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1. Introduction. Let g denote an odd prime, and h = h(g) the class number 
of the cyclotomic field i?(f), where f is a primitive gth root of unity. It is 
known that we can write 

h = hih2 

where hi and h2 (both integers) are the so-called first and second factors of 
the class-number; in fact h2 is the class-number of the real field of degree 2 
under R(Ç), namely the field R(Ç + f"1). 

Kummer conjectured (J. de Math., 16, 1851, 473) that 

fy(0+3)/4 

(1.1) Ai 
2(0~3)/2 T(0-D/2 

(The sign used here is the sign of asymptotic equality.) He also calculated 
hi for g ^ 97 and found hx = 1 for g ^ 19, hi = 411,322,823,001 for g = 97. 
No proof of (1.1) has yet been published. 

In this paper we show that 

(1.2) l o g ( f t i / G ) / l o g g - 0 ( g - » ) 

and this is the most that we can prove in the direction of Rummer's conjecture 
(1.1); an interesting consequence of (1.2) is that: 

There exists a go such that hi(g) is monotonie increasing for g > go; in fact 
if gi > gi > go, we have 

hi (g2) > hi (gi). 

We further show that if Rummer's conjecture is true we must have 

(1-3) £ C P • P~l = O(g-i) 

a s g —> oo t where : 

Cp = 1 if p = 1 (modg), 
Cp = — 1 iî p = — 1 (modg), 
Cr, = 0 in all other cases. 

Here p stands for a typical prime. 
We are unable to prove (1.3), which if true, must lie very deep. We remark 

that the convergence of the series on the left side of (1.3) has been known for 
a long time [3]. As far as the authors are aware, the result h = h{g) —» <» 
as g —> oo t is explicitly proved here for the first time, excepting a recent paper 
of R. Brauer [2], who also gets a sharper form of this result. 
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In §5, we assume the extended Riemann hypothesis and prove the following 
result, which is naturally suggested by the methods of this paper. 

Let 61 and 02 denote any fixed constants such that % < di< s < d2< 1. 
If the extended Riemann hypothesis is true, there exists, for every given 

c > 0, a non-principal character x(n) (mod g) such that 

(1.4) \L(s)\ = | Ê x W » i < l + 6 
1 

for all g > go(e), g prime. 
This result with the larger constant (f (2s))* + e on the right hand side of 

the inequality is implicit in some recent work of Atle Selberg [4], but it (in 
this weaker form) is proved by him without any hypothesis. (Here f (s) de­
notes Reimann's Zeta Function; hence f (2s) > 1 for s > J). 

2. For n not a multiple of g we define 

Xt{n) = exp {2Tin't/(g - 1)} 

where n' is defined as follows: let r denote a primitive root of g, then 

rnl = n (mod g) ; 

/ runs through the odd numbers 1, 3, 5, . . , g — 2. If n is a multiple of g we 
define 

Xt (n) = 0. 

It is easy to see that %t («) is a non-principal character (mod g) and that 

[n - 1(g)], 
[» = " 1(g)]. 
[» * ± 1(g)]. 

Further write 

£<(*) = L x«(»)«- [*(*) > 0]. 
1 

It now easily follows that for s > 1, 

n Lt(s) = exp {g' E E cp,m w - ^ - - } , 
* £ m > 1 

C P , m = 1 [/»»«• 1(g)], 
cp .m = - 1 [ / » « • - 1(g)], 
cP ,m = 0 b m * ± i(g)]. 

Ai 

where g' = §(g — 1), and 

G =fLtil) 

Since, as is well known, 

and 2Z Cp p~l is convergent, it follows that 

(2.1) h = exp {g' Z CP . /»- ' + g' £ E C,.»»»-1/.—}. 
tx *> m k 2 
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In the rest of this section we show that 

(2-2) j ^ E C r f - ^ O ( g - œ ) . 

Let us write 
C(x) = E Cp. 

