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Let J be a cofinite set of positive integers which contains 1. In (1973) I proved
that the following condition on a variety (equational class) "f is Mal'tsev-definable:
if 21 e y and 21 is finite, then 1211 eJ. This article contains some subsidiary results,
concerned mainly with a more detailed description of these Mal'tsev conditions.
Many of our results arose upon considering a recent article of W. D. Neumann
(1978).

To restate the above result in more detail, let us first recall that the spectrum
of a variety "T is the set of finite cardinalities of algebras in V. Then that theorem
asserts the existence, for each/, of a sequence <pu <p2, (p3, ••• of finite conjunctions
of identities, such that Spec "V ^ / i f and only if some <pt holds in "K (after suitably
interpreting the operation symbols appearing in <pt as i^-terms). (These cpt are
loosely known as Mal'tsev 'conditions'. It is usually also required that (pi+1

should follow from <pt after suitably interpreting the operation symbols of <pi+l

as <p r terms; in o ur case this is possible if and only if J is closed under multiplication,
which we will assume to be true.) Here we are concerned with the questions: Can
the sequence <px,(p2,... be taken finite? How many variables are needed for the
identities appearing in this sequence ? How easy is it to actually write this sequence ?

Our first theorem simply states that the sequence cannot be taken finite.

THEOREM 1. 'Spec f £ / ' is not a strong Mal'tsev condition.

This result is an immediate corollary of stronger results to be proved in Section 1.
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144 Walter Taylor [2]

It contradicts a result 'proved' in Neumann (1978). In Section 1 we will also
comment on some related false results of that article. In Section 2 we will address
the second question, with this result:

THEOREM 2. (p prime.) IfJ = co — {/>}, thenp variables are required for the MaVtsev
condition for Spec "V £ / .

Our third question has no precise answer, since 'easy' has no mathematical
definition. But in Section 3 we will provide simple algorithms to show that writing
(puq>2, -•• is just as easy as, and probably no easier than, writing a Horn sentence
with spectrum J. This seems as close as one can come to answering Problem 4.2
of Neumann (1978), who asked for 'nice, explicit' conditions.

THEOREM 3. There exist 2*° varieties of varieties. (See Section 4 for definitions.)

The results of this article were announced in W. Taylor (1978) and (1979).

1. Proof of Theorem 1

The reader should have a modest familiarity with general algebra and lattice
theory. We will define all notions special to the theory of Mal'tsev conditions, but
even so this article will be easier to read if one has some familiarity with one of
the three background papers, Taylor (1973), Neumann (1974) or Baldwin and
Berman (1977), or especially its immediate predecessor, Neumann (1978).

For varieties Vu "V~2,... (not necessarily of the same similarity type), we define
their product Yl^i t o t>e t n e v a r i e t y generated by all algebras of the form
(Y[di,Ft)teT, where each At is the underlying set of an algebra ($Lieirt, and the
operations F, are defined as follows. For every n and every sequence

/>i(*i, •••>*„) O' = l> 2, •••)

with each/»; a derived operation of -f^ we define F: (]̂ [̂ 4;)" —»(FT̂  j) via

F(au ...,an) = (PiiaX, ...,al), p2(a\, ...,al), . . .>;

these are all the operation of JJ^i- A basic result in the theory of Mal'tsev con-
ditions (pp. cit.) is that a Mal'tsev condition is strong if and only if it is preserved
under the formation of products of varieties. And so Theorem 1 is an immediate
corollary of the main result of this section:

PROPOSITION 1.1. There exist varieties T^" 1 ,T^" 2 » '^3 ••• such that each "Vx contains

no non-trivial finite algebras, but YY^i has a subvariety equivalent to the variety of
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[3] Mal'tsev conditions and spectra 145

bounded distributive lattices. (In particular, \\V', contains algebras of every finite
power.)

PROOF. Let Lt be the lattice

where each 'diamond' has a top and a bottom, Ko atoms, and nothing else: there
are i diamonds mounted vertically. Define

r l = HSP{(L,-, A, v, all constants)}.

From the fact that each diamond is a simple lattice (well known and easy to prove),
we see that any lattice in "V', with 0 ^ 1 (that is, any non-trivial lattice in f , )
must have infinitely many constants appearing in it as distinct elements. Hence
f i contains no non-trivial finite algebras. Now we check that YY^t n a s *^e

desired properties.
Fix a non-principal ultrafilter IF on a>; we will say that a property p(i) of

integers holds almost everywhere (a.e.) if and only if {/: p(i) is true} e$F. We will
use & to define a congruence relation on pj£,, e O ^ f ^ r e t define

via

f \ _ Jo» if f° r s o m e "» height (a,) = n a.e.,
U, otherwise.

