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An Onofri-type Inequality on the Sphere
with Two Conical Singularities

Chunqin Zhou

Abstract. In this paper, we give a new proof of the Onofri-type inequality

∫

S

e2u ds2 ≤ 4π(β + 1) exp

{

1

4π(β + 1)

∫

S

|∇u|2 ds2 +
1

2π(β + 1)

∫

S

u ds2

}

on the sphere S with Gaussian curvature 1 and with conical singularities divisor A = β · p1 + β · p2

for β ∈ (−1, 0); here p1 and p2 are antipodal.

1 Introduction

On a smooth compact Riemannian surface Σ, the Moser–Trudinger inequality says

that any function u ∈ H1(Σ)

(1)

∫

Σ

eu dA ≤ C exp

{
1

16π

∫

Σ

|∇u|2 dA +
1

Area(Σ)

∫

Σ

u dA

}

where C is a positive constant.

It is quite important to know which constant C is optimal for this inequality. It was

shown firstly by Onofri [On] and Hong [H] that on the standard sphere S2, using the

Trudinger inequality, the best constant C is 4π. Consequently they got an inequality

∫

S2

eu dA ≤ 4π exp

{
1

16π

∫

S2

|∇u|2 dA +
1

4π

∫

S2

u dA

}

which is called Onofri inequality. Recently Li Suyu and Zhu Meijun [LZ1] gave a

new proof of this inequality by using an inequality named the sharp local inequality

which was shown in their recent paper [LZ1] and [LZ2]. In particular, their proof is

independent of the Trudinger inequality.

We would like to remind the reader that there is another well-known best constant

in the inequality, 1
16π , which was obtained by Moser in [M].

A natural question is: Can one generalize these results to surfaces with singulari-

ties?

In this paper, we will discuss a similar inequality on a sphere with two conical

singularities, called an Onofri-type inequality. Let us first recall the definition, which
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664 C. Zhou

was first given in [T1]. A conformal metric ds2 on a Riemannian surface Σ (possibly

with boundary) has a conical singularity of order β (a real number with β > −1) at a

point p ∈ Σ ∪ ∂Σ if in some neighborhood of p

ds2
= e2u|z − z(p)|2β |dz|2,

where z is a coordinate of Σ defined in this neighborhood and u is smooth away

from p and continuous at p. The point p is then said to be a conical singularity of

angle θ = 2π(β + 1) if p /∈ ∂Σ and a corner of angle θ = π(β + 1) if p ∈ ∂Σ. For

example, a football has two singularities with equal angles, while a teardrop has only

one singularity. Both these examples correspond to the case −1 < β < 0; in case

β > 0, the angle is larger than 2π, leading to a different geometric picture. Such

singularities appear in orbifolds and branched coverings. They can also describe the

ends of complete Riemannian surfaces with finite total curvature. If (Σ, ds2) has con-

ical singularities of order β1, β2, . . . , βn at p1, p2, . . . , pn, then ds2 is said to represent

the divisor A := Σ
n
i=1βi pi .

Associated to ds2 one can define gradient ∇ and Laplacian △ operator in the usual

way. One can also define the Hilbert space H1(Σ) with norm ‖∇u‖2 + ‖u‖2, where

‖u‖p = (
∫
Σ
|u|p dA)

1
p is the Lp-norm.

There are not many results about the Sobolev inequality on singular surfaces.

Troyanov [T2] was the first author to consider Trudinger inequality on singular sur-

faces. He has shown that

(2)

∫

Σ

ebu2

dA ≤ C

holds for all u ∈ H1(Σ) satisfying ‖∇u‖2 ≤ 1 and
∫
Σ

u dA = 0, where Σ is a compact

Riemannian surface with conical singularities of divisor β =
∑k

j=1 βi pi , and b <

4π mini{1, 1+βi}. Furthermore, W. Chen [Ch] showed that this inequality holds for

b0 = 4π mini{1, 1 + βi}, and the constant b0 is sharp. As a direct consequence, we

have the Moser–Trudinger inequality on this singular surface

∫

Σ

eu dA ≤ C exp

{
1

4b0

∫

Σ

|∇u|2 dA +
1

Area(Σ)

∫

Σ

u dA

}
.

