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S;-Covers of Schemes

Robert W. Easton

Abstract. 'We analyze flat S3-covers of schemes, attempting to create structures parallel to those found
in the abelian and triple cover theories. We use an initial local analysis as a guide in finding a global
description.

1 Introduction

Given a finite group G, a G-cover of a scheme X is a scheme Y together with a faithful
G-action on Y and a finite G-equivariant morphism 7: Y — X which identifies X
with the geometric quotient Y /G. If we consider only schemes over a fixed alge-
braically closed field k of characteristic prime to the order of G, then to each G-cover
m:Y — X there is a decomposition 7,0y = @per F,, where F, is an Ox[G]-
module with G-action related to the irreducible representation p. Under suitable ad-
ditional hypotheses (e.g., X, Y integral and Noetherian, 7 flat), the sheaf F, is locally
free of rank equal to (dim p)?. Conversely, to construct a cover given an appropri-
ate collection of locally free Ox[G]-modules {F,},, we must define a commutative,
associative Ox[G]-algebra structure on A = p JF,. We then obtain the G-cover
m: Specy A — X.

The theory for abelian groups was analyzed by Pardini in [19]. In that case, the
decomposition runs over the irreducible characters of G, and the Ox[G]-submodule
JF is the invertible x-eigensheaf of 7, Oy, whose sections are those on which the
group acts as multiplication by the character x. The algebra structure on 7,0y is
determined by a compatible collection of morphisms {F, ® F,» — Fy,+},./» or
equivalently by a collection of global sections of {J}° '® I ! @ Fyy by These
sections are closely related to the branch divisor of the cover; given invertible sheaves
{Fy}» to construct a G-cover we may replace the explicit definition of the algebra
structure with a specification of the branching data. Aslong as a “covering condition”
is satisfied, we obtain a G-cover.

A key aspect of the abelian theory is that it allows us to understand geometry
of the covering scheme in terms of geometry of the (usually simpler) base scheme.
When X is a surface, we can use geometrically interesting configurations of curves
in X to construct new surfaces whose intrinsic geometry reflects the geometry of the
configuration. For example, a standard result in the theory of complex surfaces is
the Bogomolov—Miyaoka-Yau inequality, which states that K% /x(Ox) < 9 for any
smooth, complex surface X of general type [2]], [17], [26]. This inequality is sharp,
and Hirzebruch produced examples of equality by constructing abelian covers of IP?
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branched over “extreme” configurations of lines [[12]. The inequality is known to fail
in positive characteristic [14]], and infinite families of counterexamples can be pro-
duced using abelian covers branched over configurations of lines unique to positive
characteristic [6]. A similar construction was employed in [8] to prove a higher-
dimensional analogue of Belyi’s theorem.

The situation in the nonabelian case is more complicated, but the permutation
group S; is within reach. Indeed, complex dihedral covers have been studied by
H. Tokunaga, who reduced the problem to a study of the Galois theory of the associ-
ated function fields [22]], [23]], [24], [25]. The Ss-covers we study here are a special
case of Tokunaga’s dihedral covers, but we pursue a different approach, one more
closely paralleling the technique used to study triple covers in [16]. Our aim is to
create structures parallel to those found in the abelian and triple cover cases, laying
the groundwork for future applications. (For example, the triple cover results in [16]]
have recently been used in [3] to construct and study stacks of trigonal curves.) To
realize our goal, we begin with a local analysis of S;-covers, which we then use as a
guide in a global analysis. The result of our analyses is the following description of
S3-covers.

1.1 Summary of Results

Let R be a domain in which 6 is invertible, and let 7 € S; be a fixed transposition. If
m: Y — Xisaflat S3-cover of integral, Noetherian R-schemes, then Y =2 Spec, 7, Oy
and we have a direct sum decomposition 7.0y = Ox & L & € & 7&, with L the
invertible subsheaf on which S5 acts as the sign character and € a locally free sheaf of
rank two (with S; acting on € @ 7& by its two-dimensional representation).

Conversely, suppose X is an integral, Noetherian R-scheme, and £ and € are lo-
cally free sheaves of ranks one and two, respectively. Suppose S; acts on L by the
sign character and on & = & @ 7& by its two-dimensional representation. Let-
ting A = Ox ® L @ &, the S3-covers of the form Specy A — X are parameter-
ized by the R-submodule S; Covyx(A) < HomX(Sym2 A, A) of elements defining
commutative, associative Ox-algebra structures on A compatible with the given S;-
action. After identifying S;3 Covx(A) with an R-submodule of HomX(Sym2 L,0x)®
Homx (L ®op, N Homy (Sym? &, A), alocal analysis leads us to define the R-
modules

Buildy(A) = Homy (£ ® Sym” &, \*€)
@ Homy (Sym® &, \’€) @ Homy (A€, L),
Compaty (A) = Homy (L @ (A\?€) T @ €, (A?€) ™)
® Homy ( \*(Sym” &), A\”€) ,

parameterizing the data required to build S3-covers and the compatibility conditions
on such data. After identifying Buildx (A) with an R-submodule of

Homy (L ® €, &) @ Homy(Sym? €, €) © Homyx (€ ® 7€, L),
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we construct R-module morphisms

P: S; Covx(A) — Homy(L ® &, &) @ Homy(Sym? €, &) @ Homy (€ ® &, L),
C: Buildx(A) — Compaty(A),
B: Buildx(A) — HomX(Sym2 L£,05) @Homx(L ® €, &) ® HomX(Sym2 & A),

such that P(S3 Covy(A)®) C ker Cand B(ker C) < S; Covx(A), where S3 Covy(A)°
is the subset of elements defining algebras that are domains. In other words, P ex-
tracts from those S3-covers whose covering schemes are integral the building data of
the covers, and such data lies in the kernel of C; and conversely, given building data
in the kernel of C, the morphism B builds an S;-cover (whose covering scheme might
not be integral).

Remark 1.2 It is worth noting that S3-covers are particular instances of degree six
covers, and that our results, taken together with Pardini’s abelian results [19], give
a complete description of degree six Galois covers in terms of Ox-algebra structures
on 7,Oy. The problem of dealing with non-Galois covers, however, is wide open.
This contrasts greatly with the situation for triple and quadruple covers, in which
complete descriptions are known [10], [16], [20].