We wish to see that ker cp is a congruence relation on L, that is, that <p(a) = q>(b)
implies <p(a(a)) = (p(a(b)) for every unary algebraic function a(x). Without loss of
generality we may assume that q>{a) = q>{b) = 0 and <p(a(a)) = 1; from which we
will deduce <p(a.(b)) = 1.
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By definition, <x(a) ±= <a,(«i)> for some unary algebraic functions a, on Lt. Our
assumptions tell us that a.e. ai(ai)>z>ai; in particular, a.e.

a,(a() ^ z>a, with z v-prime

This last condition tells us (by an easy induction on the complexity of a^x)) that
in fact, a.e., at(at) is the least possible value of <x,(*), hence, a.e.,

And so (p(<x(b)) = 1.

And so P[i^Yoperations may be defined on {0,1} so that cp becomes a homo-
morphism. It is easy to see from the definitions that each of these operations will
be monotonic, and hence must be a polynomial in 0, 1, A , v (for example, by G.
Birkhoff (1967, Theorem 5, p. 61)). Thus this homomorphic image generates a
variety equivalent to that of bounded distributive lattices.

This proposition provides a counterexample to many of the assertions appearing
in Neumann (1978), most notably 4.1, which claims that 'Spec V •=, / ' is a strong
Mal'tsev condition. It obviously also falsifies 3.1, which claims that Spec (Y[^d
is the multiplicative closure of U Spec "V { (a result which is true for finite
products). The root of these troubles is Lemma 2.3, in whose proof that author
has now found a mistake. The interested reader may consult the article and check
that 6.1 and 7.1 are also false via this counterexample. (For 6.1, take 5 = {2},
f" the variety of 'sets' (no operations) and ~V { c -fr the trivial variety defined by
x=y.)

The finite product of varieties has a structure theory so strong that we can
consider a finite product just as 'known' as its factors are (see, for example,
Taylor (1973), p. 358 or (1975, p. 266). But clearly this is far from true for infinite
products of varieties, even for their finite members. Calculations of infinite
products (or merely some of their subvarieties, as we have done here) are rare in
the literature; for a couple of examples see, for example, Taylor (1974), p. 348
and Bulman-Fleming and Taylor (1976), p. 191. Of course every proof that this
or that Mal'tsev condition is not strong implicitly contains such a calculation; for
references see Taylor (1973), p. 375. And so it would be interesting to see some
more infinite products worked out in detail. We mention in this regard just one
problem among many that occur naturally.

PROBLEM 1.2. Do there exist varieties Y( such that Spec f,- = {1} for each i,
but Yl^t contains a subvariety equivalent to 'sets' or 'pointed sets'? (That is,
this subvariety has only constant operations.)
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2. Proof of Theorem 2

Let A be a (/?+l)-element set, and define F: A"-*A and T: A3^A as follows:

the remaining member of A if au ..., ap are all distinct
au otherwise.

f a if a # b,
, />, c) = <̂

(c it a = b.

(That is, 7" is the ternary discriminator.) The quasiprimal algebra theory of Foster
and Pixley (see Quackenbush (1979) for an exposition with references) tells us
that the finite algebras in "T = HSP(^4; F, T) are the products of subalgebras of
(A; F, T). Since p is prime, we easily check that "K contains no /^-element algebras.
The proof will be complete when we show that there exists a ^-element algebra in
irp~l. (In general, irn denotes the variety ^."V which is defined by all n-variable
identities of "K—see Cohn (1963), p. 173 or Jonsson, McNulty and Quackenbush
(1975).) For our algebra, we take 93 = (B; F, T) where B is a /^-element set,
F(blt...,bn) =bt and Tis again the ternary discriminator. To see that 93eY'p~i,
it is enough by Cohn (1963, loc. cit.) to show that every (j>— l)-generated sub-
algebra of 93 is in ~V~; and this is obvious.

The example given in this proof can doubtless be greatly refined. We will extend
it only to show the existence of a single Mal'tsev condition requiring Ko variables.
A similar example appears at the end of Taylor (1972), but that example is really
a generalized Mal'tsev condition (in the sense of Taylor (1973), p. 387), namely,
it requires the use of a distinguished operation. Recall that "T" is defined in the
proof just above.