£<* 

Denote by ir(x; k, I) the number of primes = I (mod k) not exceeding x; <t>(k) 
is the number of positive integers not exceeding k and prime to k: we shall 
need the following lemmas. 

LEMMA 1. For any positive e 

TT(*; k, I) = oi—^ } [x > k^]. 
\<t>(k)log x) 

Here the constant implied in the O depends on e alone. Although this result 
follows from the method of Viggo Brun, it was first s ta ted explicitly by 
Ti tchmarsh [5]. 

L E M M A 2. If (ky /) = 1 then for arbitrary positive 6, 

TT(X\ k, Ï) — 
4>{k) 

du 

\6(k) log x) I 2 log U \<t>(k) log : 

Here the constant implied in the 0 is an absolute one, A is an absolute positive 
constant , c is a positive cons tant depending on 6 alone. This result is due to 
Walfisz [6]. 

Applying Lemma 1 with k = g, I = 1 and / = g — 1, we obtain 

(2.3) C(x) = 0 (—?—) [x > g1+<], 
\g log x/ 

where the constant implied in the 0 symbol m a y depend on e. 
We have for x ^ 2g - 1, since C(2g - 2) = 0, 

E erf-* = E c9p- = E C(n) - C{n ~ l) 

p^x 2 g - 1 < £ < x 2 g - l U 

(2.4) = ® + *Z Cin) 

2g-i n(n + 1) 
We split the sum 

into three parts, thus: 

In 

2g-i n(n + 1) 

S = Sl + S2 + St. 

Si, n goes from 2g — 1 to g1+% 
5 2 , n goes from 1 + g1+e to exp (g26), 
5 3 , n goes from 1 + exp (g2d) to x — 1 ; 

0 is a small positive number whose exact specification will be given later. 
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Clearly, 
\Si\ $ E (tng- I )" 1 + E {mg + I ) " 1 

(2.5) 
mg - 1 < gi+< w* + 1 < g*+« 

where the constant in the last 0 symbol is independent of both e and g. 
Again from (2.3) we have 

(2.6) 0 ^ C(x) $ f ^ - [x Ï **+•], 

where K(e) is a constant depending on e alone. Hence 

\S*\ ^ ^ Z ( n log ri)-* [g i+^ n ^ exp (g")J 

(2.7) ^ ASK(e) log g ^ 

g 

where A is an absolute positive constant. Here we used the well-known 

£ (n log n)"1 = 0 ( [* - ^ - " j = O(log log x). 
2 \J2 U log U/ 

It remains to estimate 53, for which purpose we use lemma 2. 
From lemma 2, 

c(x) = o(xér-̂ °g*)è) + o (^L!!_). 
\g log x/ 

It follows that 

S, = E ^ " V , [1 + exp (g") ^ n ^ * - 1] 
rc(» + 1) 

= 0 {Erc-'e-^dos">*} + 0 { E g_1«_1(log ») -2} [exp (g29) ^ « ^*] 

since, for x > exp (g2e), 

x°°-° > log x [g> go(0)]. 

Hence, interchanging the 0 terms, 

Sz = o{ E «"'«"'dog »)-*}+o{ E «-'(log «rv'}, 
« > exp (grt) n £ exp («'«) 

since we have 

(log n)V< < eA«°s «>* [« £ exp (gM). g > «•>(*)]. 
Thus for g > g0(0), 0 < TV , 

(2.8) S3 = 0(g-1-2») + 0 (0-ig-wu/o-D) = 0(g-i-«tf-i). 

From (2.5), (2.7), (2.8), we obtain 
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(2.9) \S\ ^ 0(eg-i log g) + O(0K(e)g-i l o g g) + 0{g-i-2e d-i^ 

where the constants implied in the 0 symbols are independent of € and 0 and g. 
For any given e we can choose 6 so that 6K(e) < e. Hence (2.4) and (2.9) 
give 

(2.10) - * - E CPp'l-+0 ( g - « ) , 
logg P<x 

which is (2.2). 