Lately, W. Chen and C. Li [CL] obtained an Onofri-type inequality on a sphere S

with two singularities of equal angle, 0 < θ1 = θ2 < 2π. Letting α =
θ1

2π and taking

the singularities as the poles and the metric as ds2
= L2

(
dr2 + (απ sinπr)2dθ2

)
, they

showed that

(3)

∫

S

eu dA ≤
4L2α

π
exp

{
1

16πα

∫

S

|∇u|2 dA +
π

4L2α

∫

S

u dA

}

holds for all u ∈ H1(S), where 4L2α
π is the smallest possible constant.

It is clear that (3) will be reduced to the standard Onofri inequality on the smooth

sphere when L = π and α = 1. From the Gauss–Bonnet formula

1

2π

∫

S

K dA +
1

2π

∫

∂S

k ds = χ(S, β)
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where χ(S, β) = χ(S) +
∑k

i=1( θi

2π − 1), χ is the topological Euler characteristic of S,

we know that the inequality (3) holds only in the critical case χ(S, β) = mini{2, 2θi

π },

which is defined by Troyanov when he studied the prescribing Gaussian curvatures

problem on singular surfaces. Their method to establish inequality (3) was based on

the Trudinger inequality (2) and the distribution of mass analysis.

It is well known that the Onofri inequality plays a very important role in confor-

mal geometry. Based on the Onofri inequality, many results on prescribing Gaussian

curvatures on the standard sphere S2 were obtained by using various techniques, see

[CD1], [CD2], [CY1], [CY2]. Furthermore, in virtue of the uniformization theorem

and the Onofri inequality, one can show that the Liouville energy on a topological

two-dimensional sphere will be bounded from below. In the singular case, with the

help of this inequality (3), Chen Wenxiong and Li Congming successfully generalized

some of their previous results on prescribing Gaussian curvatures from the standard

sphere S2 to such a singular surface.

In this paper, we want to give a new proof of the Onofri-type inequality on a

singular sphere S for β ∈ (−1, 0). Fortunately, Troyanov [T1] has shown that there

is an explicit expression of metric on a sphere with constant curvature and with two

conical singularities. More precisely, if we take S = C ∪ ∞, the only metric (up to

a change of coordinate z → pz, p ∈ C is a constant) on sphere S with Gaussian

curvature 1 and with conical singularities at z = 0 and z = ∞ is

ds2
=

(2 + 2β)2|z|2β |dz|2

(|1 + µzβ+1|2 + |z|2β+2)2
,

where β ∈ (−1,+∞) such that either β is an integer or µ = 0. In virtue of the

expression of this metric, we can state our main theorem without using the Trudinger

inequality (2) and the distribution of mass analysis:

Theorem 1.1 Let the sphere S with Gaussian curvature 1 and with conical singulari-

ties divisor A = β · p1 + β · p2 for β ∈ (−1, 0), here p1 and p2 are antipodal. Then we

have for all u ∈ H1(S)

(4)

∫

S

e2u ds2 ≤ 4π(β + 1) exp

{
1

4π(β + 1)

∫

S

|∇u|2 ds2 +
1

2π(β + 1)

∫

S

u ds2

}
.

To prove this theorem, we will follow closely the method used in [LZ1]. We will

first establish an inequality which is essential to our main theorem, i.e.,

∫

Br

|∇w|2 dx ≥ (4 + 4β)π
(

ln
(2 + 2β)ae−2b

2πr2+2β
+

2πr2+2β

(2 + 2β)ae−2b
− 1

)

holds with any function w(x) that satisfies w(x) − b ∈ W
1,2
0

(
Br(0)

)
and

∫

Br(0)

|x|2βe2w dx = a

(see Section 2). In the third section, we then use the explicit expression of conformal

metric of S to demonstrate our theorem.
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2 An Inequality

In this section, we will establish an inequality that is essential to the main theorem.

Let Br(0) ∈ R
2 be a ball in R

2 with radius r centered at the origin, and

Db
a

(
Br(0)

)
=

{
f (y) : f (y) − b ∈ W

1,2
0

(
Br(0)

)
,

∫

Br(0)

|y|2βe2 f dy = a

}
.

