — 1, 2, . . . , 2k + 1, w ^ w/', 

i = 1,2, . . . , feandw2*+i' + w G M\{mi ,. . . , m / ; m / ' , m2", . . . , m2A/'}}. 

Since lim sup7 w^ = 00, n2k+2 is well-defined. Now let 

7fc+i = min {j G iV : w j = n2fc+i/ + n2;t+2', w j 5̂  w / , i = 1, 2, . . . , fe 

and mj 9^ m/;,i = 1,2,. . . , 2&}. 
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Define m2k+]
f = myk+1- Finally, let 

ak+1 = min {i 6 N : mt 6 M\{ra/, . . . , mk+i ; mi", m/ ' , . . . , mk")) 

and 

frt+i = min {i £ iV : i j* ak+u mt Ç M\{mi v. . . , w^+i' ; m/ ' , . . . , mk") 

and Wj + mak+i 6 iV\{n/, . . . , w2*+2'; wi", . . . , w*"}}. 

Define m 2 H i " = wŒfc+1, w 2 H 2 " = m^+i and %+i" = W2*+i" + ni2k+2
f. By in

duction, the proof of Lemma 4 is complete . 

PROPOSITION 5. Let \Bn) be a sequence of finite dimensional Banach spaces and 
let X be a Banach space with symmetric basis. If {ni , n2 , ; tz/', n2", . . .} 
is a rearrangement of N then (B\ © B2 © . . -)x is isomorphic to (Bni> © B„2> 
© ...)x® ( 5 n i - 6 5 , ^ © . . . ) x . 

We omit the simple proof of the proposition. 

THEOREM 6. If \Bn) is a sequence of finite dimensional Banach spaces such 
that supWiW d(Bn © Brn, Bn+m) < 00 and if X is a Banach space with symmetric 
basis then (B\ © B2 © . . .)x is isomorphic to (Bmi © Bm<2 © . . .)x for any se
quence {mi} in N such that lim sup t m t = 00 . 

Proof. By Lemma 4, there exist rearrangements of TV and {mt} into two 
sequences each, {ni , n2 , . . . ; wi", n2", . . .} and {m/, m/ , . . . ; m/ ' , m/ ' , . . .} 
such that W2Î-/ + n 2 / = m( and m2i-i" + w 2 / ' = w/', i = 1, 2, . . . . Since 
X is a Banach space with symmetric basis, by Proposition 5 and the fact that 
supn,m d(Bn © Bm, Bn+m) < 00, it follows that 

( i J ~ (E iw) © (E s.,-) 
\ « / x \ i Ix \ i Ix 

~ ( Z £»2<'-H-*2i') © ( Z C ^ - i " © 4 n " ) 
\ t / x \ i ix 

~ ( E Bmi) ® ( £ 3m.„) ~ ( £ s j 
\ i I X \ i IX \ t IX 

COROLLARY 7. Let [Bn] be a sequence of finite dimensional Banach spaces such 
that supn>w d(Bn © Bmj Bn+m) < 00 and let X be a Banach space with symmetric 
basis. Let Y = ( 2 „ Bn)x. Then 

(i) the Banach spaces F, F © F and ( F © F © . . .)x are isomorphic, and 
(ii) /or any projection P on F, F is isomorphic to Y © P ( F) . 

Proof, (i) Obvious. 
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(ii) We use the same a rgument as the proof of Corollary 5 [5]. 

Y~ (Y ® Y ® ...)x 

~ (P(Y) ® P(Y) ® ...)x® ((I-P)Y® (I-P)Y® ...)x 

~P(Y) ® ( P ( F ) ® P(Y) ® ...)x 

® ((I - P)Y ® (I - P)Y ® . . .)x 

~P(Y) © ( 7 0 Y @\..)X~P(Y) ® Y. 

Remarks. (1) If Bn = [e1} e2f . . . , en], n = 1, 2, . . . , where {en} is a sym
metric basis, then it is clear t ha t supw,m d(Bn ® Bm, Bn+m) < oo. However, 
the converse is not true. For example, let {en} be the uni t vector basis of the 
James ' quasi-reflexive Banach space / . 

(2) When X = lp, 1 < £ < oo, a similar result was s ta ted in [7, Lemma 5]. 

The following lemma is a consequence of Ramsey ' s combinatorial lemma; 
for a proof see [17, p . 45]. 

LEMMA 8. Let m be an arbitrary positive integer. Then every (0, I)-matrix A 
of a sufficiently large order n contains a principal submatrix of order m of one of 
the following four types: 

* 0 

0 *_ J 

* 0 

1 *_ 

* 1 

_o *_ 1 

* 1 

1 *_ 

The asterisks on the main diagonal denote O's and l ' s , bu t the entries above 
the main diagonal and the entries below the main diagonal are all O's or all l ' s 
as illustrated in (!). 