2 Preliminary Analysis
Fix a presentation, say S3 = (0,7 | > = 72 = 1, 70 = o*7), and let R be a domain
in which 6 is invertible. As a free R-module, the group ring R[S3;] decomposes as
R[S3] = C1 > C2 D C3, where
C, =spang{l+o+o*+T+07+0°7}
={veR[S;] | Vg€ S,g-v=1},
Cy=spang{l+o+0° —7— 0T — 0’7}

= {v€R[S;] | Vg € S35,8- v =sgn(g)v},

and where a basis for C; is given by

Uy =—1l+o+71— 01, Uy =—1+ao*+7—or,

u12:—0+02—7+07', u22:170+077027'.

Under this decomposition of R[S;], we have 1 = €, + ¢, + €3, where
1 2 2
€ = g(1+a+o +T7+0T+0°T),

1
6228(14'0'-1’0'2—7'—0'7'—0'27'),

1

€3 = 5(2—0—02).
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Note that each ¢; is in the center of R[S;] and satisfies €;¢; = d;;¢;. We also have a
non-equivariant decomposition C3 = C3; BCsy, where C3; = spang{ui1, u;; }. Under
this decomposition, €3 decomposes as €3 = €3; + €3,, where

1 1
€31 = 5(1 —o+0T—0T), €= 5(1 —0* —oT+0°7),

which also satisfy e3;€3; = d;€3; (but are not central).

Suppose X is an R-scheme, and J is an Ox[S;]-module with action explicitly given
by a group homomorphism p: S3 — Autg, (F). Extend this morphism R-linearly to
aring homomorphism g: R[S3] — Endp, (F). Recalling that for any f € Endo, ()
satisfying f o f = f the image presheaf of f is automatically a sheaf, let &; C F
denote the image (pre)sheaf of u(e;). (In particular, F; is the subsheaf of invariant
sections of F, and JF; is the subsheaf of sections on which S5 acts as multiplication by
the sign character.) Since 14(1) = Idg, and since 1 decomposes as 1 = €; +€; +¢€3 with
elements ¢; satisfying the aforementioned properties, the morphisms ((¢;) induce an
Ox[S;]-module direct sum decomposition F = F; & F, @ F;3. Using the decompo-
sition €3 = €3] + €3;, we can further obtain an Ox-module direct sum decomposition
F; = F31 @ Fi,. Note that the F3; are not invariant under the group action: we
have T€3; = €3,7, so p(7)|4, is an automorphism interchanging the summands, and
hence F3 = F3; @ 7F35;. This decomposition encodes the action of S; on F5: by a
direct calculation we see that oes; = —Te3; and 02€3; = (—1+47)es, so the Sz-action
on J3; @ 733 is given by

(1) T-(51+78) =5+7s;, 0-(51+78) =5+7(—s —5),

for sections s, s, of F3;. (For the second equality, note that we must have o - (7s,) =

(67) -5, =(10%) -5, =7-(0%-5) =T - (=5, +T55) = 5, — T5,.)

Now suppose 7m: Y — X is a flat S3-cover of R-schemes. Then 7.0y is a lo-
cally free Ox[S;]-module of rank six, with (7,0y)% =2 Oy. By the above, we have
an induced Ox[S;]-module direct sum decomposition 7,Oy = Ox & F, & F3, as
well as an Ox-module decomposition F3 = F5; @ 7F;,. If we assume X and Y
are integral, Noetherian R-schemes, then J, and JF3; are locally free of ranks one
and two, respectively. Moreover, since a finite morphism is affine, it follows that
Y = Specy (Ox @ I, @ F3; ® 733;1). Thus, to construct an S3-cover of X we need the
following data:

(i) an invertible Ox-module £, on which S; is to act via the sign character;
(ii) alocally free Ox-module € of rank two; the group S; is then to act on € @ 7€
as defined by (1);

(iii) a commutative, associative Ox [S;]-algebra structure on Ox & L & € @ 7E. (As
we will see, both associativity and compatibility with the group action impose
strong conditions on the algebra structure.)

We aim to precisely describe data (iii), given data (i) and (ii). To that end, let us fix
an integral, Noetherian R-scheme X, together with locally free Ox-modules £ and €
of ranks one and two, respectively. For notational convenience, let us also define
E=¢@r8and A = Oy ® L & E. As commutative O x-algebra structures on A are
given by the elements of Homy(Sym? A, .A), we make the following definition.
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Definition 2.1 Let S3 Covyx(A) < Homy(Sym*A,.A) denote the R-submodule of
elements that define commutative, associative Ox [S;]-algebra structures on A.

Our goal, then, is to find an intrinsic description of S; Covx(A). We begin with
the following preliminary observation.

Lemma 2.2 Each commutative Ox[S;]-algebra structure on A is defined by an ele-
ment ofHomX(Sym2 L,0x) ® Homyx (L ®p, &,E) & HomX(Sym2 EA).

Proof A priori, an arbitrary Ox-algebra structure on A is given by an Ox-module
morphism A ®g, A — A, which is equivalent to an Ox-module morphism

(Ox ®o, Ox) @ (Ox ®o, L) ® (L @0y 9x) ® (Ox ®o, &) ® (€ @0, Ox)
B (L Roy L) B (L ®oy, &) B (ERo, L) B (E®o, &) — A.

The first coordinate of this morphism must be given by the algebra structure on Oy,
and the following four coordinates must be given by the left and right Ox-module
structures on £ and &, respectively. If the algebra is to be commutative, then the
sixth and ninth coordinates must factor through the canonical morphisms to the
corresponding symmetric products, namely £ ®p, L — Sym* L and € ®o, & —
Sym? €. Similarly, the seventh and eighth coordinates must agree after the canonical
isomorphism £ ®p, € = & ®¢, L.

If the algebra is to be compatible with the S;-action, then S; must act as (sgn)? =
Id on the image of Sym? L — A, and so this morphism must factor through the
embedding Ox C A of invariant sections. Similarly, L ®¢, & — A must factor
through the embedding ECA. [ ]

We may thus regard S; Covx(A) as an R-submodule of Homy(Sym?* £, Ox) @
Homyx (L ®op, N Homx(Sym2 &, A). Of course, not every element of the latter
will satisfy all the necessary compatibilities with the S;-action, nor will it necessarily
define an associative algebra. To characterize those elements that do satisfy these
conditions, and hence find a description of S; Covx(A), we first analyze the local
situation.

3 Local Analysis

Let U C X be an affine open such that L(U) and €(U) are free Ox(U)-modules of
ranks one and two, respectively. (In general, when we work with £ and € locally, we
will always mean over such an affine U.) Let t be a generator for L(U) and vy, v,
be generators for £(U). To understand the algebra structure on A(U), we need to
analyze (the images of) the following products (with tensor symbols suppressed):

e’ € Ox(U);
o tvj,t-7v; € EWU) =EWU)DTEW), fori =1,2;
o Vv, vi-Tvj, TV - Tv; € A(U), fori, j =1,2.

