QUASICONFORMAL EXTENSIONS OF HARMONIC MAPPINGS WITH A COMPLEX PARAMETER

XINGDI CHEN[™] and YUQIN QUE

(Received 12 November 2015; accepted 19 May 2016; first published online 19 September 2016)

Communicated by F. Larusson

Abstract

In this paper, we study quasiconformal extensions of harmonic mappings. Utilizing a complex parameter, we build a bridge between the quasiconformal extension theorem for locally analytic functions given by Ahlfors ['Sufficient conditions for quasiconformal extension', *Ann. of Math. Stud.* **79** (1974), 23–29] and the one for harmonic mappings recently given by Hernández and Martín ['Quasiconformal extension of harmonic mappings in the plane', *Ann. Acad. Sci. Fenn. Math.* **38** (2) (2013), 617–630]. We also give a quasiconformal extension of a harmonic Teichmüller mapping, whose maximal dilatation estimate is asymptotically sharp.

2010 *Mathematics subject classification*: primary 30C62, 30C45, 30C55; secondary 31A05. *Keywords and phrases*: harmonic mapping, Teichmüller mapping, quasiconformal extension, harmonic quasiconformal mapping.

1. Introduction

If a C^2 -complex-valued function f of the unit disk \mathbb{D} satisfies the Laplacian equation $\Delta f(z) = 4f_{z\bar{z}} = 0$, then it is said to be a *harmonic mapping*. It is known that f has a canonical representation $f = h + \bar{g}$, where h and g are analytic on \mathbb{D} . We also call v = g'/h' the *second Beltrami coefficient* of f. Lewy's theorem [10] says that a harmonic mapping f is locally univalent if and only if its Jacobian $J_f = |h'|^2 - |g'|^2$ does not vanish. If a harmonic mapping is of the representation $f = h + \alpha \bar{h}$, where h is a conformal mapping and α is a constant such that $0 < |\alpha| < 1$, then it is called a *harmonic Teichmüller mapping* (see [4]).

The *pre-Schwarzian derivative* P_f of a locally univalent harmonic mapping f is defined on \mathbb{D} by

$$P_f = \frac{\partial}{\partial z} \log |J_f| = \frac{h''}{h'} - \frac{\bar{\nu}\nu'}{1 - |\nu|^2}.$$

This paper is supported by NNSF of China (11471128), the Natural Science Foundation of Fujian Province of China (2014J01013), NCETFJ Fund (2012FJ-NCET-ZR05), Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX110). © 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

In particular, if f is a locally univalent analytic mapping, then $P_f = f''/f'$.

Becker [2] stated that if a locally univalent analytic mapping f in the unit disk \mathbb{D} satisfies

$$\sup_{z\in\mathbb{D}}|P_f|(1-|z|^2)\leq 1,$$

then f is univalent on \mathbb{D} . Later, Becker and Pommerenke [3] showed that the constant 1 is sharp. Moreover, if

$$\sup_{z \in D} |P_f| (1 - |z|^2) \le k < 1, \tag{1.1}$$

then it also has a continuous extension \tilde{f} to $\overline{\mathbb{D}}$ and $\tilde{f}(\partial \mathbb{D})$ is a quasicircle [2]. For every f satisfying (1.1), Ahlfors [1] gave an explicit quasiconformal extension of the complex plane \mathbb{C} onto itself with the infinity fixed.

THEOREM A. If a locally univalent analytic mapping f in the unit disk \mathbb{D} satisfies (1.1), then it admits a homeomorphic extension

$$F(z) = \begin{cases} \bar{f}(z) & \text{if } |z| \le 1, \\ f\left(\frac{1}{\bar{z}}\right) + u\left(\frac{1}{\bar{z}}\right) & \text{if } |z| > 1, \end{cases}$$

where $u(z) = f'(z)(1 - |z|^2)/\overline{z}$, for $z \in \mathbb{D} \setminus \{0\}$. Moreover, the mapping F is a (1 + k)/(1 - k)-quasiconformal in the complex plane \mathbb{C} , coinciding with f in \mathbb{D} .