COROLLARY 9. Let k and m be arbitrary positive integers. Then there exists an 
integer N(k, m) such that for every n ^ N and for every (0, I)-matrix A = (atj) 
of order n with ait = I, i = 1, 2, . . . , n and Y^=i aa è m, j = 1, 2, . . . , n, 
there is a principal submatrix (apipj) or order k such that avivj — &tj for all 
i,j=l,2,...,k where btj is the Kronecker delta. 

T H E O R E M 10. Let {xn} be a symmetric basis of a Banach space X and let Bnj 

n = 1, 2, . . . be the linear span of xi, X2, . . . , xn in X. Then the spaces Y — 
Œn BU)E, E = Co or lp, 1 < p < oo are primary. 

Proof. Let y? = (0, . . . , 0, xu 0, . . . ) , i = 1, 2, . . . , n; n = 1, 2, . . . where 
Xi is in the nth coordinate of y If. I t is easy to see t ha t {y/1} i=i f2 , . . . ,n ;n=i,2,.. . 

https://doi.org/10.4153/CJM-1977-088-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-088-7


BANACH SPACES 861 

is an unconditional basis of Y. Let P be a projection on Y and let 

P(yt
n) = Ê ( Z « A » . * V ) - » = 1, 2, . . . , »; n = 1, 2, 

Fix ft. Let | =• e > 0 and let 

(1) 0 < e, < e/k22\ ft = 1, 2, . . . 

be such that for any scalars Xi, X2, . . . , X*, 

(2) ekk Z |X,| = i ]C X*X 

Case I. X is not isomorphic to h. 
Let K = max {|'|P||, | | I — ^llî- Since X is not isomorphic to lu there exists 

an integer mk such that 

(3) 2-J Xi < mkek 

K 

Let N(k, mk) be an integer determined by Corollary 9 and fix n ^ 2N(k, mk). 
For each i = 1, 2, . . . , n, either [afin, i)\ = \ or |1 — afin, i)\ = ^. Since 
{xn} is symmetric, by taking a subsequence and considering I — P \i necessary, 
we may assume that \at

n(n, i)\ = è for t = 1, 2, . . . , n/2 (or (n — l ) / 2 if 
n is odd). 

Define 

1 if \at
n(n,i)\ = e* 

0 if \a?(n,i)\ < ek 
, iSi,jSn/2. 

We claim that (0^) is an (0, 1)-matrix of order n/2 such that J^i^i $u < w* 
for all j = 1 , 2 , . . . , n/2. Suppose for some j , X^L2i ptj = wfc. Hence / 3 ^ = 1 
for some / = 1, 2, . . . , mk. Let e< = sgn a pin, ij)> / = 1, 2, . . . , m*. Then 

Hence 

E n 
7 1 *• 

S X l 

ll^ll* E ««/GO > Z c.of/^ij) = w^c*. 

Z ««,*<, = Z € i ^ i t | = TlP|| = if 

which contradicts (3). 
By Corollary 9, there is a k X k submatrix (fivivj) = (5fi) of (/3^). Thus 

(4) I V ( w , £«)l < «*, 1 g » ̂  j ^ k and 
k«"(n,p«)l ^ i , t = 1,2, . . . , * . 
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For any scalars Xi, X2, . . . , XA, 

IP I I -

> 

> 

/ J XpcJI — IIP 
= 1 

A; k 

Z Z ^iOLVj
n{n,pi)xi 

3=1 i = i 

A; 

Z ^japjn(n,pj)xPj 

Z *iyPin > 
k 

I 
t'=l 

Z x*P(y,,") 

i = l 

A; 

k j k 

Z ( Z ^iap^in^i) )xp 
j=l \ i=l 

£ * 

> I 

_ I 

Z x, jXfl 
i = l 

Z ^iOipj (n,pi) 
i = l 

Z M 
i = l 

A; 

"" ek Z Z IM 
=1 i = l 

7 J A i% i 

k 

- kek Z |Xi| > 
i = i 

A; 

I 
*=1 

/ > X^x^ Z ^iX 

Hence we have proved that for every k there exists an integer N(k) such that 
for all n ^ N(k), there are 1 ^ pi <C pi <C . . . <C ̂ & ^ # so that 

(5) \ / J A ^X i Z x^y,,") ^ IIP! / v X̂ x̂  

for any scalars Xi, X2, . . . , X*. Notice that the norm of this isomorphism is 
independent of k. 