3. In this section we prove 

(3.1) S = L E Cv^nrxp-m = Ofe"1). 
£ w ^ 2 

Clearly, 
(3.2) | 5 U E E m - ^ — [pm ES ± 1(g)], 

£ 7» ^ 2 

= Si + S2, 

where Si is the contribution of the sum from the terms with p < g, S2 the con­
tribution of the terms with p > g (clearly p = g contributes nothing). 

First consider 

(3.3) = 0 { £ *•(*) . x-3} 

= o(r1(iogg)-1)-
Since x(x), the number of primes ^ x, is of the order of #/log#• 

Split Si into two parts: 

(3.4) Si = 5 3 + 54 

where 

(3.5) 5 3 = L E w - 1 ^ - " 

and the variables w, p are subject to p < g, pm = 1(g) ; S4 is the same sum but 
with variables w, £ subject to p < g, pm = — 1(g). 

We first treat S3. Since the congruence xm = 1(g) has at most m solutions 
with 0 < x < g, it follows that S3 can be written as 

00 -, f B(m) a \ 

(3.6) 5 3 = E - { E * > 
m = 2 W (a=A(m) ^ag + l j 

where 
A{m) = J(m2 — w) + 1, 
B(m) = J(w2 + m), 

each 0 is 1 or 0, and the w's are different positive integers. We clearly have 

(3.7) s3< r l E «-*{ Z -> = r 1 £ ^m^_1. 
m =2 U=A(m)Woj m =2 
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Write 

Z?, = d2, Dz = d2 + di, DA •• = di + dz ; + d4 > • • • » 

Then 

<3'8> Ç è - 7 
, D i - D t , ,D, 

+ ^ 3 — + . . . + -
9 ~ Dx-i 

X 

* - 1 

+ z 
2 

L 

» + l ) 
Clearly 

(3.9) 0<Dn Ç 
a 

•n) - 1 

Z a" 
= 1 

-1^ 

From (3.6) to (3.9) we obtain 

(3.10) 

Again 

0 < 5 3 <g 
00 j / 

-1 E — \ 
w=2 m(m + 1) I 

00 -J B(m) 

E 

a = 1 

<t>a 

'4 
m ) 

= 0(g--1). 

w = 2 m a=A(m)^ag — 1 ' 

where each # is 0 or 1, and the s>'s are different positive integers. 
Since 

B(m) , B(m) , / . \ 

z - ± - = z - ^ - +o(r2 z *M 
Mm) Vag ~ 1 A(m) fl0g + 1 \ Va

2/ 
B{m) , 

= Z — ^ T T + 0(g-2) 

it follows, as in the case of 53 that 

(3.11) 5 4 = 0(g~ l). 
From (3.2), (3.3), (3.4), (3.10), (3.11) we derive (3.1). 

4. From (2.2) and (3.1), 
(4.1) E Z ^ = < , ( W ) . 

P m mpm \ g / 
From (2.1) and (4.1) 

(4.2) log ( | ) = o (log g), 

which is our main result stated in the introduction. Further we have proved 
that if Kummer's conjecture is true we must have 

(4.3) Z CPp~i = O(g-0. 

5. In this section we assume the truth of the ' extended Riemann hypo­
thesis/ ' For R(s) > 1, it is easy to see that 

(5.1) n Lt(s) = exp {g' ZCp.p~* + g' E E Cp.fntn-ip-*"} 
t p m^2 

where gf = § (g — 1). In the sequel we shall need the following result due 
to Titchmarsh, [5], which we state as a lemma. 
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LEMMA 3. If the extended Riemann hypothesis is true, and (k, I) = 1, we have 

(5.2) * * ; * , 0 - ^ j ; + 0(X* log X) 
2 lOg U 

where the constant implied in the 0 is independent of both x and k. 

Titchmarsh makes the restriction x ^ k but this is plainly unnecessary for 
ir(x;k,l) = 0(1) if x< k. 

