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ABSTRACT

We provide necessary and sufficient conditions for optimality of mutual
contracts for risk sharing under constraints on premiums or utility functions
of participants of the agreement. These conditions are an extension of those
of the Borch, Gerber and Bühlmann-Jewell ones. Some applications to opti-
mal insurance contracts, optimal dividend sharing and optimal reinsurance
are given.
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1. INTRODUCTION

A mutual agreement of n companies will be considered in the paper. Let Xi
denote a wealth which is reported to redistribution by ith participant of the
agreement. We assume that Xi is a random variable defined on a given prob-
ability space (W, S, �), which may take negative values with positive probability.
Let X = X1 + … + Xn be the global wealth. Throughout the paper, the notation
X =Y and X <Y means �(X =Y) = 1 and �(X <Y) = 1, respectively. We write Ri
for a part of the global wealth redistributed to ith participant of the agreement.
The sequence of random variables (Ri) = (Ri, …, Rn) will be called a sharing
rule if the clearing condition is satisfied: R Xii

n
ii

n
1 1

=
= =

! ! . For instance, in rein-
surance X1 = –Y, X2 = 0, R1 = R –Y – P, and R2 = P– R, where Y denotes the
aggregate claim amount of the first insurer, R = R (Y) denotes a compensation
paid by the reinsurer, and P stands for a reinsurer’s premium.

How to determine optimal rules for sharing risks and constructing reinsur-
ance treaties? The classical results are due to de Finetti (1940). De Finetti
derived relative retention levels which have simple forms by considering the
insurer’s net (of reinsurance) profit from the portfolio at the end of a given time
period. He then minimized the variance of this profit subject to its expected
value being fixed. See also Bühlmann (1996), Section 5.2, and Ammeter et al.
(1959) for a review of ealier works of Medolaghi, Ottaviani and others.
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In the seminal paper of Borch (1962) another method is presented. Borch
adapted the von Neumann-Morgernstern utility theory to actuarial science
and proposed criteria based on the concept of utility function For an excel-
lent overview of the expected utility theory, we refer the reader to Panjer et al.
(1998) and Gollier (2001). We now provide the essential points of Borch’s results.
More details, and proofs, can be found in Borch (1974, 1990). Assume prefer-
ences of ith participant can be described by a utility function, say ui. The com-
mon examples are the

• exponential utility function with index � u�(x) = �
1 (1– e–�x), x ∈ �, � > 0; this

function yields a constant risk aversion,
• logarithmic utility function u(x) = lnx, x > 0; the risk aversion is decreasing

with wealth,
• power utility function of the first kind, u(x) = ( )

( )
c a

a a x
1 c

c c1 1

+

- -+ +

, x < a, a,c > 0; the
risk aversion increases with wealth,

• power utility function of the second kind, u(x) = c
1 (xc – 1), x > 0, 0 < c < 1; the

risk aversion is a decreasing function of wealth.

Borch (1962) proposed to choose a Pareto-optimal risk sharing as an optimal
one. We say that the rule (Ri) is Pareto-optimal if there is no rule (Ri) such that
�ui(Ri) ≥ �ui(Ri) for all i with strict inequality for some i. It is well known that
if the rule (Ri) is a solution of the following constrained optimization problem

,. .max �k u R R Xs ti i i i
i

n

i

n

11

=
==

!! ^ h (1.1)

with positive reals (ki), it is Pareto-optimal (see e.g. Gerber, 1979, p. 90, for a
geometric justification). Borch showed that (Ri) solves the problem (1.1) if and
only if the Borch condition holds: ki u�i (Ri) = knu�n(Rn) for all i (for the proof see
e.g. Gerber and Pafumi, 1999). Denote by Df the domain of the function f and
suppose the support of X is contained in Du1

+… +Dun
= {x1 + … + xn; xi ∈ Dui

}.
From the Borch condition it follows that if (ui) are differentiable and strictly
concave and if u�i (Dui