Now, since p ^ 1, no subsequence of {yl1} spans a subspace isomorphic to h, 
by Lemma 2, for all 7 = 1, 2, . . . , / ; / = 1, 2, . . . , 

(6) lim a/in, i) = 0. 
W->0O 

By (5), (6), and the standard ''gliding hump" process, given e > 0, we can 
construct inductively a sequence 

Qk I 

(7) zvr = Z Z «A»*, /»*)y/, « = 1, 2 *;* = 1,2,... 

where g / < Wi < q\ < q2' < n2 < q2 < • • • < q„' < nk < qk < • • • such 
that 

(i) for each k = 1, 2, . . . , {P(y,.-"*)}i-i.« * satisfies (5); 
(ii) \\ZV^ - P(y„.»*)|| g e/£22*, * = 1, 2, . . . , * ; * = 1, 2 

(Hence £ * £ * = 1 HZ,.."* - P(y„.»*)|| < e and so {Z^Mf-i.».....*,*-!,».... is 
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equivalent to {P{yvi
nk)\ 1=1,2 *;*=i,2,... for sufficiently small e) 

K V llv \ »*» «IIV" (when 

CIS*" H i K* (iii) Z ^ APi ' ZPi 
k z= l I 

Jfc . II i= 
k 

E \ nk n 

£ < 00) 

(when E = c0) 

for any scalars \pi
nk. 

By (5), for each k = 1, 2, . . . , {P(yPt-
Wfc)} <=i,2,... is uniformly equivalent to 

{xi,. . . ,xk}. Therefore, by (ii) and (iii), we conclude that {zPi
nh} i==if2 ^^-1,2,... 

spans a subspace isomorphic to F. 

Case I / . X is isomorphic to /1. Then X is not isomorphic to c0 and so there 
exists an integer m such that 

(8) X ) *<: > 
e* 

We now proceed as in Case I. Construct the (0, 1)-matrix (pij) of order n/2 and 
using (8) instead of (3) to prove that YTi=i Pa < w for all i = 1 , 2 , . . . , n/2 
(instead of X^li ptj < m, j = 1, 2, . . . , n/2). The rest of the proof is like 
Case I. Thus in both cases, we obtain a sequence {zpi

nk} <=i,2 ^=1,2,... satis
fying conditions (i), (ii), and (iii). 

By Pelczynski's decomposition method and by Corollary 7, it remains to 
show that, by taking a suitable subsequence if necessary, [zpi

nk) =̂1,2 fc;*=»i,2,... 
spans a complemented subspace in F 

For i = 1, 2, . . . , k; k = 1, 2, . . . , define 

qk I nk 

(Q) v»r = E E «A»*.*>«)y/+ E 
ijénk :^-v\. • • • .Pt - 1 -Pi'+i - • • • .Pfc 

Then 

"FintoPihr. 

Knk-wvr\ Y, acinic, pt)y J1 

3 = 1 
mi 

< (k - l)e* < ^ * . 
*2* 

Hence 

Z Z lk> 
and so by choosing e sufficiently small, {zPi

nk} is equivalent to {wPi
nfc}» and 

[zPi
nk] is complemented if and only if [wpi

nk] is complemented in F. Define 
Ç : F -> [wpi

nk] by 

E E 0«V) = E E - T ^ -P«) w« 
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Since \aPi
nfc(nk, pt)\ ^ ^ for all i = 1, 2, . . . , k; k = 1, 2, . . . {yt

n} is an un
conditional basis and by the construction \wVl

nk) œ {zpi
nk\ tt {yPi

nk}, it is easy 
to show that Q is a bounded projection from Y onto [wvi

nk\. This completes 
the proof of the theorem. 

By combining Theorems 3 and 10, we obtain 

COROLLARY 11. Let \xn) be a symmetric basis of a Banach space X and for 
each n = 1, 2, . . . , let Bn = X or the linear span of xi, %2, . . . , xn in X. Then 
the Banach spaces (X Bn)E, E = c0 or lp, 1 < p < oo , are primary. 

Remarks. (1) Since {y?} is an unconditional basis of Y, letting P 0 be the 
natural projection from Y onto [ypi

nk]i=i,2,...,k;k=i,2,..., it can be proved that 
the restriction of P0 is an isomorphism from [zpi

nk] onto [yVi
nk~\. Hence [zpi

nk] is 
complemented in Y. 

(2) We don't know whether the theorem is true when p = 1 or 00 . The first 
half of the proof includes the cases p = 1 or 00 . Namely, if T is an operator on 
Y = (X Bn) h, 1 ^ p ^ co , then for every k, there exists an integer N(k) such 
that for any n ^ N, there are 1 ^ pi < p2 < • * * < pk = ^ such that 
{ r(^p-w)} i=i>2 * spans a subspace isomorphic to i^ . 