Momentarily leaving aside associativity concerns, we find the following lemma.
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Lemma 3.1 With respect to the basis {1,t, v, vy, Tv1, v, } for A(U), the commuta-
tive Ox(U)[S3]-algebra structures on A(U) are precisely those of the form

1" =a
tvi = byvy + byvy — 2by7v — 2by v
tvy = V1 + vy — 2C17'V1 — 2C2TV2
t-Tvy = 2byv) + 2byvy; — biTvy — byt
t-Tvy =20V +20v) — TV — TV,
Vi = d; + d3V1 +dyvy — 2d37'V1 — 2d,TVvy
VIV) = €] + e3V + ey — 2e3TV] — 2e4TV;

V§:ﬁ+ﬁvl+ﬂV2—2féTV1—2ﬁTV2

1
Vi -TV] = Edl — d3V1 — d4V2 — d3TV1 — d47'V2

1
VTV = Eel + ]’lzt + h3V1 + h4V2 — e3TV] — e4TV)

1
Vy TV = Eel — ]’lzt — e3V] —eyvy + 1’137'1/1 + ]’147'1/2

1
Vo - TVy = Efl — favi — fava — faTvi — faTv,
(’TV1 )2 = dl — 2d3‘l/1 - 2d4V2 + d37"V1 + d4TV2
(7v1)(Tv2) = e1 — 2e3v; — 2e4vy + e3TV) + ey TV

(7'1/2)2 = fl — 2f31/1 — 2f41/2 + f37'Vl + ﬂTVz,

for some a, b;, c;, d;, e, fi, hi € Ox(U).
Remark 3.2 In particular, every element of S5 Covy (A) is locally of the above form.

Proof Compatibility with the action of 7 requires 7 - (tv;) = (7 - t)(7v;) = —t - TV,
and so t-7v; is determined by tv;. Similarly, 7v; - 7v; is determined by v;v;, and v, - 7v,
is determined by v, - 7v,. Suppose

t“=a
tvy = bivy + byvy + b3y + by,
vy = Vi + vy + GTV] + 64TV,
vi = dy + dat + dsvy + dyv, + dsTvy + dgTV

V) = et et +evy + ey, +esTv +egTV,
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2
v; = fi+ it + fivi + fava + fsmvi 4 foTV,
VTV = gl +g2t +g3V1 +g4‘V2 +g57"V1 +g67"l/2
VTV, = h1 + hzl’ + h3V1 + h4V2 + h5TV1 + h()TVz

Vy - TVy = 1y + gt +13V] +i4vy + 15TV + iGTVz,

for some a, bj, cj,d;, e;, fi,gj, hj,i; € Ox(U). By our initial remark, we then must

have
t-T = —b3V1 — b4V2 — blTV1 — szVz
L-TV) = —C3V] — C4V) — C1TV] — QQTV2
(TV1)2 =d, —dyt + d5‘V1 + d6V2 + d3TV1 +dyTvy

(Tv1)(Tv2) = e1 — ext +esvy + esVy + e3TV] + eV,
(Tv,)? = fi— fat + fsvi + fova + v + faTv,

Vy TV = h1 — hzt + h5V1 + I’l6V2 + I’l3TV1 + h47'1/2.

Such an algebra structure is now ensured to be compatible with the action of 7, and
so compatibility with the full S5-action will follow from compatibility with the action
of 0. Using the equations above, together with equation (), we compute

o (tVl) = b3V1 + b4V2 + (—bl — b3)7’V1 + (—bz — 174)7'1/27

and
(0-t)(o-v)=t(o-n)=t(=mv) = —t(Tv1)
= b3V1 + b41/2 + bﬂ'Vl + szVz.
So, compatibility with o requires b3 = —2b; and by = —2b,. The corresponding
computation for the relation o - (tv;) = (0 - t)(o - v;) requires cs = —2¢; and
Cy = *2(32.
Computing
o - (V%) = dl + dzt + d5V1 + dﬁVZ + (—d3 — ds)TV1 + (—d4 — d6)TV2,
and
(0 V1)2 = (*Tvl)z = (71’1)2
= dl — dzt + d5V1 + d61/2 + d3TV1 + d4TV2,

we must have d, = 0, ds = —2d3, and d¢ = —2d,. Similarly, the relation o - (v;v;) =
(0 - v1)(0 - v;) requires e; = 0, es = —2e3, and es = —2e4. The relation o - (1,)* =

(0 -v)?requires f, = 0, fs = —2f3,and fs = —2 .

https://doi.org/10.4153/CJM-2011-045-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-045-8

S3-Covers of Schemes 1065
Lastly, we compute

o-( ) =@t @t +gvi+geva + (=g — g5)Tvi + (=% — g6)TV2,

and
(0-vi)(o-Tv) = (—=mv)(v1 —7v1) = —(v1 - T0) + (T1)?
= (=g +d) + (=g —d)t + (=g +ds)vi + (—g4 + ds)v>
+ (*gS + d3)TV1 + (*gG + d4)7'V2.

From this (and the previously obtained relations), we deduce g = %dl, o =0,
& =g = —ds,and gy = g¢ = —dy. Therelation o - (v; - 7™v,) = (0 - v1)(0 - Tv2)
requires by = %el, hs = —e3,and hg = —ey4. Therelation o-(vy-7v,) = (o-v2)(0-TV2)
requires i; = %fp ip=0,i3 =15 = —fs,and iy =i = — fu. u

The previous lemma specifically omitted any mention of associativity. Indeed,
associativity imposes many additional constraints.

Proposition 3.3 With respect to the basis {1,t, v, vy, Tv1, 7v2 } for A(U), every com-
mutative, associative Ox(U)[Ss]-algebra structure on A(U) that defines a domain is of
the form

t? = —3b} — 3byq,
tvy = byvy + bavy — 2byTvy — 2by T
tvy, = civi — bivy — 2¢c17vi + 2by vy
t-7vy = 2byvy + 2byvy — byTv) — bty
t-Tvy = 2c1v — 2b1vy — cyTvy + by
V% = 6(d§ —dafs) + dsvi +davy — 2dsTv) — 2dyTY;
vy =3(dsfs — dsfa) — favi — dsvy + 2 famvy + 2d3TV,
Vi =6(f} —dsfs) + fivi + fava — 2f57v1 — 2faTv;