) = (0,∞) for all i, then the solution of the problem (1.1)
is given by

i( ) ( ) , ,..., ,R x u k
k

u h x i n1i
i

n= =* *�n_d in (1.2)

where u*
i and h* denotes, respectively, the inverse function of u�i and

i( )h x u k
k

u x
i

n

i

n

1

=
=

* �n! ^d hn

(cf. Pesonen, 1984, Wyler, 1990). Borch’s result was extended by Deprez and Ger-
ber (1985) who considered minimization of i 1=

RPi i
n! ^ h subject to i 1=

R Xi
n =! ,

where Pi is a convex and Gâteaux differentiable functional. It was proved that
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(Ri) minimizes the functional i 1=
RPi i

n! ^ h if and only if the extended Borch
condition is satisfied: P�i (Ri) = P�n (Rn) for each i, where P�i stands for the
Gâteaux differential of Pi. Unfortunately, there is a well known drawback of
the Borch method illustrated by the following example.

Example 

1.1. Assume that the i th company uses the exponential utility function with
an index ai. A solution of the problem

. .max exp�a
k

a R R Xs t1
i

n

i

n

1 1

- - =
= =i

i
i i i! !^ h6 @ (1.3)

is the quota rule Ri = (a /ai)X+ bi, where 1/a = i 1= /a1n
i! and bi , called a side

payment, depends on ki (see e.g. Gerber and Pafumi, 1999). Because the side
payments must sum to zero, there are some companies making payments to
others even when all losses are zero.

To remove this disadvantage Gerber (1978) and Bühlmann and Jewell (1979)
proposed to include side constraints on Ri. Define

i; , , , ,...,R R X L R U i nR 1 2L
U

i i
i

n

1

# #= = =
=

i i!^ h( 2 (1.4)

in which L = (Li), U = (Ui), and Li ≤ Ui are arbitrary random variables with val-
ues in [–∞, ∞]. Gerber (1978) proved that a rule (Ri) solves the problem

,. .max �k u R Rs t Ri i i
i

n

i L
U

1

!
=

! ^ ^h h (1.5)

where U = (∞) and L = (Xi – ci) with nonnegative reals (ci) if and only if (Ri)
satisfies the Gerber condition:

Ri = Xi – ci whenever ki u�i (Ri) < max{kj u�j (Rj); j = 1,…, n},

(see also Gerber, 1979). In this framework, company i is not willing to pay
more that ci toward losses of other companies.

Bühlmann and Jewell (1979) stated that a rule (Ri) is a solution of the prob-
lem (1.5) with L = (0) if and only if the Bühlmann-Jewell condition holds: there
exist a positive random variable L and positive constants (ki) such that for
i = 1, 2, …, n

ki u�i (Ri) = L if 0 < Ri < Ui,
ki u�i (Ri) ≤ L if Ri = 0,
ki u�i (Ri) ≥ L if Ri = Ui.

The Bühlmann-Jewell constraint L = (0) can be explained as follows: company
i is not ready to lose more than its total wealth in the worst. For L = (0) and
U = (∞), they also found the following explicit solution of (1.5):
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i( ) ( ) , , ,..., ,R x u k
k

u h x x i n0 1i
i

n $= =
+

* *�n_d in= G (1.6)

in which u*
i and h* denotes, respectively, the inverse function of u�i and

i( ) ( ) , .h x u k
k

u x x 0
i

n

i

n

1

$=
+=

�n*! d n= G (1.7) 

In actuarial literature one can find a few methods of choosing coefficients (ki)
in (1.2) or (1.6). The individual rationality condition says that the coefficients
(ki) are acceptable if �ui(Ri) ≥ �ui(Xi) for all i. There are many Pareto-optimal
rules violating this condition. Furthermore, the condition may not provide exactly
one solution. For instance, from the extended Borch condition it follows that
the solution of the problem

,. .min �k R R Xs ti i
i

n

i

n
2

11

=
==

i !! (1.8)

is the quota rule Ri = (k/ki)X+bi, where 1/k = i 1=
/k1 i

n! , and (bi) are any reals 
such that b1 + … + bn = 0. In what follows, �2Y denotes the variance of random
variable Y and �Y denotes the standard deviation. The condition of individual
rationality implies that 0 < k/ki ≤ �Xi / �X for all i. Clearly, �X ≤ ii 1=

�Xn! so
there exist a lot of rules satisfying this condition.