THEOREM 2.1. There exists a Mal'tsev definable class K such that for each n there
exists a variety •f & K with i

PROOF. For each prime p, define 2IP to be the (p+ l)-element algebra defined at
the beginning of the above proof of Theorem 2, and define -fp to be HSP9Ip.
And, finally, define iVp to be the product variety TT2 X TT3 X ... x ir

p. (Defined in
Section 1 above. In some of our publications (1973), (1974), (1975) we used ' ® '
for this kind of product, but we now feel it is reasonable to follow the example
of Freyd (1966) and Neumann (1978) and reserve ® for a different varietal product,
which is closely related to tensor product of rings.)

-)Tp is defined by a single identity q>p—see Baker (1977), McKenzie (1975),
Padmanabhan and Quackenbush (1973) and Taylor (1979), 9.14. The sequence
((p2,(p3,(ps,...) defines a Mal'tsev condition as described in our introduction; we
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take K to be the class of varieties obeying this Mal'tsev condition; that is
if and only if some <pp holds in "T (with the (^-operations interpreted as T

Since the sequence of primes p is infinite, it will be- enough to establish that
"Vpe Kbut Vp

p '
1^K. The former fact is immediate from basic facts about product

varieties. To see the latter, we assume that •f~p~ieK and derive a contradiction.
First note that for some q, 'Vp

p~
1 satisfies q>q; since (pq entails cpq. for q<q' (this

is why we took finite products), we may assume that q>p. (As in the earlier proof
of this section) the theory of quasiprimal algebras (op. cit.) tells us that
T ^ 2 ) ' ^ 3 J •••>'Vq have no (/-element algebras, and the theory of finite products of
varieties (Taylor (1973), p. 358, (1975), p. 266) tells us that iTt has no ^-element
model. It will be enough to show that "Vyx does have a ^-element model, for this
will contradict the fact that i f JJ"1 satisfies <pq, the defining identity for iVq. But
obviously {{\,...,q},F,T)e'fp

p~
l for F(au...,ap) = al and T the ternary

discriminator.

3. Spectral Mal'tsev conditions and Horn formulas

Recently, Michael Morley has called to our attention both difficulties and
successes associated with the problem of writing a Horn sentence q>j in pure
equality theory which says, of an n-element set, 'either n is infinite or neJ'. As
above, / is a cofinite set of integers containing 1 and closed under multiplication.
It is easy to see the existence of an algorithm which proceeds from the finite
complement of J to yield q>j, and Morley has provided a simpler algorithm than
was known before.

In this section we will address Neumann's request for 'nice, explicit' conditions
by providing an algorithm (3.3 below) which easily converts <pj into a Mal'tsev
condition q>uq>2,... for / (described in the introduction). At the same time, we
will give a new algorithm for constructing q>j, which differs conceptually from
previous ones in that it proceeds very simply from equational spectrum con-
siderations. This algorithm for cp} will show that in some sense constructing
<p1,(p2,... is just as hard as constructing q>j, and so no improvement can really
be made on our algorithm <pj^><Pu <p2,....

We give our main points in synopsis form, with detailed algorithms for 3.2 and
3.3 to follow.

3.1. There exists an algorithm to convert (the finite complement of) J into a finite
conjunction of identities e} whose spectrum is J. Such an algorithm may be found
in McKenzie (1975); the number of steps required, and the length of eJt are no
more than kit2, where n = maximum m$J.
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[7] Mal'tsev conditions and spectra 149

3.2. We will give an algorithm to convert any identities e, with spectrum J to a
Horn sentence q>j as above. The length of q>j is linear, and the number of steps
required is quadratic, in the length of e}.

3.3. We will give an algorithm to convert any cpj into a Mal'tsev condition
<Pu 92>--for J> m which each q>t has spectrum J. More precisely, in time linear in
m = length (cpj), our algorithm produces a simple algorithm A} for the sequence
{(Pi}. (To produce an individual <pt takes Km1 steps—but this means very little,
since the individual <pf have no invariant meaning in this problem; and since
individual <pt may be repeated or deleted at will, even their growth rate has no
real significance.)

3.4. Ifcp1,(p2,... is any Mal'tsev condition for J, then, from some N onward, each
(pn has spectrum J. This is an easy consequence of 3.1; moreover such an N is
recursive in (a Turing machine for) the sequence q>u(p2, •••• Our contention that
knowing <pt, q>2 ... is probably no easier than knowing q>j rests on the observation
that, as soon as we know this N, we can recover q>j from <pN, using 3.2. While one
can easily imagine silly ways to make N very large and difficult to compute,
reasonable procedures—which get right down to business—generally have N small
and apparent. In fact N = 1 both in the general case given in 3.3 above and in the
special case ( / = co- {2}) given on p. 383 of Taylor (1973).