Hernández and Martín [8] proved that if a sense-preserving harmonic mapping $f = h + \overline{g}$ in the unit disk \mathbb{D} with the second Beltrami coefficient v(z) satisfies

$$|P_f|(1-|z|^2) + |v^*(z)| \le 1, \quad v^*(z) = \frac{v'(z)(1-|z|^2)}{1-|v(z)|^2}, z \in \mathbb{D},$$

then f is univalent in \mathbb{D} . Moreover, the constant 1 is sharp. Recently, Hernández and Martín [7] showed the following theorem.

THEOREM B. If a sense-preserving harmonic mapping f in the unit disk with a second Beltrami coefficient v(z) satisfies

$$|P_f|(1-|z|^2) + |\nu^*(z)| \le k < 1, \quad z \in \mathbb{D},$$
(1.2)

then f has a continuous and homeomorphic extension \tilde{f} to $\overline{\mathbb{D}}$. It also admits an explicit homeomorphic extension of the complex plane \mathbb{C} with

$$F(z) = \begin{cases} \tilde{f}(z) & \text{if } |z| \le 1, \\ f\left(\frac{1}{\bar{z}}\right) + U\left(\frac{1}{\bar{z}}\right) & \text{if } |z| > 1, \end{cases}$$
(1.3)

where

$$U(z) = \frac{h'(z)(1-|z|^2)}{\bar{z}} + \frac{\overline{g'(z)}(1-|z|^2)}{z}, \quad z \in \mathbb{D} \setminus \{0\}.$$

Furthermore, Hernández and Martín [7] gave the maximal dilatation estimate of the homeomorphic extension.

308

THEOREM C. If a sense-preserving harmonic mapping f satisfies (1.2) and $||v||_{\infty} = \sup_{z \in \mathbb{D}} |v(z)| < 1$, then $\tilde{f}(\partial \mathbb{D})$ is a quasicircle and f can be extended to a quasiconformal mapping in the complex plane \mathbb{C} . Indeed, the mapping defined by (1.3) is an explicit *K*-quasiconformal extension of f whenever

$$k < \frac{1 - \|\nu\|_{\infty}}{1 + \|\nu\|_{\infty}}.$$

The constant K is equal to

$$K = \frac{1+k+(1-k)||v||_{\infty}}{1-k-(1+k)||v||_{\infty}}.$$

As the first result of this paper, for a sense-preserving harmonic mapping \underline{f} , we study the stability of its quasiconformal extension in a complex parameter $\lambda \in \overline{\mathbb{D}}$. We prove the following theorem.

THEOREM 1.1. Let $f = h + \bar{g}$ be a sense-preserving harmonic mapping f satisfying (1.2) and let v(z) be its second Beltrami coefficient with $||v||_{\infty} = \sup_{z \in \mathbb{D}} |v(z)| < 1$. Then, for every $|\lambda| \le 1$, $f_{\lambda} = h + \lambda \bar{g}$ has a continuous and homeomorphic extension $\tilde{f}_{\lambda} = \tilde{h} + \lambda \tilde{g}$ to $\overline{\mathbb{D}}$ and the mapping

$$F_{\lambda}(z) = \begin{cases} \tilde{h}(z) + \lambda \tilde{g}(z) & \text{if } |z| \le 1, \\ h\left(\frac{1}{\bar{z}}\right) + \lambda g\left(\frac{1}{\bar{z}}\right) + U_{\lambda}\left(\frac{1}{\bar{z}}\right) & \text{if } |z| > 1, \end{cases}$$

is a homeomorphic extension of the complex plane \mathbb{C} onto itself. Moreover,

$$|\mu_{F_{\lambda}}(z)| \le \frac{k - (1 - ||\nu||_{\infty})|\nu^{*}(1/\bar{z})| + |\lambda|||\nu||_{\infty}|z|}{|z| - k|\lambda|||\nu||_{\infty} - (1 - ||\nu||_{\infty})|\nu^{*}(1/\bar{z})|}, \quad z \in \mathbb{C} \setminus \overline{\mathbb{D}},$$

where

$$U_{\lambda}(z) = \frac{h'(z)(1-|z|^2)}{\bar{z}} + \lambda \frac{\overline{g'(z)}(1-|z|^2)}{z}, \quad z \in \mathbb{D} \setminus \{0\}.$$

Furthermore, if

$$k < \frac{1 - \|v\|_{\infty}}{1 + \|v\|_{\infty}},\tag{1.4}$$

then the family of mappings $F_{\lambda}(z)$ are a K-quasiconformal mapping of the complex plane \mathbb{C} with

$$K = \frac{1+k_1}{1-k_1}, \quad k_1 = \frac{k+|\lambda|||\nu||_{\infty}}{1-k|\lambda|||\nu||_{\infty}}.$$

By a complex parameter $\lambda \in \overline{\mathbb{D}}$, Theorem 1.1 builds a bridge between Theorems A and C (see Remark 2.1).