Another proposition one can find in Bühlmann (1984). He suggested to
choose (ki) according to the nonprofit condition which says that no company
should profit at the expense of the others. Let (Ri) be defined by (1.2). Under
some regularity assumptions like the boundedness of (Xi), Bühlmann (1984)
proved that there exists a sequence (ki) such that �(RiC) = �(XiC) for all i.
Herein C is a positive random variable such that �C = 1. The principle P =
�(XiC) is called the economic principle and C is said the price density. Bühlmann
and Jewell (1979) also stated that under some mild assumptions there exists a
sequence (ki) such that �(RiC) = �(XiC) for all i, where (Ri) is given by (1.6)
and C is a price density (see also Lienhard, 1986, Aase, 1993). Other propo-
sitions based on ideas from the game theory have also appeared in actuarial
literature. For n = 2 Borch suggested to use the Nash solution of the bargain
problem (see also Lemaire and Quairiere, 1986). The Kalai-Smorodinski solu-
tion is described in Lemaire (1991) along with a comprehensive review of other
methods.

The aim of the paper is to provide an extension of both the Gerber con-
dition and the Bühlmann-Jewell condition, see Section 2. In Section 3 one can
find some applications of the result of Section 2. All the results presented in
the paper are derived from elementary properties of convex functions and the
Brouwer fixed point theorem.
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2. MAIN RESULT

Let Xi denote a set of random variables defined on (W, S, �) for i = 1,2,…,n.
Let P be a mapping from X = Xi ≈ … ≈ Xn into the real numbers. The mapping
P is called a C-functional at (Xi) if there exists a random vector on W, say
(P�1,…,P�n) = (P�1,(Xi),…,P�n,(Xi)), such that for all (Yi) ∈ X

n,..., ,..., .�Y Y X X Y XP P Pn i i
i

n

1 1
1

$# + -
=

�i!^ ^ ^ch h hm (2.1)

The random variable P�1 will be called an ith partial subderivative of P at (Xj).
Any functional P satisfying (2.1) for each (Xi) ∈ X will be called a C-functional.

Examples:

2.1. Letting pi (Xi) be a concave and Gâteaux differentiable functional, the
mapping P = ii 1=

( )Xpn
i! is a C-functional and P�1 = p�

i (Xi), where p�
i means the

Gâteaux derivative of pi (see Deprez and Gerber, 1999).

2.2. Suppose w is a concave and nondifferentiable function on �. Let w�
– and

w�
+ stand for the left derivative and the right derivative of w, respectively. Both

derivatives exist at any point from the interior of the domain of w and �w(Y )
≤ �w(X ) + �[w�

X · (Y–X)] for each random variable w�X such that

X+ -( ) ( ) ( ) ,w X w w Xw w w w W# # !� � �^ ^h h

(see e.g. Rockafellar, 1970). Although the mapping P= ii 1=
( )�w Xn! is not Gâteaux

differentiable, it is a C-functional and P�i(w) = w�Xi
(w), w ∈ W.

2.3. Suppose P attains its maximum at (X *
j ). Then P is a C-functional at (X *

j )
and P�i = 0 for all i.

Remark 2.1. If P is a C-functional then P is a concave mapping, i.e. �P(X) +
(1–�)P(Y) ≤ P(�X+ (1–�)Y) for all 0 < � < 1, where X = (Xj) and Y = (Yj). This
follows directly from the inequalities:

i

i

( ) ,

( ) ,

� � �

� � �

�

�

X X Y X Y

Y X Y Y X

P P P

P P P

1 1

1

i
i

n

i
i

n
1

1

$

$

#

#

+ - + - -

+ - + -

=

=

�

�

i

i

!