From (5.2) it follows that 

(5.3) C(x) = £ Cp = 0 (** log x) [x Ï 2], 

where the constant implied in the O is independent of g. 
Hence the series 

is convergent and represents an analytic function of 5 whenever R(s) > | . 
Further, the series 

£ E Cv,mrn-lp-m8 

p m^2 

is clearly an analytic function of 5 for i?(s) > | , in fact without any hypothesis. 
Hence, by the theory of analytic continuation it follows that (5.1), proved 
for R(s) > 1, is also true for R(s) > J on the assumption of the extended 
Riemann hypothesis. 

We next estimate the series on the right hand side of (5.1) qua function of g. 
We restrict 5 to be real and to lie between 0i and 02 where J < 0i < 02 < 1. 
We have 

£ Cv . p~* = £ Cp . £~5 + £ Cp . />"• = Gi + G2. 
2g - 1 < p < g» p > g2 

Clearly 

(5.5) Gi = 0{g - 8 ( l - 8 + 2~8 + . . . + g"-)} = 0(g^8). 

To estimate G2 we use (5.3) and obtain 

(5.6) LC,r = o{E^} = ote). 
From (5.4), (5.5), (5.6) we obtain 

(5.7) E C p ^ - 8 = 0(g 1 - 2Mogg). 

To estimate 
E E Cp,mm-'p-m8 

p m^2 

qua function of g, we use the method of §3. Write 

G3 = £ E m-^-*1* [£m = ± !(«)]. 
£ m^2 

Put 
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(5.8) G3 = G4 + G5, 

where GA is the part which arises from the terms of Gz with p < g, G5 the 
remaining part (terms with p > g, for p = g contributes nothing). We have 

Hence 

(5.9) G6 = 0{g1-2Vlogg}. 

To estimate G4 we again use the method of §3. We write 

(5.10) G4 = G6 + G7, 

G6 = E - < E 7 — ^ - r f » 

m=2 W ( a =A(m) (vag ~ 1 ) V 

where ^4(w) = ^ (m2 — w) + 1, B(m) = § (w2 + w); the w's are different 
positive integers, each 8 is 1 or 0; the v's are different positive integers, each 
0 is 1 or 0. 
Since 

00 j B(m) / a \ 

Z ^ { E « - } - o ( E - ^ -o ( i ) , 

it follows as in §3 that 

(5.11) G6, G7 = 0 ( g - ) . 

From (5.5) and (5.8) - (5.11) it follows that 

(5.12) ILLt(s) = exp{gf(g)} [ * > * ] , 
t 

where/(g) —» 0 as g —> 00. (1.4) is an immediate consequence of (5.12). 

6. In this section we give a direct simple proof of the result (also implied 
in the work of Paley and Selberg—see [4] : 

(6.1) Z \L,(1)\2 ~ k f (2). 

This relation gives an upper bound for h\/G. For, from (6.1) 

(6.2) n |L,(1)|2 ^ j i E \Lt(l)\Y < exp (Ag). 

In view of Pôlya's celebrated inequality 
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(6.3) £ Xt(n) = 0(g* log g), 
n — a 

we obtain 

(6.4) LtO) = E xK*)»-1 = Z xK^)^"1 + 0 (log g) g~*. 
l l 

Again (6.4) for the conjugate character, reads 

(6.5) L xtWn-i = £ - < ( n ) > w - i + 0 ( l o g g ) . g-\m 
l l 

From (6.4) and (6.5) we obtain on multiplication 

(6.6) MD|2 = E E *MM + o Wg) . r». 

Hence we obtain the desired result, namely: 

(6.7) L |L,(1)|2 = Ug - 1) L «-2 + 0 (g i log 2 g) 

= k f ( 2 ) + 0 ( g i l o g 2 g ) , 

using (when m, n are not multiples of g) 

f ite - i) N s «(g)], 
(6.8) E x«(w)xi(») = i — *te — i) N s - W(g)], 

' 1 0 [ w ^ ± »(g)j. 
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