The class of harmonic Teichmüller mappings is a subclass of harmonic mappings that is closely related to minimal surfaces with a constant gaussian curvature (see [5, Theorem 1]). Chuaqui *et al.* [6] also showed that a harmonic Möbius transformation

X. Chen and Y. Que

always sends circles to ellipses. One can see [4] for more properties for harmonic Teichmüller mappings. As the second result of this paper, we give a quasiconformal extension theorem of a harmonic Teichmüller mapping and give an asymptotically sharp estimate of its maximal dilatation.

THEOREM 1.2. Let f be a sense-preserving harmonic mapping in the unit disk \mathbb{D} with a representation $f = h + \alpha \overline{h}$, where h is a locally univalent analytic function in \mathbb{D} and α is a constant with $|\alpha| < 1$. Assume that

$$|P_h(z)(1-|z|^2)| \le k < 1, \quad z \in \mathbb{D}.$$
(1.5)

Then f is a harmonic Teichmüller mappings of \mathbb{D} and has a continuous and homeomorphic extension \tilde{f} to $\overline{\mathbb{D}}$. Moreover, the mapping

$$F(z) = \begin{cases} \tilde{f}(z) & \text{if } |z| \le 1, \\ f\left(\frac{1}{\bar{z}}\right) + U_{\alpha}\left(\frac{1}{\bar{z}}\right) & \text{if } |z| > 1, \end{cases}$$
(1.6)

is a K-quasiconformal mapping of the complex plane \mathbb{C} with

$$K = \frac{1+k_1}{1-k_1}, \quad k_1 = \frac{|\alpha|+k}{1+|\alpha|k},$$

where

$$U_{\alpha}(z) = \frac{h'(z)(1-|z|^2)}{\bar{z}} + \frac{\alpha \overline{h'(z)}(1-|z|^2)}{z}, \quad z \in \mathbb{D} \setminus \{0\}.$$

The maximal dilatation estimate of the quasiconformal extension F is asymptotically sharp in k, and extremal mappings are of the form $f(z) = az + b\overline{z}$, where a and b are two nonvanishing constants.

2. Proof of Theorem 1.1

PROOF. For every $\lambda \in \overline{\mathbb{D}}$, let $f_{\lambda} = h + \lambda \overline{g}$. Write $v_{\lambda} = \overline{\lambda}v$ and $v_{\lambda}^* = (v_{\lambda}'(1 - |z|^2)/(1 - |v_{\lambda}|^2))$. Utilizing the triangle inequality,

$$\begin{split} |P_{f_{\lambda}}|(1-|z|^{2})+|\nu_{\lambda}^{*}| &= \left|\frac{h''}{h'} - \frac{\overline{\nu_{\lambda}}\nu_{\lambda}'}{1-|\nu_{\lambda}|^{2}}\right| + |\nu_{\lambda}^{*}| \\ &\leq \left|\frac{h''}{h'} - \frac{\overline{\nu}\nu'}{1-|\nu|^{2}}\right|(1-|z|^{2}) + \left|\frac{\overline{\nu}\nu'}{1-|\nu|^{2}} - \frac{\overline{\nu_{\lambda}}\nu_{\lambda}'}{1-|\nu_{\lambda}|^{2}}\right|(1-|z|^{2}) + |\nu_{\lambda}^{*}| \\ &= |P_{f}|(1-|z|^{2}) + \frac{|\nu||\nu'|(1-|\lambda|^{2})(1-|z|^{2})}{(1-|\nu|^{2})(1-|\lambda|^{2}|\nu|^{2})} + \frac{|\lambda||\nu'|(1-|z|^{2})}{1-|\lambda|^{2}|\nu|^{2}} \\ &= |P_{f}|(1-|z|^{2}) + \frac{|\lambda|+|\nu|}{1+|\lambda||\nu|} \frac{|\nu'|(1-|z|^{2})}{1-|\nu|^{2}} \\ &\leq |P_{f}|(1-|z|^{2}) + |\nu^{*}|. \end{split}$$

The fact that $(1 - |\lambda|)(1 - |\nu|) \ge 0$ implies the above second inequality. Hence, for all $\lambda \in \overline{\mathbb{D}}$, it follows that

$$|P_{f_{\lambda}}|(1-|z|^2)+|\nu_{\lambda}^*| \le k, \quad 0 \le k < 1,$$

if f satisfies the assumption (1.2).