3. In this section, we show that if X is a Banach space with symmetric 
basis which is isomorphic to a complemented subspace of a Banach space E, 
then for any operator T on E, either TE or (I — T)E contains a complemented 
subspace which is isomorphic to X. The technique is similar to the one used by 
Bessaga and Pelczynski [4] in generalizing some results of R. C. James. This 
technique also enables us to generalize some of the results in Sections 1 and 2. 
We first prove a stronger result when X is c0 or lp, 1 ^ p < 00 . 

THEOREM 12. Let Ebe a Banach space which contains a subspace X isomorphic 
to Co or lp,l ^ p < 00 . Then for any operator T : E —>• E, either TE or (I — T)E 
contains a subspace isomorphic to c0 or lp, 1 ^ p < co . 

Proof. If X is isomorphic to h, then the theorem follows immediately from 
the beautiful result of Rosenthal [16] that a Banach space contains a subspace 
isomorphic to h if and only if it contains a bounded sequence with no weak 
Cauchy subsequence. 

Now, suppose that X is not isomorphic to h. Let [xn] be a symmetric basis 
of X. 

Case I. There is a subsequence {xni) of \xn) such that limz- ||jT#wi|| = 0 or 
lim, ||(7 - T)xni\\ = 0. 

If lim* ||!Txwi|| = 0, by choosing a subsequence if necessary, we have 
E i Ml-I I*» , - - (J- T)xni\\ = E < M I - | | ï * B f . | | < 1 where {x,*} is the 
coefficient functionals of \xi). Hence {(I — T)xni) is equivalent to {xni}. That 
is, (/ — T)E contains a subspace isomorphic to X. 
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Similarly, if lim* || ( I — T)xni\\ = 0 then TE contains a subspace isomorphic 
t o X . 

Case II. Both infn | | r # w | | > 0 and inf \\(I — T)xn\\ > 0. Since X is not 
isomorphic to h, hence {xn} is weakly convergent to Oand so is \Txn}. In this 
case, we have assumed tha t inf ||2"^w|| > 0, hence there exists a basic subse
quence {Txni} of {Txn}. Since {xni} dominates {Txni} and every basic sequence 
dominates the unit vector basis of Co, we conclude tha t [Txni] is isomorphic to 
c0 when X is isomorphic to CQ. 

Suppose 1 < p < oo and no subsequence of \Txn) is equivalent to {xn}. 
Then there exists a sequence {at} such tha t X)* &iTxni converges and ]T* \at\

v = 
oo. Choose pi < p2 < • • • such tha t 

Pn+l 

i è £ i«,r ̂  2 
and let 

Pn+l 

Jn = 23 a**»,-, « = 1 , 2 , . . . . 

Then since X atLxni converges, we conclude tha t limw | | ^ n | | = 0. Fur ther
more, \yn) is a bounded block basic sequence of {xni\, hence is equivalent to 
{xn}. By Case I, we obtain tha t ( / — T)E contains a subspace isomorphic to lv. 

COROLLARY 13. Let E be a Banach space with unconditional basis which is not 
weakly complete. Then for any operator T : E —» E either TE or {I — T)E is 
not weakly complete. 

Proof. This follows immediately from the theorem and a result of Bessaga 
and Pelczynski [3] tha t if X is a subspace of a Banach space with unconditional 
basis then X is weakly complete if and only if Y contains no subspace which 
is isomorphic to c0. 

We don ' t know whether Theorem 12 is true or not when X is an arbi t rary 
Banach space with symmetric basis. However, we have the following: 

T H E O R E M 14. Let {xn} be a symmetric basic sequence in a Banach space E. 
If {%n} spans a complemented subspace X in E, then for any operator T : E —* E 
either TE or (J — T)E contains a subspace F which is complemented in E and 
is isomorphic to X. 

Proof. Let P : E -> X be a projection. Then PT\X :X-+X. By [5] when X 
is not isomorphic to h and Rosenthal 's result [16] when X is isomorphic to /i, 
we may assume tha t there exists a subsequence {xni} of {xn} such tha t {PT(xni)} 
is equivalent to jx*}. Since {xf} > {xni} > \Txni] > {PTxni} tt {xt}, we con
clude tha t {Txni\ is equivalent to [xi] and P maps [Txni] isomorphically onto 
[PTxni]. Since [PTxni] is complemented in X and X is complemented in E, 
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hence [PTxni] is complemented in E and thus [Txni] is complemented in E and 

is isomorphic to X. 

Remark. I t is known tha t if £ is a Banach space with unconditional basis and 
F is a subspace of E which is isomorphic to h then there exists a subspace F 
in Y which is isomorphic to h and is complemented in E. However, c0 is not 
complemented in lœ and there exist reflexive Orlicz sequence spaces which 
contain subspaces isomorphic to lp, 1 < p < oo bu t no complemented sub-
spaces which are isomorphic to lp, 1 < p < oo [11]. 

