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Electron energy-loss spectroscopy (EELS) in the TEM is widely recognized as a microanalytical tool 
capable of characterizing the elemental composition of materials with a spatial resolution 
approaching atomic scale and sensitivity approaching the single atom level. Due to the richness of 
the information in the EELS signal and complexity of the background shape, extracting quantitative 
compositional information from EELS data can be highly subjective and dependent on user 
experience.  Despite these difficulties, EELS is often the analysis method of choice due to its high 
detection efficiency which often translates to improved sensitivity.1  This is often the case when dose 
is limited by the necessity to work with STEM probes at the limit of spatial resolution, during 
imaging when mapping time versus resolution tradeoffs are made, or when the sample is dose 
sensitive.   
 
The arbitrary nature of collection and processing parameters in EELS and energy-filtered TEM 
(EFTEM) is troublesome. Error analysis from the most widely used analysis methods often do not 
yield good precision estimates and rarely are systematic errors accounted for.2  Systematic errors can 
come from processing methods, poor control of analysis variables, and cross-section accuracy.  The 
latter is not treated here, but the other issues can be addressed by analyzing a priori synthesized 
spectra.  Generating3 and processing a collection of spectra representing a range of analysis 
conditions, stable acquisition and processing parameters can be found.  Analyzing how synthetically 
applied noise affects these data sets can give meaningful estimates of non-systematic errors.  
Comparing results from the processed data sets to the initial conditions used to generate the data sets 
gives estimates of systematic errors.   We have developed a series of tools to perform these 
functions, and are working on applying them to the ultimate goal of automated experiment setup and 
spectral analysis.   
 
As a first step we have sought to address the following questions with these tools, given a priori 
knowledge of the specimen composition: 

1. Can the minimum detectable mass fraction (MMF) and the minimum detectable number of 
atoms (MDN) be predicted? 

2. What experimental conditions should be used to optimize collection of the EELS signal? 
3. How should the EELS quantification parameters be chosen to ensure accurate and precise 

results? 
4. As specimen composition, dose (and thus resolution), collection angle, specimen thickness, 

etc vary, how do systematic and non-systematic errors change? 
 
The answers to the above questions depend on being able to simulate energy loss spectra reliably and 
accurately and on being able to apply the same methods to quantify the simulated spectra as the 
experimental spectra.  The first version of tool titled “EELSAdvisor” was created for this purpose 
and includes the capability to optimize most processing and acquisition parameters for EFTEM and 
EELS experiments utilizing power-law background subtraction.  EELSAdvisor is capable of 
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addressing questions 1&2 effectively and we will present experimental verification of results from a 
variety of conditions (main limitations found come from limitations in detail of simulated spectra).  
Questions 3&4 are less effectively addressed because they require significant manual manipulation 
of the software and too much information comes from this process for casual use.  Solving this issue 
and using it to further automate the analysis process is the focus of current development.     
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Figure 1.  Results from standard EELSAdvisor tool after optimizing processing parameters for 
detecting 1% of Ca.  (Left) Optimized processing windows; (Right) Distribution of results of many 
analyses gives estimate of systematic and non-systematic errors - these are used to drive the 
optimization process. 
 

 
Figure 2.  Determining stable acquisition and analysis conditions requires understanding sensitivity 
to parameters such as thickness.  The prototype tool shown is a manual approach to this problem. 
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