If the second Beltrami coefficient v of f satisfies that $||v||_{\infty} < 1$, then, for each $\lambda \in \overline{\mathbb{D}}$, by [7, Theorem 1], the mapping f_{λ} can be continuously extended to a homeomorphism of $\overline{\mathbb{D}}$ and we write it by \tilde{f}_{λ} . Moreover, f_{λ} can be extended to a homeomorphism of the complex plane \mathbb{C} as

$$F_{\lambda}(z) = \begin{cases} \tilde{f}_{\lambda}(z) & \text{if } |z| \le 1, \\ h\left(\frac{1}{\bar{z}}\right) + \lambda \overline{g\left(\frac{1}{\bar{z}}\right)} + U_{\lambda}\left(\frac{1}{\bar{z}}\right) & \text{if } |z| > 1, \end{cases}$$

where

$$U_{\lambda}(z) = \frac{h'(z)(1-|z|^2)}{\bar{z}} + \lambda \frac{\overline{g'(z)}(1-|z|^2)}{z}, \quad z \in \mathbb{D} \setminus \{0\}.$$

Next, we will estimate the maximal dilatation of the mapping F_{λ} . When |z| < 1, by the assumption that $f = h + \bar{g}$ satisfies that $|\mu_f| = |g'/h'| \le ||v||_{\infty} < 1$ in \mathbb{D} ,

$$|\mu_{F_{\lambda}}(z)| = |\nu_{f_{\lambda}}(z)| = |\lambda||\nu(z)| \le |\lambda||\nu||_{\infty} < 1, \quad z \in \mathbb{D}.$$

When |z| > 1, we set $w = 1/\overline{z}$ and obtain that

$$\begin{aligned} |\mu_{F_{\lambda}}(z)| &= \left| \frac{(F_{\lambda})_{\bar{z}}}{(F_{\lambda})_{z}} \right| = \left| \frac{(F_{\lambda})_{w} w_{\bar{z}} + (F_{\lambda})_{\bar{w}} \overline{w_{z}}}{(F_{\lambda})_{w} w_{z} + (F_{\lambda})_{\bar{w}} \overline{w_{\bar{z}}}} \right| = \left| \frac{-(F_{\lambda})_{w} \frac{1}{z^{2}}}{-(F_{\lambda})_{\bar{w}} \frac{1}{z^{2}}} \right| \\ &= \left| \frac{(F_{\lambda})_{w}}{(F_{\lambda})_{\bar{w}}} \right| = \left| \frac{h'(w) + U_{w}(w)}{\lambda \overline{g'(w)} + U_{\bar{w}}(w)} \right| \\ &\leq \frac{\left| w \frac{h''(w)}{h'(w)} \right| (1 - |w|^{2}) + |\lambda| ||v||_{\infty}}{1 - |\lambda| \left| \frac{wg''(w)}{h'(w)} \right| (1 - |w|^{2})}. \end{aligned}$$
(2.1)

Since f satisfies (1.2), we get

$$\left|\frac{h''(w)}{h'(w)} - \frac{\overline{\nu(w)}\nu'(w)}{1 - |\nu(w)|^2}\right| (1 - |w|^2) \le k - |\nu^*(w)|, \quad w \in \mathbb{D}$$

which implies that

$$\frac{wh''(w)}{h'(w)} \Big| (1 - |w|^2) \le k|w| - |v^*(w)||w| + \Big| \frac{w\overline{v(w)}v'(w)}{1 - |v(w)|^2} \Big| (1 - |w|^w) \\ \le k|w| - |v^*(w)||w| + |v^*(w)||v||_{\infty}|w| \\ = k|w| + (||v||_{\infty} - 1)|v^*(w)||w|.$$
(2.2)