Using the same technique and the results in Sections 1 and 2, we have: 

T H E O R E M 15. Let Y = (X © X © • • • )co or (X 0 X 0 • • • ) h , 1 < p < oo 

(respectively (J2 Bn) lp, 1 < P < °° or (]T Bn)co) where X is a Banach 
space with symmetric basis which is not isomorphic to l\ {respectively, 
Bn = [xi, . . . , xn], n = 1, 2, . . . and {xn} is a symmetric basis of a Banach space). 
If E is a Banach space which contains a complemented subspace isomorphic to Y 
then for every operator I\- E —» E, either TE or (I — T)E contains a comple
mented subspace isomorphic to Y. 

4. In this section, we show tha t the spaces (lœ 0 lœ © . . .)h, 1 < p < oo are 
pr imary. The proof is similar to the one used by Lindenstrauss [8] in proving 
t ha t lœ is prime. Throughout this section, we shall let Y = (lœ © lœ © • • • ) lp, 
1 < p < oo. 

L E M M A 16. Let yn — (xin, x2
n, . . . , Xin, • • • ), n = 1, 2, . . . , be elements in Y 

where x/1 = (xz-n(l), x/*(2), . . . , xt
n(k), . . .). If supn | |X^=i e/y;-|| < oo for all 

\ej\ = 1, j = 1, 2, . . . , then for any e > 0, //^r<? a w / ^ aw integer I such that 

OO 

£ !*,"(*) I ^ 
n = l 

for alii = I and every k = 1 , 2 , . . . . 

Proof. Suppose there exist e0 > 0, i\ < i2 < • • • and &y, j = 1 , 2 , . . . such 
t h a t 

E \xij
n(kj)\>eo, J = 1 , 2 , . . . . 

n = l 

Choose mi such t h a t ^ i i |*<in(fti)| > e0/2 and Y*=*m+i knw(&i) | < e0 /8. 
Th i s can be done since for some {en} with \en\ = 1, 

X !*<*(*) I = L ^r(fe) ^ s u P Z ^ < OO . 

Note t ha t for each n = 1 , 2 , . . . , lim^ \\xin\\ = 0. Hence for sufficiently large i, 
we have 

OTl 

€ 0 E l**(*)l = E Ik"II < 
TO=1 7 1 = 1 
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for all k = 1, 2, . . . . Thus by taking a subsequence of }i;};=i,2,... if necessary, 
we may assume that 

mi 

Z \^i2n(k2)\ < f . 
7 7 = 1 O 

Now, choose W2 > mi such that 

mi œ 

Z l*ft"0M>? and E !x42"(£2)| <f . 
n=l ^ n=m?+l O 

By induction and by choosing a subsequence of {ij} j=it2,... if necessary, there 
exist 0 = Wo < Wi < w2 < . . . such that for all j = 1, 2, . . . , 

mj 

E 
n=l 

(0 E KB(^)I> eo 

(ii) X) \xt?(kj)\ < f"» 

(in) 2 |**;+iW(^+i)l < Q2-
71=1 O 

Choose |ej = 1 such that enXiP{kj) = |x fy
w(^)|, ra^-i <n ^ m^j = 1,2,. 

Then for every j = 1, 2, . . . , 

7 1 = 1 
Z e^7l 

^ E 
- > 

hA 

E 
2=1 

mj 
enxih 

mj 
€nX i 

èZ 
; r I mh 

= Z Z CnXih
n(kh 

h=l L I 77=m/i-i+l 

71=1 

mh-i 

= 1 

lh-1 

2^t €nxih \kh) 2-J
 en% ih \fch) 

I 7i=m/i+l 

> E E 
h=l L n=l 

* " ( É * ) | - Z \Xih
H(kh) 

_ fo _ eo 

"8 ~8J 

x. \ ^ ( £0 _ ^0 _ ^2 

fcl \ 2 8 4 ) ' • ( ? ) * 
which is a contradiction to the hypothesis that supw ||]Cw=i tnJnW < °° for all 
k l = 1, n = 1,2, . . . . 

LEMMA 17. Le/ xn = (xn(l), . . . , xn(k), . . .), n = 1, 2, . . . be elements in lœ. 
If sup | |X^=i e3xj\\ < °° for att \€t\ — 1» ^ = 1 ) 2 , . . . , then for any e > 0 anJ 
{fe<} JÂere exis/ aw integer n and a subsequence {kfj} of {kt) such that \xn{ktj)\ < e 
for all j = 1 , 2 , . . . . 