We have the following proposition.

Proposition 2.1 For any w ∈ Db
a

(
Br(0)

)
, we have the following inequality

∫

Br

|∇w|2 dx ≥ (4 + 4β)π
(

ln
(2 + 2β)ae−2b

2πr2+2β
+

2πr2+2β

(2 + 2β)ae−2b
− 1

)

for any w ∈ Db
a(Br) with β ∈ (−1, 0).

In order to prove Proposition 2.1, we need the following lemma.

Lemma 2.2 For any nonnegative function u ∈ C1[0,+∞) with u(0) = 0 and∫∞
0

e2u−2s−βs ds = a with a > 1
2+β , we have

(5)

∫ ∞

0

|ur|
2 dr ≥ (2 + β)

[
ln(2 + β)a +

1

(2 + β)a
− 1

]
.

Proof When β = 0, Li and Zhou have shown it in [LZ1]. Their method is also valid

for β > 0. For convenience of the reader, we give the proof in detail. We divide the

proof into three steps.

Step 1 For any ε0 with ε0 >
1√
2+β

we have

(6)

∫ +∞

R

e2u−(2+β)r dr = oR(1) exp

{
ε2

0

∫ +∞

0

|ur|
2 dr

}

where oR(1) → 0 as R → +∞.

We now show Step 1. Since u(r) is any function in C1[0,+∞) with u(0) = 0, we

have for any ε > 0:

u(r) =

∫ r

0

us ds ≤

∫ r

0

|us| ds

≤

(∫ r

0

|us|
2 ds

) 1
2

r
1
2

≤
1

2

(
ε2

∫ r

0

|us|
2 ds +

r

ε2

)
.
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Thus

∫ +∞

0

e2u−(2+β)s ds ≤

∫ +∞

0

exp

{
ε2

∫ s

0

|ur|
2 dr +

( 1

ε2
− 2 − β

)
s

}
ds

≤ exp

{
ε2

∫ +∞

0

|ur|
2 dr

}
·

∫ +∞

0

e( 1

ε2 −2−β)s ds.

If we choose ε = ε0 >
1√
2+β

, then the infinite integral

∫ +∞

0

e
( 1

ε0
2 −2−β)s

ds

is convergent. It follows that

∫ +∞

R

e2u−(2+β)r dr ≤ exp

{
ε2

0

∫ +∞

0

|ur|
2 dr

}
·

∫ +∞

R

e
( 1

ε2
0

−2−β)s
ds

= oR(1) exp

{
ε2

0

∫ +∞

0

|ur|
2 dr

}
.

Step 2 Define Da = {u(r) ∈ W 1,2(R
+) : u(0) = 0,

∫ +∞
0

e2u−r(2+β) dr = a}. There

exists a v ∈ Da such that

∫ +∞

0

|vr|
2 dr = inf

u∈Da

∫ +∞

0

|ur|
2 dr.

In fact, if we assume that vi is a minimizing sequence of infu∈Da

∫ +∞
0

|ur|
2 dr, then

there is a v ∈ W 1,2(R
+) such that

vi ⇀ v in W 1,2(R
+)

and ∫ +∞

0

|vr|
2 dr ≤ lim

i→∞

∫ +∞

0

|vi
r|

2 dr ≤ inf
u∈Da

∫ +∞

0

|ur|
2 dr.

Then by Step 1, the Sobolev embedding theorem and the Arzela–Ascoli Lemma

we can show that
∫ +∞

0
e2v−(2+β)s ds = a, that is v ∈ Da.

Step 3 In this step we will show that the minimizer v in Step 2 satisfies

∫ +∞

0

|vr|
2 dr = (2 + β)

(
ln(2 + β)a +

1

(2 + β)a
− 1

)
,

and consequently we obtain the inequality (5).

In fact, the minimizer v satisfies the following Euler–Lagrange equation is

(7) vrr = −τe2v−(2+β)r
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for some τ > 0 with v(0) = 0. The general solution to the ordinary differential

equation (7) is given by

v(r) = ln
1

λ0 + e−(2+β)r
−

1

n
ln

τ

(2 + β)nλ0

,

where λ0 is a positive constant. Since v(r) is a solution of (7), we can obtain that

τ =
(2+β)nλ0

(1+λ0)n . Therefore

v(r) = ln
1

λ0 + e−(2+β)r
− ln

1

λ0 + 1
.