Moreover, g'' = (vh')' = v'h' + vh'' in the unit disk. Hence, we obtain

$$\begin{aligned} \frac{g''(w)}{h'(w)}(1-|w|^2) &= (v(w)\frac{h''(w)}{h'(w)} + v'(w))(1-|w|^2) \\ &= v(w)\frac{h''(w)}{h'(w)}(1-|w|^2) + \frac{v'(w)(1-|w|^2)(1-|v(w)|^2)}{1-|v(w)|^2} \\ &= v(w)P_f(w)(1-|w|^2) + \frac{v'(w)(1-|w|^2)}{1-|v(w)|^2}, \quad w \in \mathbb{D}. \end{aligned}$$

So

$$\left| w \frac{g''(w)}{h'(w)} \right| (1 - |w|^2) \le |wv(w)| |P_f(w)| (1 - |w|^2) + |wv^*(w)|$$

$$\le |w| |v||_{\infty} (k - |v^*(w)|) + |w| |v^*(w)|$$

$$= k |w| ||v||_{\infty} + (1 - ||v||_{\infty}) |v^*(w)| |w|.$$
(2.3)

By (2.2) and (2.3), we deduce from (2.1) that

$$|\mu_{F_{\lambda}}(z)| \leq \frac{k - (1 - ||\nu||_{\infty})|\nu^{*}(1/\bar{z})| + |\lambda|||\nu||_{\infty}|z|}{|z| - k|\lambda|||\nu||_{\infty} - (1 - ||\nu||_{\infty})|\nu^{*}(1/\bar{z})|}, \quad z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$$

Let $|v^*(1/\overline{z})| = x$ and define

$$\rho(x) = \frac{k - (1 - ||v||_{\infty})x + |\lambda|||v||_{\infty}|z|}{|z| - k|\lambda|||v||_{\infty} - (1 - ||v||_{\infty})x}.$$

The relation (1.4) implies that the function $\rho(x)$ is decreasing in [0, k] with respect to x. Therefore

$$\mu_{F_{\lambda}}(z)| \leq \frac{k + |\lambda| ||\nu||_{\infty} |z|}{|z| - k|\lambda| ||\nu||_{\infty}} \leq \frac{k + |\lambda| ||\nu||_{\infty}}{1 - k|\lambda| ||\nu||_{\infty}} = k_1$$

holds for all |z| > 1. Since the assumption (1.4) implies that $||v||_{\infty} < ((1 - k)/(1 + k))$, the inequality

$$\|\nu_{\lambda}\|_{\infty} = |\lambda| \|\nu\|_{\infty} < \frac{1-k}{1+k}$$

holds for all $\lambda \in \overline{D}$, which implies that $k_1 < 1$. So $F_{\lambda}(z)$ is a quasiconformal mapping in $\mathbb{C}\setminus\overline{\mathbb{D}}$. Since $|\mu_{F_{\lambda}}(z)| \leq |\lambda| |\mu_{f}||_{\infty} < 1$ for |z| < 1, $F_{\lambda}(z)$ is also a quasiconformal mapping in \mathbb{D} . By [9, Ch. I, Lemma 6.1], it follows that $F_{\lambda}(z)$ is a quasiconformal mapping in \mathbb{C} . Moreover, the fact that $|\lambda| ||\nu||_{\infty} \leq k_1 < 1$ shows that the mapping F_{λ} is *K*-quasiconformal in the complex plane \mathbb{C} with the maximal dilatation

$$K = \frac{1+k+|\lambda|||\nu||_{\infty}(1-k)}{1-k-|\lambda|||\nu||_{\infty}(1+k)}.$$

This completes the proof of Theorem 1.1.

REMARK 2.1. Two special cases, $\lambda = 0$ and $\lambda = 1$, in Theorem 1.1 are just Theorem A given by Ahlfors and Theorem C given by Hernández and Martín, respectively.

3. Proof of Theorem 1.2

In order to give the proof of Theorem 1.2, we first need the following lemma.