Proof. Suppose there exists e0 > 0 such that for each n = 1, 2, . . . , |#n(£*)l 
^ co, for all except finitely many i. Let n be an integer such that neo > supn 

||X^=i e3xj\\' Then for eachj = 1, 2, . . . , n, since ta(fe*)| < €o for only finitely 
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many i, hence there exists iQ such tha t \xj(ki0)\ ^ e0 for all j = 1, 2, . . . , n. 
Let ej = sgn Xj(ki0), j = 1, 2, . . . , n. Then 

3=1 
> 

n n n 1 

3=1 

= ]T Ixjik^l ^ ne0 > sup 
j = l n 

2-J eJX3\ 
3=1 1 

which is a contradiction. 

The following lemma is proved by Lindenstrauss (see the proof of 8, Lemma 
5) . 

LEMMA 18. Let {xn = (xn(l), . . . , xn(k), . . .)} be a sequence of elements in lœ 

such that for some constant k > 0, ||2^f=i ^ixi\\ = K sup |\*| for all \ t £ R, 

i = 1, 2, . . . , n. If \\xn\\ > 2 for all n = 1, 2, . . . , then for any 1/3 > c > 0 
/Aere existe subsequences {nk} and {ik} of N such that for all k = 1, 2, . . . , 
k & ( 4 ) | è 5/3 awd Y.3*k \xn.(ik)\ < e. 

LEMMA 19. Let {yitj = {xitj
l, . . . , x{J, . . . )}* , ; ^ elements in Y for which 

there is a constant K > 0 szicA that for each i = 1, 2, . . . , 

Z X^M 
J = I 

^ i ^ s u p |X;-

/o r a// X,- 6 R,j = 1, 2, . . . , w. 7/ | k - , / | | > 2 for all i, j = 1, 2, . . . , /fcew/or 
a?ry 1/3 > e > 0 r/^re exists a subsequence [i(I)} 2=i,2,... 0/ V̂" awd double se
quences of integers {j(i(l), q)} i,Q=i,2,... and {k(i(l), q)} i,g=i,2,... such that for all 
l, ç = l , 2 , . . . , 

(0 |*î(0,.K*(«,ff)(*(*(0>âr))| ^ 

(ii) Z ) \xm,3(m,s)(k(i(h), q))\ ^ ^T . 

Proof. Given 1/3 > e > 0, applying Lemma 18 to {#i , /} 3=1,2,... for each 
fixed i — 1 , 2 , . . . , there exist subsequences {j(^ g)} ff=i,2 and {&(i, #)} 0=1,2,... 
such tha t 

5 
(1) \x\,3tua){k(i,q))\ è g for all g 
and 

(2) X l*î,./«,s)(*(*", ff)) I ^ ^ ? -

Notice t ha t (1) implies (i) for all /, q = 1 , 2 , . . . . We shall choose a subse
quence {i(l)\ of {i)i=it2,... which satisfies (ii). 

L e t i ( l ) = 1 and apply Lemma 16 to {yuuj} 3=1,2.... there exists i (2) > i(l) 
such tha t 

(3) Z |*i((î).,(*)l = S ^ , * = 1 , 2 , . . . . 
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Now, 

Z l*$U*(i,D)l = 
I j 

SK 

for suitable |e ; | = 1. Hence there exists n such that for all j ^ n 

(4) \x\\l)AHh 1))| â «/24. 

Applying Lemma 17 to { X ^ M } ^ » there is an integer, denoted by j(i(2), 1) 
again, such that for some subsequence of {k(i(l), q)}q>i (which we will denote 
again by \k(i(l), q)}Q>i), we have 

(5) Ixfâjitwimi), q))\ Û e/24, q = 2, 3, . . . . 

We continue our induction along the usual Cantor's ordering of {i,j} 1,̂ =1,2,.... 
For / = 1, q = 2, 3, let j(i(l), q) = j ( i ( l ) , 2) and j ( i ( l ) , 3), respectively. We 
choose j(i(2), 2) as follows. By hypothesis, 

£ |*$M(*(*'(1),<Z))I = X ) ^ ( 2 ) , ; < x , g = 1,2,3. 

Hence there exists n such that for all j _• n, 

(6) |^[iL(fe(i(l),g))l ^ ^/25, q = 1,2,3. 

Now, applying Lemma 19 to {x]{\]j} j ^ n , there exists an integer, denoted 
by j(i(2), 2) again, such that for some subsequence of {k(i(l), q)}Q>z, denoted 
by {k(i(l), g)}(7>3 again, we have 

(7) |*&U<(2),2)(*(i(l), q))\ S e/2\ q = 4, 5, . . . . 

By (6) and (7), we conclude 

(8) |^î((i^(«2).2)(fe(i(l), <z))| ^ e/2«, g = 1, 2, . . . . 