Since
∫ +∞

0
e2v−(2+β)r dr = a, then by making change of variables r = − ln s we

have

a =

∫ +∞

0

( λ0 + 1

λ + e−(2+β)r

) 2

e−(2+β)r dr

=

∫ 1

0

( λ0 + 1

λ0 + s(2+β)

) 2

s1+β ds

=
λ0 + 1

(2 + β)λ0

.

Hence

λ0 =
1

(2 + β)a − 1
.

Now we compute the norm of v:

∫ +∞

0

|vr|
2 dr =

∫ +∞

0

∣∣∣
(2 + β)e−(2+β)r

λ0 + e−(2+β)r

∣∣∣
2

dr

= (2 + β)

∫ 1+ 1
λ0

1

s − 1

s2
ds

= (2 + β)
(

ln
λ0 + 1

λ0

+
λ0

λ0 + 1
− 1

)

= (2 + β)
(

ln(2 + β)a +
1

(2 + β)a
− 1

)
.

Thus we have finished the proof of the lemma.

Now we can prove Proposition 2.1 by using the above lemma.

Proof of Proposition 2.1 Without loss of the generality, we show the proposition

when b = 0 and r = 1. We assume w ∈ D0
a(B1). Let w̄ = w̄(r) be the symmetric

rearrangement of w, i.e., w̄(r) is non-increasing and

meas{(r, θ) | w̄(r) ≥ t} = meas{(r, θ) | w(r, θ) ≥ t}

https://doi.org/10.4153/CMB-2011-115-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-115-4


An Onofri-type Inequality on the Sphere with Two Conical Singularities 669

for all −∞ < t < +∞. By taking a translate of variable r = − ln s, obviously we have

∫

B1

|∇w|2 dx ≥ 2π

∫ 1

0

|w̄s|
2s ds = 2π

∫ ∞

0

w̄2
r dr,

∫

B1

|x|2βe2w dx = 2π

∫ 1

0

e2w̄s2β+1 ds = 2π

∫ ∞

0

e2w̄−2r−βr dr.

Since w̄(e−r) is increasing for r ∈ [0,∞} and w̄(1) = 0, from Lemma 2.2, we have

∫

B1

|∇w|2 dx ≥ (4+4β)π
(

ln
(2 + 2β)

∫
B1
|x|2βe2w dx

2π
+

2π

(2 + 2β)
∫

B1
|x|2βe2w dx

−1
)
.

3 Proof of the Main Theorem

Proof of Theorem 1.1 Due to the rearrangement, we only need to prove Onofri-type

inequality (4) for u ∈ C1(S \ {p1, p2}) ∩C(S) that depends only on x3 and is mono-

tonically decreasing in x3, where p1 and p2 are the north pole and south pole of S

respectively. Also, we can assume that u(x3)|x3=1 = 0 (otherwise, we replace u(x) by

u(x) − u(1)). We can approximate u(x) by a sequence of functions ui ∈ C1(S) such

that ui(x) = ui(x3) is monotonically decreasing in x3, and ui(x) = 0 in the geodesic

ball B1/i(p1) of the north pole p1 for i ∈ N, and ui(x) = u(p2) in the geodesic ball

B1/i(p2) of the south pole p2. Denote Si = S\
(

B1/i(p1) ∪ B1/i(p2)
)

.

By Troyanov’s Theorem, on the singular surface S, there exists a unique conformal

metric

ds2
=

(2 + 2β)2|z|2β |dz|2

(1 + |z|2β+2)2
= e2ϕ(z)|dz|2

such that its Gaussian curvature is 1 and its conical singularities are z = 0 and z = ∞.

We set

ϕ(z) = ln
(2 + 2β)|z|β

1 + |z|2β+2
.

Then

−△ϕ = e2ϕ in R
2\{0}.

Now we set

ϕ̃(z) = ln
(2 + 2β)

1 + |z|2β+2
.