VTV = 3(d§ — d4ﬁ;) — d3V1 — d4V2 — d37'1/1 — d47'1/2

3
VTV = 5(614]‘}, — d3ﬁ;) + hzt + f;ﬂ/l + d3V2 + f;ﬂ'Vl + d3TV2

3
Vy - TV = E(d4f3 — dg,ﬁ;) — ]’lzt + ﬁﬂ/l + d3V2 + ﬁ;TVl + d3TV2
vy vy = 3(fE — dsf3) — fivi — fava — fiTvi — faTwa
(TV1)2 = 6(d§ — d4ﬁ;) — 2d3V1 — 2d4V2 + d3TV1 + d4TV2
(TV])(TVZ) = 3(614](3 — dgﬁ) + 2]‘;11/1 + 2d3V2 — ﬂTVl — d3TV2

(TVz)z = 6(f:12 — d3f3) — 2f3‘l/1 — Zﬁl‘l/z + f},T‘V] + ﬁ;TVz,
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for some by, by, c1,ds, dy, f3, fa, hy € Ox(U) satisfying
(1) 2byd3s — by fs + c1dy = 05 (i) bohy + 3(d3 — dufy) = 0;
(ii) 2b1 fs — by f3 + c1d3 = 05 (iv) 2b1hy + 3(ds fs — daf3) = 0;
(V) cthy +3(ds fs — f) = 0.

Conversely, any multiplicative structure on A(U) of the above form defines a com-
mutative, associative Ox(U)[Sz]-algebra structure on A(U), although possibly not a
domain.

Remark 3.4 Consequently, if we define S; Covy(A)® C S3 Covx(A) as the subset of
elements defining domains, then we see that every element of S; Covyx(A)° is locally
of the form described above. Conversely, every element of Homy(Sym” £, Ox) &
Homx(L ®gp, Eé e HomX(Sym2 &, A) that is locally of the above form lies in
83 COVX (A)

Proof The proof consists of systematically imposing the third-order associativity
conditions. As the calculations are straightforward but tedious, we only give full
details for the first few. So as to maintain symmetry between v; and v,, we endeavor
to express ¢; and h; in terms of d; and f; whenever possible. Using Lemma [3.1] we
compute

() = an
t(tvy) = (—Sbf — 3bycy)vy + (=3b1by — 3by0)v;.
Equating coefficients gives
@) 0= —3b — 3bye,
(3) 0=0by(b + ).
Similarly, we compute
vy = any
t(tvy) = (=3bic; — 3c160)vy + (=3byc1 — 3¢3)vs,
and so must have
(4) 0=rci(bs + )
5) 0= —3bye — 32,

Note that the relations (t*)7v, = t(t7v1) and (£*)7v, = t(t7v;) immediately follow
from the above relations and the compatibility with 7. Indeed, we have (£?)7v, =
(=) = (1t =T - ((tz)vl) =T- (t(tvl)) = —t(—t-7v1) = t(tTv1), and
similarly for (£2)7v,.
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We next compute
t(V%) = dlt + (—3b1d3 — 3C]d4)1/1 + (—3b2d3 — 3Czd4)V2
(tVl)Vl = (*szhz)t + (3b1d3 + b2€3 — 2b2h3)V1 + (3b1d4 + b2€4 — 2b2h4)1/2,

which implies

(6) dy = —2bh,
(7) 6b1d3 + 5263 — 2b2h3 + 3C1d4 =0
(8) 3b1dy + 3byd; + byey — 2byhy + 3c,dy = 0.

We claim ¢; = —b;. Indeed, suppose ¢; # —b;. Recalling that we have assumed X
is integral, and hence Ox(U) is a domain, equations (B) and @) imply b, = ¢; = 0.
Equations ([2)) and (B) then become —3c3 = a = —3b%. By hypothesis, the algebra
A(U) is a domain, so t* = a is nonzero, and hence it follows that b; and ¢, are both
nonzero. Since their squares are equal and ¢, # —b;, we must have ¢, = b;. But then
equations (@)-(@) imply d; = d; = dy = 0, and hence v} = 0, which again violates
the assumption A(U) is a domain.

We must therefore have ¢, = —b,, and equations (2)—(8) reduce to
) a= —3b — 3byc
(10) dy = —2byh,
(11) 6b1ds + byes — 2byhs +3c1dy =0
(12) 3b,d; + byey — 2b2hy = 0.
Similar computations for the relations ¢(v,v,) = (tvi)v; and t(v3) = (tv,)v, yield
(13) hy=—es=fu
(14) hy = —ey
(15) e = 2b1h,
(16) fi =2ah,
(17) 2bifs —byfs — cres = 0.

Imposing the conditions so far collected, a calculation reveals the relations t (v, 7v;) =
(tv) v, t(viTvy) = (tvi)Tv,, and t(v,7v,) = (tv,) 7TV, all now hold. Compatibility
with the action of 7 then implies that the relations t(7v1)? = (t-7v,) vy, t(Tv|-T¥,) =
(t - ™v1)Tva, t(T12)? = (t - 7o) Tvy, and t(v, - Tv1) = (tv,) 7TV also hold.

Similar calculations for the relations (v2)v, = vi(v;v2), vi(¥3) = (viv2)v,, and
vi(rv) = vi(vy 7)) vield

(18) ey = —ds
(19) 2byhy — 3dyfs +3dsfy = 0
(20) byhy +3d; — 3dsfy =0
(21) ahy +3dsf; — 3f} = 0.
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At this point, we’ve reached the statement of the proposition: equation (@) gives a

in terms of by, by, ¢;; equations (I0) and 20), (I5) and ([O), and (@) and 1)
give dy, e, and f in terms of ds, dy, f3, f1, respectively; equations (1)) and (I3)
give condition (i); equations (I7) and (I8) give condition (ii); and equations (I9)-
(21D gives conditions (iii)—(v). A calculation verifies that all remaining associativity
relations are now satisfied. [ |

Remark 3.5 Examining the coefficients in Proposition B3] it is evident that ele-
ments of
Hom (Sym* L(U), 0x(U)) @ Hom(L(U) ®o,w) E(U), EU))
@ Hom(Sym* E(U), A(U))

of the given form are in bijection with elements

(v, v, &u) € Hom(L(U) @ E(U), E(U)) @ Hom(Sym* E(U), E(U))
® Hom(&(U) ® 7€(U), L(V))

of the form

oyt @vy) = avy + b, Yy (V) = dvy + ev, s ®@Tv) =0

dvt@v)=cn—av,  Yynn) =—gvi —dv,  Eu(n @ Tvy) = ht
Yu(3) = fri+gn  Gm@Tv)=—ht

Eu(v, @ TVy) = 0.

fora,b,c,d,e, f,g,h € Ox(U) satisfying the relations

(1) — bg +2ad + ce = 0; (iii) bk + 3(d? — eg) = 0;
(i) —bf +2ag+cd = 0; (iv) 2ah + 3(dg — ef) = 0;
(v) ch+3(df —g*) = 0.