To find the next term, by applying Lemma 16 to both {yi{i),j}j and {yi(2)j}j, 
there exists i(3) > i{2) such that 

(9) ZJ \x1$Ak)\ g e/24n / = 1, 2; k = 1, 2, . . . . 

By hypothesis, 

E \x\$AKi(!),<i))\ £ E €^z(3),j < K 

for / = l , g = 1, 2, 3 and / = 2, g = 1, 2, respectively. Hence there exists n 
such that for all j ^ n 

/in\ 1 «0 /L/V7\ wi «r e / = 1, g = 1, 2, 3 and 
(10) !*«,,.,(*(*(/), ff))|SS g***, / = 2, g = 1 , 2 , respectively 

Applying Lemma 17 to {x\{vtj} ^n and j x ^ ^ } ^ simultaneously, there 
is an integer, denoted by j(i(S), 1) again such that for some subsequences of 
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&(i(l), q)} Q^4 and {k(i(2)1 q}Q^s which we again denote the same way, we have 

I = 1, q ^ 4 and 
24+t ' ! = 2 , ^ 3 , respectively (ID \xl\lJ{tWMHm9q)\ * ^ 7 , U 1 » J - 4 a n d 

By (10) and (11), we conclude 

(12) |^{yL(,(3),i)(fe(i(3)f(z))| ^ e/24+\ / = l f 2 ; g = 1,2 

Continuing by induction, we get {i(/)} i=if2 , {j(i(l), q)) 1,0=1,2,..., and 
{k(i(l), q)} ï.^i.2,... such that 

(13) |*fr8,,(1(»,,)(*(i(/), q))\ g e/2'+*+', /, A, 5, g = 1, 2, . . . and Z 5* A. 

(Equation (9) yields the case h > I and (12) yields the case h < I.) Now, for 
all / , q = 1, 2, . . . , 

<(0 
X) Nîw,i(i(»),*)(*(i(A)i3))l 

(h,s)^(l,q) 

(k(i(l),q))\ 

e . e 

= E E oz+A+5 ~̂~ o2^z) ^ E o ^ "^ o2Z ~ ol ' 
h^l s z z h^l L z ^ 

This shows t ha t (ii) is satisfied and the proof is completed. 

COROLLARY 20. Let {ytjjij be elements in Y which satisfy the condition in 
Lemma 19. Then there exist sequences of integers {i(l)\ i and \j(i{l), q) i,q such 
that for all sequences {\ij} ij with YLi S U P ; l^w\j/|)p < co }it is true that 

{ £ (suplx,.!)*}1"^ E E ^hqyi(l),j(i(l),Q) 
I Q 

Proof. Choose sequences of integers {i(l)} h \j(i{l), q\ i,q, and \k(i(l), q)} itQ 

satisfying Lemma 19 with e > 0 and e{£?=i (l/2l)p}1/p < 1/3. 

Let [\ifj} be any sequence such tha t \\J2I,Q ^i,qyiU)j(tii).q)\\ = 1- F o r e a c n 

/ = 1 , 2 , . . . , choose qx such t ha t \\i Ql\ ^ (4/5) sup^ \\t q\. Then 

H E - ' "" 1 = E ^h,syi(h)j (i(h),s) Kh,sxi(h),j(i U),s) 

AI/P 

= I E E ^h,sXm,j(i(h),s)(k(i(h),qi))\ ( 
\ l I h,s I / 

*{? 

E ^,^îS),y(*(»),*)(*(i(0f ?*)) 
U,s)^(Z,<7j) 

| P ) i/p C / ^ \p} l/p 

P | l / P 

r 
ç (?)T 
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Hence 

l £ ^i,Qyi(i),jd(i),Q)\\ = { S (̂ sup |xz><?|j | . 

PROPOSITION 21. Lg/ {y<fy} i,j=i,2,... fr<? « sequence of elements in Y suck that 
for all \itjinRj 

22 ^<.^i,i g x ( e («up IX,,,I)T" 

for some constant K and for all n. Then for all {X M } M Ç F, Xli,; ^tjyij con
verges in the w*-topology of Y to some element in Y with norm less than or equal 

toK(Zi(s*pAKi\)v)1/p' 

Proof. Suppose for some / £ X = (J^/ i )^ E = c0 or lq, (1/p + \/q = 1) 
such that {f(TJij=i ^ijytj)}n diverges. Then T,Tj=i \^i,jf(ytj)\ = °° • Let 
6ij = 1 such that eitj\itjf(yitj) = \^tjf(yij)l hj = 1, 2, . . . . Then 

^ ei,j^i,jyi,j 
i,3=l 

g i c ( g (suplX^l)')1'' < oo. 