It is clear that ϕ(z) = ϕ̃(z) + β ln |z| and ϕ̃(z) satisfies that

−△ϕ̃ = |z|2βe2ϕ̃ in R
2\{0}.

Let Φ be the conformal map from S to R
2∪∞ such that its conformal factor is e2ϕ.

Then we have Φ(Si) = BRi
\Bri

. It is obvious that Ri → +∞ and ri → 0 as i → +∞.

Set

wi(z) = ui(x) + ϕ(z) = ui

(
Φ

−1(z)
)

+ ϕ(z),
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and

w̃i(z) = ui

(
Φ

−1(z)
)

+ ϕ̃(z).

It is clear that

wi(z) = w̃i(z) + β ln z.

Since
∫

S
e2u dv is conformally invariant, we have

(8)

∫

Si

e2ui (z) dv =

∫

BRi
\Bri

e2wi (z) dz =

∫

BRi
\Bri

e2w̃i (z)|z|2β dz.

Now we define ai =
∫

BRi

e2w̃i (z)|z|2β dz. By a direct computation, we obtain

∫

BRi
\Bri

|∇w̃i |
2 dz =

∫

BRi
\Bri

|∇(ui ◦ Φ
−1)|2 dz

+ 2

∫

BRi
\Bri

∇(ui ◦ Φ
−1)∇ϕ̃ dz +

∫

BRi
\Bri

|∇ϕ̃|2 dz

=

∫

Si

|∇ui |
2 dv − 2

∫

BRi
\Bri

ui ◦ Φ
−1△ϕ̃ dz

+

∫

BRi
\Bri

|∇ϕ̃|2 dz − 2

∫

∂Bri

ui ◦ Φ
−1 ∂ϕ̃

∂n
dσ

=

∫

Si

|∇ui |
2 dv + 2

∫

Si

ui dv

+

∫

BRi
\Bri

|∇ϕ̃|2 dz − 2u(p2)

∫

∂Bri

∂ϕ̃

∂n
dσ.

(9)

Furthermore, we note that

∫

BRi

|∇ϕ̃|2 dz = 4π(β + 1)
(

ln(1 + R
2β+2
i ) +

1

1 + R
2β+1
i

− 1
)
,

∫

Bri

|∇ϕ̃|2 dz = 4π(β + 1)
(

ln(1 + r
2β+2
i ) +

1

1 + r
2β+1
i

− 1
)
→ 0 as ri → 0,

∫

∂Bri

∂ϕ̃

∂n
dσ = −

2π(2β + 2)r
2β+2
i

1 + r
2β+2
i

→ 0 as ri → 0,

∫

Bri

|∇w̃i |
2 dz =

∫

Bri

|∇ϕ̃|2 dz → 0 as ri → 0.
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Since w̃i(z)|∂BRi
= ln 2+2β

1+R
2β+2
i

, by Proposition 2.1, we have

∫

BRi

|∇w̃i |
2 dz

≥ (4 + 4β)π
{

ln
[ (2 + 2β)ai

2πR
2β+2
i

( 1 + R
2β+2
i

2 + 2β

) 2]
+

2πR
2β+2
i

(2 + 2β)ai(
1+R

2β+2
i

2+2β )2
− 1

}
.

(10)

We conclude from (8), (9) and (10) that

∫

Si

|∇ui |
2 ds + 2

∫

Si

ui ds

=

∫

BRi

|∇w̃i |
2 dz −

∫

BRi

|∇ϕ̃|2 dz + o(ri)

≥ (4 + 4β)π
{

ln
ai(1 + R

2β+2
i )2

4π(β + 1)R
2β+1
i

+
4π(β + 1)R

2β+1
i

ai(1 + R
2β+2
i )2

−
1

1 + R
2β+2
i

}
+ o(ri),

Where o(ri) → 0 as ri → 0. Let i → +∞, we obtain that

∫

S

|∇u|2 ds + 2

∫

S

u ds ≥ 4π(β + 1) ln
a

4π(β + 1)

= 4π(β + 1) ln

∫
S

e2u ds

4π(β + 1)
.

Thus we complete the proof of the theorem.
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