Remark 3.6 In Miranda’s study of triple covers, morphisms ¢» € Homy (Sym?* €, €)
locally of the form in Remark Bl are called triple cover homomorphisms [[16} Defini-
tion 3.1]. They are shown to induce commutative, associative Ox-algebra structures
on Ox @ &, and hence define triple covers Spec, (Ox @ €) — X [16, Theorem 2.7].
This connection with triple covers is not unexpected. Indeed, if Specy,A — X is
an S3-cover and we let A” C A denote the submodule of 7-invariant sections, then
it is straightforward to verify (using Proposition 3.3] and [16, Theorem 2.7]) that
Spec, A” — X is a triple cover. Similarly, Spec, A°" — X and SpecXA"zT — X are
triple covers (and all three of these triple covers are conjugate).
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Remark 3.7 Proposition[3.3gives a full description of affine S3-covers, as well as a
simple method for generating them, namely by choosing solutions to equations (i)—
(v), above. (For instance, by = b, = ¢ =ds = fy =1, dy = -1, s =3, hp = —6
and by = b, =¢ =ds = f3 =1,dy = =2, fy = 0, h, = —3 are both solu-
tions.) The description of the multiplicative structure of A(U) defines an Ox(U)-
algebra isomorphism A(U) = Ox(U)[1,¢, vy, V2, 7v1, Tv2] /I, where I is the ideal of
relations generated by the fifteen equations of Proposition[33] One consequence of
this explicit description is that we also have a description of the ramification locus
of |- y: Spec A(U) — U, as the zero locus of the ideal generated by all 5 x 5
minors of the matrix

2t 0 0 0 0

V1 t—b —b, 2b, 2b,
12 —C t+b; 20 —2b;
™V —2b, —2b, t+ b b,
TV *2C1 2171 C1 r— b1

0 21/1 - d3 —d4 2d3 2d4

0 vy + ﬁ; vy + d3 —Zﬁl —2d3

0 —fi m-fi 2 2

0 ™ + d3 dy v+ d3 dy
—h2 TV, — ﬁ; —d3 —ﬁ; V1 — d3
h2 *ﬁ; TV — d3 V) — ﬁ; *d3

0 f3 TV) + f;; f3 vy + f;;

0 2d3 2d4 27'1/1 — d3 —d4
0 —2](;1 —2d; TV, + ﬁ; TV + d;

i 0 2f; 2fy —f> 2Tvy — fu i

4 Global Analysis

We now use our local description of S3-covers to obtain a global description. In light
of Proposition B.3]and Remark B.5] we expect to characterize such covers by an R-
submodule of Homy (L ® &, &) @ Homy (Sym? €, €) @ Homx (€ ® 7&, L). We need
a global restatement of Remark[3.5]

Definition 4.1 LetM; < Homx(L ® &€,&),M, < HomX(Symz&E), and M; <
Homy (€ ® 7E&,L) denote the R-submodules consisting of elements locally of the
forms

oyt @ vy) = avy + by, Yu(vi) = dvy + e, vl ®@TYv) =0

ou(t @ vy) = cvy —avy Yy (vivy) = —gvy — dvy Eu(vp ® Tvp) = ht
Yu(v3) = fvi +gv Eum, @ Tv) = —ht

Sy ® Tvy) =0,

respectively, for each affine open U C X (over which L(U) and E(U) are free) with
generators t for L(U) and vy, v, for E(U).
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Lemma 4.2 M;, M,, and M5 are well defined, i.e., do not depend on the choices of
local generators for L and E.

Proof LetU C X be an open affine over which £(U) and E(U) are free, and suppose
(P, 0, &) € Homx(L® E,E) B HomX(Sym2 E,&) @ Homy(E®7E, L) are locally of
the above form with respect to generators t for L(U) and vy, v, for E(U). Let s = nt
be another generator for £(U), and {w;, w, } be another basis for £(U), with change
of basis matrix C = | A | . A straightforward calculation reveals

A2 2
(s @wy) = a'w, +b'w, Y(w?) = d'wy +e'w, Ew ®@Tw) =0
Pls@mw) =c'wi—a'wy, pwiw,) = —g'w —d'w, Ewi ®@Tw,) =h's

P(wy) = f'wi +g'wy E(wy @ Twy) = —h's
f(Wz R TW,) = 0,

where
' ﬁ(c)(ﬂmb + M fiad + Ao + i f1€)
! = Ior (C) — 2\ ma — pie)
= det(C) —— (= A3b + 204 + pi5¢)
' = 3 tl(C)( NAze + A pad + 20 Aopind — 21 fu1 fiag — Mopig + pipa f)
¢ =+ t(C) ——(\e — 3\ d + 3\ g — 141 f)
f'= det(c)( Xe+3X5pad — 3Mapi3g + 113 f)
g = t(c) ———— (M AJe — 2\ Aapiad + Ay psg — Aypnd + 2Xo i pag — pipts f)
o det(C)h. -
U

The following lemma gives intrinsic descriptions of the R-modules M;, M,,
and M;.

Lemma 4.3 There exist R-module isomorphisms
(i) Gi: Homx(L ® Sym? &, \*&) =M,
(i) Gy: Homy(Sym® &, \*&)=M,,
(i) G3: Homy(A’E, L)=Ms.
Proof The proof of (ii) is detailed in [16} Proposition 3.3]. The proofs of (i) and

(iii) are similar and are given here. The method of proof will be used repeatedly. We
begin by proving (iii).
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Define Gs: Homx(/\zﬁ, L) — Homy(€ ® 7&, L) by precomposing elements of

Homy (A&, £) with the morphism €@ 7€ o EoE A’€. We claim G maps
Homy (A&, L) isomorphically onto M. To see this, suppose = € Homy (A€, L)
is locally given by

vi A vy — ht.

Then G3(=) is locally given by
NV F— 1V QVi— Ay =0+—0
R TV) —> 1V @ Vo —— V1 A vy — ht
V) @ TV — ¥, Qv — vy A vy — —ht
VMRTV —— 1 @V vy Av, =0+—— 0.

It is then clear that Gs is an isomorphism onto M3. Indeed, the inverse morphism
can be described locally as follows. Suppose & € Mj is locally of the form of Defini-

T &u
tion 4.1. The morphism €(U) ® E(U) & E(U) ® E(U) — L(U) is then locally
given by

NN +— 1TV — 0
V1 QVy — vy @ Tvy — ht
V) @ V) ¥y @ TV > —ht

V) Q@ vy —— V) @ TV, — 0,

and hence factors through the canonical morphism £(U) ® E(U) — /\ZS(U). The
induced morphism is G;l(f)U: /\ZS(U) — L(U). Letting U vary, this defines the
sheaf morphism G;l(g): /\28 — L.