But Hmn/(X^,y=i tijXijyij) = oo, which is impossible. 
Let {fij}j be the natural basis of h which is in the it\\ coordinate of X. 

Then { fitj} itj with the usual Cantor ordering, is an unconditional basis for X. 
Let ak,i = Vmnfk,i(lLni,i=i ^ijyij), k, I = 1, 2, . . . and let y = (xi, x2, . . .) 
where xt = (a*ti, 0 ,̂2, . . . , ai>jf . . .), i = 1 , 2 , . . . . Since {fij} is a basis of X, 
hence the bounded sequence {J^ij=i ^ijyij}n converges in the w*-topology 
to y. It is well-known (cf. Banach, p. 123) that 

1\y\ | S lim sup < K{ E (sup ix(.,i)y
lp. 

Remark. The proof of the proposition yields that if {xn, fn\ is an uncondi
tional basis of a Banach space X, then for any sequence {yn\ in [/n] such that 
for some constant k > 0, ||X^=i Kyn\\ ^ ^IIZ^=i ^ifM for all scalars {A*}, 
then for any £ n Xn/„ G [/n], Z?=i X<3N converges in the w*-topology to some 
element in X* with norm less than or equal to i£||]TS=i Xra/n||. 

THEOREM 22. For any operator T on Y either TY or (I — T)Y contains a 
subspace isomorphic to Y which is complemented in Y. 

Proof. Let {eitj}j be the natural basis of c0 in its n natural embedding of the 
ith coordinate of Y. L e t y ^ = Teitj = (xitj

{l),. . . ,x i ( /
w ) , . . .),i,j = 1, 2 , . . . . 

By Theorem 12, and by taking a subsequence if necessary, we may assume that 
II**,/0!! ^ i, i,j = 1, 2, . . . . Since 

\\T\\ (t (sup \\itt\)')
U 
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for all Xij in R, let K = 4 | | r | | and apply Corollary 20 to {4/y^}*^. We obtain 
sequences {i(l)} i and {j(i(l)} q)} i,Q such that 

Z Z *u:y<(o»j(<(i>,J ^ \ Z (sup |xIlfl|) ) 

for all {\i,Q} such that X)z,<2 ^i,qei,q £ ^- Hence, by Proposition 21, the sub-
space of F which consists of all w*-limits of J2i,q ^i,qyi(D,j(i(D,q) where X) ^i,qei,q 
6 F is isomorphic to F. We now mimic the proof of the theorem in [8] to 
obtain a subspace in T F which is isomorphic to F. Let {Ny}yer be an un
countable collection of infinite subsets of N such that Na A Np is finite for all 
a 9e j3. For each 7 G I\ let X7 be all w*-limits of J^i Z<z€tf7 ^i,qym) juu).q) 
where X) ^i,qei,q ê F. Then Xy is isomorphic to F for all 7 £ I\ Suppose for 
each 7 Ç T there exists ||x7 | | = 1 in Xy\TY. Let x7 = ^ z ^q^Ny ^i,q 
yi(i)jau),q)' By the same reasoning as in [8], we conclude that for each / = 
1,2, ' . . . , ' 

Z **V-T) Z A ft 
k=l q£Nyk 

è \\I-T\\ 

for all 16̂ | = 1 and all finite 71, . . . , yn. Since F has a countable total subset 
{fk} in F*, 11/̂ 1 J = 1, k = 1 , 2 , . . . , hence there exists a 7 G T such that 

/» ( i - n E x^y«i),i(«i>,4) 1 = 0, /, £ = 1,2, 

Now 

Z (sup |X(^|) < o o , 
Z \ q£Ny I 

and given e > 0, there exists an n such that 

/ 00 \ l / p 

z sup ixftr < e. 
\ Z=w+1 çÇ7V7 / Hence 

| /*( j- 2X1 = \Mi-T)\ 

HA 

Z Z ^hqyi(i),Ki(i),q)f 

fk(I — T) 22 Z ^hqyi(l),j(i{l),q) 
l=n+l q£Ny 

3 / \ p \ l / 7 > 

: supix^i 

<| | / t | | - | | / - r | | . | | r | | . e . 
Thus fk(I — T)xy = 0 for all k = 1, 2, . . . , which is a contradiction since 
{fjc} is total and xy ^ Txy. Thus we have proved that T Y contains a subspace 
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Xy which is isomorphic to Y. Since Y ~ Y ® F, to show that TY ~ F, it 
remains to observe that Xy is complemented in F. This follows immediately 
since the restriction of the natural projection P from F to the subspace E = 
[ei(i),j(i{i),q)]i,q£Ny is an isomorphism from Xy onto E. 

COROLLARY 24. The Banach spaces (lœ ® lœ ® . . .) h, 1 ^ p < oo are 
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