LEMMA 3.1. Let $a \in \mathbb{D}$ and T(z) = (z + |a|)/(1 + |a|z). Then T(z) is a Möbius transformation of the unit disk \mathbb{D} onto itself and

$$\frac{||a| - |z||}{1 - |a||z|} \le |T(z)| \le \frac{|a| + |z|}{1 + |a||z|}.$$
(3.1)

PROOF. Let $z = re^{i\theta} \in \mathbb{D}$. Then

$$|T(z)|^{2} = \frac{|a|^{2} + 2|a|r\cos\theta + r^{2}}{1 + 2|a|r\cos\theta + r^{2}|a|^{2}}.$$

Since the function $f(t) = (C_1 + t)/(C_2 + t)$ with $C_1 < C_2$ is monotonically increasing in *t*, it follows that

$$\frac{||a|-r|}{1-|a|r} \le |T(z)| \le \frac{|a|+r}{1+|a|r},$$

that is, (3.1) holds for a given $a \in \mathbb{D}$.

PROOF OF THEOREM 1.2. Assume that *f* is a harmonic mapping of the unit disk \mathbb{D} with a representation $f(z) = h(z) + \alpha \overline{h(z)}$, where *h* is a locally univalent analytic function and α is a constant satisfying that $|\alpha| < 1$. Then it follows that

$$\nu^* = \frac{\nu'(1-|z|^2)}{1-|\nu|^2} = 0$$

and

$$P_f = \frac{\partial}{\partial z} \log |J_f| = \frac{\partial}{\partial z} \log((1 - |\alpha|^2)|h'(z)|^2) = \frac{h''(z)}{h'(z)} = P_h.$$
(3.2)

By (1.5), the classical result due to Becker [2] for a locally univalent analytic function shows that h(z) is univalent and can be extended to a continuous and injective mapping $\tilde{h}(z)$ in the closed unit disk. Hence, for any α with $|\alpha| < 1$, $f = h + \alpha \bar{h}$ is a harmonic Teichmüller mapping of \mathbb{D} .

Taking $g = \bar{\alpha}h$ in the proof of [7, Theorem 1] and by (3.2), $|P_f(1 - |z|^2)| \le k < 1$. Hence $f = h + \alpha \bar{h}$ can be extended to a homeomorphism of the complex plane \mathbb{C} . Furthermore, the homeomorphism can be constructed as

$$H(z) = \begin{cases} \tilde{h}(z) + \alpha \tilde{f}(z) & \text{if } |z| \le 1, \\ f\left(\frac{1}{\bar{z}}\right) + U_{\alpha}\left(\frac{1}{\bar{z}}\right) & \text{if } |z| > 1, \end{cases}$$

where

$$U_{\alpha}(z) = \frac{h'(z)(1-|z|^2)}{\bar{z}} + \frac{\alpha \overline{h'(z)}(1-|z|^2)}{z}, \quad z \in \mathbb{D}, \ |\alpha| < 1.$$

Next we will estimate the maximal dilatation of *H* and then show that *H* is a quasiconformal mapping in the complex plane \mathbb{C} . By the assumption that $|\alpha| < 1$,

$$|\mu_H(z)| = |\alpha| < 1$$
 when $|z| < 1$.

When |z| > 1, we set $w = 1/\overline{z}$ and obtain that

$$\begin{aligned} |\mu_H(z)| &= \left| \frac{h'(w) + U_w(w)}{\alpha \overline{h'(w)} + U_{\overline{w}}(w)} \right| = \left| \frac{w^2 h''(w)(1 - |w|^2) - \alpha \overline{wg'(w)}}{\bar{\alpha} w^2 g''(w)(1 - |w|^2) - \overline{wh'(w)}} \right| \\ &= \left| \frac{\alpha \overline{wh'(w)} - w^2 h''(w)(1 - |w|^2)}{\overline{wh'(w)} - \overline{\alpha} w^2 h''(w)(1 - |w|^2)} \right| = \left| \frac{\alpha + \frac{w^2 h''(w)(|w|^2 - 1)}{\overline{wh'(w)}}}{1 + \overline{\alpha} \frac{w^2 h''(w)(|w|^2 - 1)}{\overline{wh'(w)}}} \right| \end{aligned}$$