We now prove (i). Observe that we have isomorphisms

HomR(Homx(L ® Sym? €, /\28) ,Homy(L ® &, 8))
= Homy (L* ® (Sym? €)* @ \*E,L* @ £* @ &)
=~ Homy (L @ N’E® E,L ® & @ Sym* €).

An element of this final group is the morphism Gy locally defined by
I Ney) ®es — IR e ®ees — IR e, R ees,

forl € L(U),e; € E(U). We claim G; (considered as an element of the first group)
maps Homy (L ® Sym? €, /\28) isomorphically onto M;. To see this, suppose ¢ &
Homy(L ® Sym? €, /\28) is locally given by

t®vf»—>—bv1/\vz
tQvViva —=avi Ay

t®v§r—>cv1/\v2.
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Considered as a section of £* ® (Sym? €)* @ A&, ® corresponds to the element
locally given by

(=bt* @ () +at* @ (mn)* +ct* © (13)*) @ (1 An).

Now let us chase G; backwards through the chain of isomorphisms. Locally, G, is
given by

tRWM AN @V LRV @Y, —t@ 1 @V,

t®(vlAV2)®V2'—>t®V1®V§*t®V2®V1V2.

As an element ofHomX(L* ® (Sym? £)* ® /\287 L*RE R 8) , this corresponds to
the morphism locally given by

W) @ An) — —t* v @n
FRQWm) @A) —t v Qv —t" v @
W) R An) — RV @
Hence, the image of ® under G, is the section locally given by
bt* @vi @vy+alt* @vi Qv —t* Qv @ vy) +ct* @V @y,
which corresponds to the map locally given by

t @ v — avy + by,
t&Q vy — cvy — avy.
It is now clear that G; does indeed map isomorphically onto M;. Indeed, the inverse

morphism can also be described locally, as follows. Suppose ¢ € M, is locally of the
form of Definition 4.1. The morphism

Pu®1 can
LU)® EU) ® EU) — EU) ® EU) — NEU)
maps
tRvV Qv — (avi +bvy) @ vy — —b v, A vy
EQRVI Qv — (avi +bvy) @ vy —— avy A vy
ERV, Qv — (cv] —avy) Qvi —— avi A vy

RV Q@ vy — (v —avy) @ vo — c vy A vy,

and hence factors through the canonical morphism L(U)® E(U)®E(U) — L(U)®
Sym? &(U). The induced morphism is Gfl(qﬁ)U: L(U) ® Sym? E(U) — /\ZE(U).
Letting U vary, this defines the sheaf morphism G;!(¢): L ® Sym*& — A\*E. ®
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Definition 4.4 Define Buildx(A) to be
Homy (£ ® Sym® €, /\28) @ Homy (Sym’ €, /\28) @ Homx(/\ZE, L).

Recall that, by Lemma 2.1, we are ~Viewing S3 COVX(~A) as an R—spbmodule of
Homy (Sym?* £, Ox)@Homx(L®p, €, &)@Homy(Sym? &, A) (where & = € @ TE).
Let P denote the projection from this latter module to

Homy(L ® &,&) & HomX(Sym2 &,€) ®Homy(E ® 7€, L).

Using the isomorphisms of Lemma 4.3, we may regard Buildy(A) as an R-submodule
of this latter R-module. Recalling that S; Covx(A)°? C S; Covx(A) denotes the subset
of those elements that define domains, we have the following corollary.

Corollary 4.5 P(S; Covx(A)") C Buildx(A).

Proof This follows from Proposition B3] Remark 3.5 Lemma 4.2, and Lemma 4.3.
|

Intuitively, we can think of the projection map P as extracting from an S;-cover
the “building data” necessary to construct the cover.

We next need a global restatement of conditions (i)—(v) of Remark 3.5 We first
translate those conditions (using the isomorphisms of Lemma 4.3) into local condi-
tions on the elements of Buildx(A). Note that if (&, ¥, E) € Buildx(A) are locally
of the form

Oyt @vi) = Ay Avy) Uy (v]) = D(v; Awy) Eu(vi Avy) =ht
Dy (t ® v1v2) = B(vy A vy) Uy (vivy) = E(vi Avy)

Oyt @vi) =Cvi Avy)  Wy(nvi) = F(v; Awy)

Uy(v3) = Gv; Avy),
then the corresponding elements (v, ¢, &) € M; & M, & M5 are locally of the form
ou(t ® vi) = Byy — Av, Yy (vi) = Evi — Dvy v @Tn)=nh
¢yt ®v2) = Cvi — By, Yu(niv2) = Fvi — Evy
Yu(13) = Gv; — Fr,.

The correspondence with our earlier notationisthus A = —b,B=a,C = ¢,D = —e,
E =4d,F = —g G = f. Using this dictionary, the five conditions of Remark 3.5]
become the following five local conditions on (®, ¥, =) € Buildx(A):

(i)’ AF — 2BE + CD = 0; (iii)" Ah + 3(DF — E*) = 0;
(i)’ AG — 2BF + CE = 0 (iv)’ 2Bh + 3(DG — EF) = 0;
(v)! Ch+3(EG — F*) = 0.
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Lemma 4.6 There exists an R-module morphism
C;: Buildy(A) — Homy (L @ (A%€) P @€, (A%€)™)

whose kernel consists of precisely those elements that locally satisfy conditions (i)’
and (ii)’.

Proof First, consider the morphism ©;: (A*€)®? — (Sym? &)®? locally defined by
(a1 Nex) @ (e3 Ney) — ere3 @ ereq — eres @ ere3 — €263 @ ere4 + 264 ® ege3,

and the canonical morphism ©,: Sym® £ ® & — Sym’ €. Given any pair (®, V) €
Homy (L ® Sym?* &, /\28) @® Homy (Sym® &, /\28), we have an induced morphism

Sl
Lo (Ne) T et 2 Le(ym e et

19190 RV
— L Sym? € ® Sym’ €& —— (/\28) 92,

Let C,(®, ¥) denote this morphism. If (&, ¥) are locally of the form described above,
then this morphism is locally given by

tR MA@ MA@V —t® (V@) =22 @nv) +v;, @) @ v
= 1@ (Vi @ vy — 2nv, @ vivy) +v3 © 1)
+— (AF — 2BE + CD)(v; A v,)%?