For the definition and basic theory of Horn formulas, see, for example, Chang
and Keisler (1973), Sections 6.2, 6.3, where there is a proof of the existence of q>j.
For our first algorithm, the reader does not need the full definition, only our
assurance that the constructed <p} is Horn.

ALGORITHM 3.2 from e3 to (pj. We know that e} has the form

t

* = 1

where ak and xk are terms in xu ...,xs. Take one new variable yx for each subterm
a of each at and T(. For each / = 1, ...,s, we take the formula

(3.5) Xi=yat.

If a =F(a1, ...,ap), P = F(fi1, ••-,PP), then we take the 'basic Horn formula':

(3-6)

And, finally, for k = 1 ,...,t we take

(3-7)
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(with ak, rk as given in <pn). The required (pj is then

Vx,...xs3...}>„••• AHr

where Ht,...,HN are the formulas given in (3.5), (3.6) and (3.7). This completes
our description of the algorithm; to see that the constructed (ps is as desired, we
will need this lemma:

LEMMA. For <pj as defined in the algorithm, and any finite set X,

| X\ eJ if and only if X\\= (pj.

PROOF. If | X\ eJ, then X is the universe of an algebra obeying e}. We simply
use the operations defined on this algebra to find all the ya so that (3.5), (3.6)
and (3.7) all become true.

Conversely, if X\¥q>j, then (3.5), (3.6) and (3.7) obviously provide a way of
unambiguously defining the operations of e, on X so that e} becomes true.

ALGORITHM 3.3 from q>j to <pu(p2, •••• We shall assume that <pj is given in the
form

= Vxt.. .xs t.. .y, /\ UK ay = ft

where each a, /?, y and 5 is one of the x's or one of the y's. (The existence of this
form follows of course from the lemma just above, or from traditional theorems in
model theory—for example, Exercise 6.3.4 on p. 367 of Chang and Keisler
(1973); in any case an arbitrary Horn sentence in pure equality theory is easily
converted to this form.) We next claim that it is easy to convert (pj so that each y
and each S is one of the x's. This is an easy inductive argument based on the
observation that q>j is obviously equivalent to

...xsSyt...y, / \ U / \ oy = j&yWfc = <5f

L V=i / J

A standard compactness argument now allows one to prove that for a variety "V,
Spec -T s / if and only if for some terms F\ (xu ...,xs) (1 < A < N, 1 < k < t),
"T satisfies

vxx.. .x. av A [ ( .A «u=Pf
where txfj is obtained from ptJ by leaving each x alone, and converting each yk to
Fk (x,, ...,xs). (We omit a detailed proof.) An application of the distributive law
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[9] Mal'tsev conditions and spectra 151

for A and v , together with the fact that "V is closed under formation of products,
tells us that Spec 'f £ J if and only if for some terms F% as above and some
0: nN^>n, "V satisfies

Vxt...Xs A ( A A <X).J =PyW.j)^yo(y) = <Vy)
y e n N L V ^ l J=l J J

And this final condition is easily converted into a Mal'tsev condition (see, for
example, p. 397 of Taylor (1973)).

4. Varieties of varieties

On p. 115 of Neumann (1978), Neumann defined a class K of varieties to be a
variety of varieties if and only if K is closed under formation of product varieties,
subvarieties and images of pure forgetful functors. He then asks whether the lattice
of varieties of varieties is 'quite sparse'. Here we will prove the easy Theorem 3
of the introduction, which states that there are 2Xo varieties of varieties.

PROOF OF THEOREM 3. Isbell (1970) and Vaughan-Lee (1970) established that
there are 2No varieties of monoids (semigroups with a unit element in the similarity
type). (Also see Biryukov (1965) and Evans (1968).) It will thus be enough to give,
for each variety Ji of monoids, a variety KM of varieties such that distinct JC%
yield distinct AT '̂s.

If y is any variety (of any similarity type), then the unary operations of "f
form a monoid M(f), in which the product FG is given by FG(x) = F(G(x)). (In
fact M^V) is simply the degree-1 part of the clone—see, for example, Taylor
(1973), pp. 361-364—or the endomorphism monoid of the object 1 in the
'algebraic theory' of V—see, for example, (op. cit. p. 391). We now define

It is routine to check that KM is a variety of varieties. Now if Jt # Jf, we may
without loss of generality find a monoid MeJl — Jf. Let i^M be the variety of
all 'M-sets\ that is yM has one unary operation / for each fe M, subject to the
laws

) =fg(x),

!(*) = *.

One easily checks that M(i^M) = M, and hence ir
M e KM — Kx.
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