Let $v(w) = w^2 h''(w)(|w|^2 - 1)/\overline{wh'(w)}$. By (1.5),

$$|v(w)| \le k, \quad w \in \mathbb{D}. \tag{3.3}$$

Set $\lambda = \bar{\alpha}/|\alpha|$. Then it follows that

$$|\mu_H(z)| = \left|\frac{\alpha + \nu(w)}{1 + \bar{\alpha}\nu(w)}\right| = \left|\frac{\lambda\alpha + \lambda\nu(w)}{1 + \bar{\lambda}\bar{\alpha}\lambda\nu(w)}\right| = \left|\frac{|\alpha| + \lambda\nu(w)}{1 + |\alpha|\lambda\nu(w)}\right|, \quad z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$$

By Lemma 3.1 and (3.3), we obtain the inequality

$$|\mu_H(z)| \le \frac{|\alpha| + |\nu(w)|}{1 + |\alpha\nu(w)|} \le \frac{|\alpha| + k}{1 + |\alpha|k} = k_1, \quad z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$$
(3.4)

So H(z) is a quasiconformal mapping in $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$. Since $|\mu_H(z)| = |\alpha| < 1$ for |z| < 1, H(z) is also a quasiconformal mapping in \mathbb{D} . By [9, Ch. I, Lemma 6.1], we know H(z) is a quasiconformal mapping in the complex plane \mathbb{C} . Moreover, it follows that $|\alpha| \le k_1 < 1$. Therefore, H is a K-quasiconformal mapping in the complex plane \mathbb{C} with

$$K = \frac{(1+k)(1+|\alpha|)}{(1-k)(1-|\alpha|)}.$$

Take $f = az + b/\bar{a}(\bar{az})$ with |b| < |a|. Then f satisfies (1.5) with k = 0, so its quasiconformal extension given by (1.6) is just of the form $f(z) = az + b\bar{z}, z \in \mathbb{C}$ and its maximal dilatation is equal to $k_1 = |\bar{b}/a| = |\alpha| = (K-1)/(K+1)$, which shows that the estimate (3.4) is asymptotically sharp in k. This completes the proof of Theorem 1.2. \Box

REMARK 3.2. For the class of harmonic Teichmüller mappings f, the method in Theorem 1.1 gives the estimate of the maximal dilatation of its quasiconformal extension H as

$$|\mu_H(z)| \le \frac{k+|\alpha|}{1-k|\alpha|}, \quad z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$$

Hence, for the class of harmonic Teichmüller mappings, the maximal dilatation estimate of their quasiconformal extensions H given by Theorem 1.2 is better than the one given by Theorem 1.1.

References

- [1] L. V. Ahlfors, 'Sufficient conditions for quasiconformal extension', *Ann. of Math. Stud.* **79** (1974), 23–29.
- J. Becker, 'Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte functionen', J. reine angew. Math. 255 (1972), 23–43.
- J. Becker and Ch. Pommerenke, 'Schlichtheitskriterier und Jordangebiete', J. reine angew. Math. 354 (1984), 74–94.
- [4] X. D. Chen and A. N. Fang, 'Harmonic Teichmüller mappings', Proc. Japan Acad. Ser. A Math. Sci. 82(7) (2006), 101–105.
- [5] M. Chuaqui, P. Duren and B. Osgood, 'The Schwarzian derivative for harmonic mappings', J. Anal. Math. 91 (2003), 329–351.
- [6] M. Chuaqui, P. Duren and B. Osgood, 'Ellipses, near ellipses, and harmonic Möbius transformations', Proc. Amer. Math. Soc. 133 (2005), 2705–2710.
- [7] R. Hernández and M. J. Martín, 'Quasiconformal extension of harmonic mappings in the plane', *Ann. Acad. Sci. Fenn. Math.* 38(2) (2013), 617–630.
- [8] R. Hernández and M. J. Martín, 'Pre-Schwarzian and Schwarzian derivatives of harmonic mappings', J. Geom. Anal. 25(1) (2015), 64–91.
- [9] O. Lehto, Univalent Functions and Teichmüller Spaces (Springer, New York-Heidelberg, 1987).
- [10] H. Lewy, 'On the non-vanishing of the Jacobian in certain one-to-one mappings', Bull. Amer. Math. Soc. (N.S.) 42 (1936), 689–692.

XINGDI CHEN, Department of Mathematics, Huaqiao University, Quanzhou, Fujian 362021, PR China e-mail: chxtt@hqu.edu.cn

YUQIN QUE, Department of Mathematics, Huaqiao University, Quanzhou, Fujian 362021 PR China e-mail: queyuqin@hqu.edu.cn