ER (AR ® M AR @ r—t® (®1 =2 @nn) +v, @) @7
1@ (VO — 2y, @ viva) + 3 @ Vi)

—— (AG — 2BF + CE)(v; A v,)%®?

Thus, conditions (i)’ and (ii)’ together are equivalent to the morphism C;(®, ¥)
being the zero map. (Extend C; to all of Buildx(A) in the trivial way.) [ ]

Lemma 4.7 There exists an R-module morphism
C,: Buildx(A) — Homy( \*(Sym? £), \’€)

whose kernel consists of precisely those elements satisfying conditions (iii)'—(v)’.

Proof Define a morphism ©: A\*(Sym? &) — A*€ ® Sym? € locally by

1
e1e; Nesey — E((el Ney) ®eres+ (e /\e4)®eze3+(ez/\e3)®ele4+(ezAe4)®eleg) .
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With respect to our usual basis, this morphism is locally given by
Vi ANV, — (1 A ) @V}

VEAVS — 2(1 A ) @ viny

va A v% — (1 A1) ® v%.

. ) e @ 5 . EO1 e ® ol
The composition A“(Sym” &) — A€ ® Sym* € — L ® Sym” € — A€ is then
locally given by

vf Avivy — Ah(vi A vy)
vf A v% —— 2Bh(vi A vy)

viva A Vg — Ch(V1 N Vz).
Letting ¢ = G,(¥), we also have the map /\z(w), locally given by

vf A vy — (DF — E*)(v; A vy)
vf A v% — (DG — EF)(v; A v,)

vy A v% — (EG — F))(v; Awy).

So, define C, (P, ¥, =) = (@o(E@l)o@) +3/\20G2(\I/). Then conditions (iii)'—(v)’
are equivalent to the morphism C,(®, ¥, Z) being the zero map. |

Definition 4.8 Define
Compaty(A) = Homy ( L® (/\28)®2 ®E, (/\28)®2) G}Homx(/\z(Sym2 &), /\28) )
Corollary 4.9 There exists an R-module morphism

C: Buildx(A) — Compat,(A)

with P(S3 Covx(A)°) C kerC.

Proof Take C = C; @ C,, and apply Proposition 3.3} Remark 3.5} and Lemmas 4.6
and 4.7. [ ]

By construction, the morphism C tests building data for the compatibility condi-
tions necessary for the data to induce an S;-cover.

Lastly, we construct from any building data the element of HomX(Sym2 L,0x)®
Homy (L ® &, &) @ Homy(Sym? &, .A) that defines the corresponding algebra struc-
ture.
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Lemma 4.10 There exists an R-module morphism
B;: HomX(L ® Sym? €, /\28) — Homx(Sym?* L, Ox)
taking an element ® locally of the form
Pyt ®@v7) = A Avy)
Oy (t @ vivy) = B(vi Avy)
Oyt ®@v3) =C(v; Avy)
to an element « locally of the form
ay(t*) = —3(B* — AC).
Proof Observe that we have isomorphisms
HomR(HomX(/\Z(L ® &), /\28) , Homx (Sym?* L, (‘)X))
>~ Homy ( (/\Z(L ®&)) '® A€, (Sym? L))
> Homy ( \’€ ® Sym* £, A*(L ® €)).
An element of this last group is the morphism B, locally defined by
(a1 Nex) @ Ll — g((ll Re)A(h®e)—h®e)A(hee)).

In terms of our usual basis, this morphism is locally given by

(AR B 2 ((BW) A GO~ (BWAEBN)) =3 BN A (B w).
This morphism, considered as an element of

Homx (AL ® &))" ® A€, (Sym? £)7),
is locally given by

(@) A @) &M An) — 300"

Letting 1y = G,(¥), the morphism /\2(<Z)), when considered as a section of
(N L&) @ N\&, islocally

—(B —AC)((t@v) A (t @ v2)) " @ (1 A ).
Thus, B; maps A\*(¢) to the section locally given by
—3(B*> — AC)(t%)*,
which corresponds to the map
t* — —3(B* — AC).

The composition B; = B; o /\2 o G is therefore the desired morphism. [ |
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Lemma 4.11 There exists an R-module morphism
B,: Homy (L ® Sym? €, \’€) — Homx(L ® &, )
taking an element ® locally of the form
Oyt @vi) = Ay Avy)
Oy (t @ vivy) = B(vi Avy)
Pyt ®@v3) =Clvi Avy)
to an element [3 locally of the form
Ou(t ® vi) = Bv; — Av, — 2BTv| + 2ATV,
Bu(t ® vy) = Cvy — By, — 2C7vy + 2B71v,
Bu(t ® Tvi) = 2Bv; — 2Av, — BTv) + ATV,
Bu(t ® Tv,) = 2Cvy — 2Bv, — CTvy + BTv,.
Proof Observe that ¢ = G;(®) induces a morphism L ® & i & 5 7& C &, and
hence two morphisms:

(¢,—2(r0) )
il ®é —E@rE=E,

and
T®T (¢,—2(709)) - T <
Gr: L RTE —LR®E —— EPTE=EE - E.

Let By(®) = (B1,3): L®E 2 (L®E) @ (L®TE) — & Interms of our usual
basis, this morphism is locally given by

t ® v — Bvy — Av, — 2B7v; + 2ATV,
t @ vy — Cvi — Bvy, — 2C71vy + 2B7v;
t® Tv — 2Bv; — 2Av, — Btvi + ATV,
t ® Tv, — 2Cv; — 2Bv, — C7v + B1v,. |
Lemma 4.12 There exists an R-module morphism
B;: Homy (Sym’ €, /\28) &> Homx(/\zﬁ7 L) — Homy(Sym® &, A)
taking a pair (¥, Z) locally of the form
Wy (v}) = D(vy A )
Uy (vivy) = E(vy A vy)
Uy (viv3) = F(n A )
Yy (r) = Gvi Avy)

EU(VI A Vz) = ht
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to an element y locally of the form
yu(v?) = 6(E* — DF) + Ev; — Dv, — 2E7v, + 2D7v,
vy (viv2) = 3(EF — DG) + Fv; — Ev, — 2FTv| + 2ETv,
VU(Vg) = 6(F* — EG) + Gv| — Fv, — 2Gtv, + 2FTv,
yu(v1 - Tv1) = 3(E* — DF) — Ev; + Dvy — ETv| + D7,

Yu(vy - T1,) = %(EF — DG) + ht — Fv, + Ev, — F1v, + ETv,
Yu(vy - Tv1) = ;(EF — DG) — ht — Fvy + Ev, — Frvi + ETv,
Yu(vy - T1,) = 3(F* — EG) — Gvy + Fvy — Gtv, + F1y
v ((7v1)?) = 6(E* — DF) — 2Ev; + 2Dv, + ETv; — DT,

Yu ((rv1)(7v2)) = 3(EF — DG) — 2Fv + 2Ev; + Frv| — ETv,

’YU((TVZ)Z) = 6(F* — EG) — 2Gvy + 2Fv, + Gtvy — Frv,.
Proof Observe that we have isomorphisms
HomR(HomX(/\z(Sym2 &), /\28) , Homx(Sym? €, OX))
=~ HomX( (/\Z(Sym2 8)) "® /\287 (Sym? 8)*)
=~ Homy ( (A\’€) ® Sym? &, \*(Sym* €)) .

An element of this last group is the morphism Bj ; defined locally by
(e1 AN ey) ® ezey — —3(erez N exey + e1eq A eze3).

In terms of our usual basis, this morphism is locally given by

A ® vf — 73(1/% AVivy + v% AVvy) = 76(1/% A V1va)
(V1 Avy) @ vivy — —3(1/% A v% + vy Avivy) = —3(1/% A v%)
Vi AM)® v% — =31, A v% + vy A v%) = —6(r1y A vg).

As an element of Homy ( (/\2(Syrn2 &) " @ A’€, (Sym? €)*), this corresponds lo-
cally to the map

(VP Avim)* @ (1 Avy) — —6(v7)*
i Av)* @ (n Avy) — =3(rim)*

(V]Vz A V%)* ® (Vl A VZ) — 76(1’%)*
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Taking 1) = G,(¥), the morphism /\2(1/)), as a section of (/\Z(Sym2 8)) *® /\28, is
locally given by

(DF — E*)(¥2 Aviva)* ® (v Avy) + (DG — EF) (v A v3)*
® (11 Avy) + (EG — FA)(mivy Av3)* @ (v A ).
Thus, B; ; maps A’ () to the section locally given by
6(E* — DF)(v;)* + 3(EF — DG)(viv2)* + 6(F> — EG)(v3)",
which corresponds to the morphism 4, locally defined by

vi — 6(E* — DF)
v1v, — 3(EF — DG)
v — 6(F* — EG).

This induces morphisms

Nyt €E®E Sym*& — Ox

1®7 can
71’72:8®T8 — ERE — Sym2€ — Oy

T®1 can
YW3iTEDE —= ERE — Sym*E — Oy

TRT can
7{74:78@)78 — E®E& —= Sym’& —— Oy,

which together define a morphism
1M EREZ(EREBD(ERTED(TERE) D (TERTE) — Ox.

By construction, this morphism factors through the canonical morphism & ® & —
Sym2 &, and gives the first-coordinate morphism 7, : Sym2 & — Ox. Let B5 (T, B)
=M

Next, observe that £ = G3(Z) induces a morphism £’: 7€ ® & R E®TE i L.
Define y5: & ® & — L by~ = (0,&,£,0). By construction, this morphism factors
through the canonical morphism & ® & — Sym?” &, and gives the second-coordinate
morphism 7;: Sym* € — L. Let B3, (¥, E) = 7.
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Lastly, observe that the morphism ¢ = G,(¥) induces morphisms

, can Yp—2(T01)
Y31 €E®E Sym’ & —— E@TE

1®7 —p—(r0o1)

Y32 ERTE ——= E®E — Sym?’E —— EDTE

, T®1 can —p—(Torh)
Vi3 TERE —> EQE — Sym’E —— E@TE

, TQT can —2¢+(T0o1))
Y4 TERTE —= ERE — Sym*’E —— EDTE.

These together define a morphism v§: € ® &€ — Eby v = (] 1,745,743 V44)- By
construction, this factors through the canonical morphism & ® & — Sym? &, and
gives the third-coordinate morphism 73: Sym? & — L. Let B;3(V,Z) = ;.

The desired morphism is then given by B; = B3 ; €& B3, & Bs 3. [ |

Corollary 4.13 There is an R-module morphism
B: Buildx(A) — HomX(Sym2 L,05) @Homx(L ® &,8) ® HomX(Sym2 A
with B(ker C) < S3 Covx(A).

Proof Take B = B; ® B, ® B3, and apply Proposition[3.3] Remark[3.5] Corollary 4.9,
and Lemmas 4.10, 4.11, and 4.12. ]

4.14 Summary

We fixed an integral, Noetherian scheme X over a domain R in which 6 was in-
vertible, together with locally free sheaves £ and € of ranks one and two, respec-
tively. We let S; act on L by the sign character and on & = & @ 7€ by its two-
dimensional representation. Letting A = Ox ® £ @ &, our goal was to understand
S5 Covx(A) < HomX(Sym2 A, A), the R-submodule of elements defining commu-
tative, associative Ox[Ss]-algebra structures on A (and hence inducing S3-covers of
the form Specy A — X). After identifying S; Covyx(A) with an R-submodule of
Homx(Sym2 L,0x) @ Homx(L ®o, £8a Homx(Sym2 &, A),alocal analysis led
us to define R-modules

Buildy(A) = Homy (£ ® Sym* &, \’€) @ Homy (Sym® &, \*€)
@ Homy (A€, L),
Compaty (A) = Homy (L ® (A%€) @ €, (A%€) ™)
@ Homy (A\*(Sym” €), A’¢)
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parameterizing the data required to build Ss-covers and the compatibility conditions
on such data. After identifying Buildy (A) with an R-submodule of Homy (L®E, E)P
HomX(Sym2 €, &) ® Homy (€ ® 7€, L), we constructed R-module morphisms

P: S5 Covy(A) — Homy(L ® €,E) @ HomX(Sym2 &,€) ®Homy(E ® 7E, L),
C: Buildx(A) — Compaty(A),
B: Buildx(A) — Homx(Sym2 L,0x)® Homyx(L ® &, &) @ Homx(Syrn2 g A),

such that P(S; Covy(A)®) C ker Cand B(ker C) < S; Covx(A), where S3 Covy(A)°
denoted the subset of elements defining algebras that were domains. In other words,
P extracted from those S;-covers whose covering schemes were integral the building
data of the covers, and such data lay in the kernel of C; and conversely, given building
data in the kernel of C, the morphism B built an S3-cover (whose covering scheme
might not be integral).

4.15 Closing Remarks

In analogy with the abelian case, it would be useful to know when building data
uniquely determine a cover, as well as find a global description of the branch locus,
the location and nature of singularities of the covering scheme, and the relationship
between the (cohomological) invariants of the base scheme and those of the covering
scheme.
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