!

^^ ^ ^c

^^ ^c

h h h hm

h h hm

in which P�i = P�i ,�X+(1– �)Y .

Given a functional P, we find a solution of the constrained optimization problem:

,..., ( ). .max R R R Hs tP RL
U!n i1^ ^h h (2.2)
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with

Ri( ) ; , , ,R H R R X P H L R U i nfor 1L
U

i i i i i
i

n

1

# # # #= = -
=

i i!^ ^h h( 2 (2.3)

where Hi is a real-valued functional on X i, –∞ < Li ≤ Ui < ∞ are given random
variables, and (Pi) are fixed reals. Throughout the paper, 1A denotes the indi-
cator function of A.

Theorem 1.

(a) Assume there exist a rule (Ri) ∈ R U
L (H) and nonnegative reals c1,…,cn – 1 such

that P and (Hi) are C-functionals at (Ri) and for i ≤ n – 1:

(i) (P�n – P�i – ciH �i )+(Ri – Li) = 0,
(ii) (ciH �i – P�n + P�i )+(Ui – Ri) = 0,
(iii) Hi (Ri) = Pi,
(iv) max1 ≤ i ≤ n �((1 + |P�i | + |H �i |) |Yi |) < ∞ for Yi = Li,Ui,

where P�i = P�i ,(Rj) and H�i = H�i,Ri
. Then (Ri) is a solution of the problem (2.2).

(b) Suppose P and (Hi) are concave and Gâteaux differentiable. Suppose (Ri) is
a solution of (2.2) satisfying conditions (iii) and (iv) and suppose also that
one of the following two assumptions holds:

A1. Hi (Ri) ≤ Hi (Ri + (Ui – Ri)1A + (Li – Ri)1B) for i ≤ n – 1, where A = {ciH �i –
P�n + P�i > 0} and B = {ciH �i – P�n + P�i < 0} with ci ≥ 0,

A2. Hi(Ri) < Hi(Ri + (Ui –Ri)1C), where C = {P�n – P�i – ciH�i ≤ 0} with ci ≥ 0
and Hi is increasing and continuous functional for i ≤ n – 1, i.e. Hi(X) ≤
Hi (Y) if X ≤Y and Hi(Xk) → Hi(X) for Xk ↑ X as k → ∞, where Xk ≥ Li.

Then conditions (i)-(ii) hold.

Proof. (a) Condition (iv) implies that �Ri, �(P�
i Ri), and �(H �

i Ri) are finite for
every (Ri) ∈ R = R U

L(H). By the clearing condition, Rn – Rn = i 1=
( )R Ri i-n 1-! . From

(2.1) with Yi = Ri and Xi = Ri it follows that for every (Ri) ∈ R

,..., ,...,

,...,

�

�

R R R R

R R R

R R

R

P P P

P P P

n n
i

n

n
i

n

1 1
1

1
1

1

#

#

+ -

+ - -

=

=

-

�

� �

i

n i

i i

i i

!

!

_ ^ ^d

^ c _d

i h hn

h m in

(2.4)

with equality if (Ri) = (Ri). Write Zi = P�n – P�i for short. From the identity x =
x+ – (–x)+, we get

�(Zi Ri) = � [(Zi – ciH �i )+ Ri ] – � [(ciH �i – Zi)+Ri] + ci�(H �i Ri).
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Since Li ≤ Ri ≤ Ui, we have

�(Zi Ri) ≥ � [(Zi – ciH �
i )+ Li ] – � [(ciH �

i – Zi)+Ui ] + ci�(H �
i Ri) (2.5)

for every (Ri) ∈ R . From conditions (i) and (ii) it follows that equality occurs in
(2.5) if Ri = Ri. As a consequence of concavity of Hi and condition (iii), we obtain

�(H �i Ri) ≥ �(H�i Ri) + Hi(Ri) – Hi(Ri) =
�(H�i Ri) + Hi(Ri) – Pi ≥ �(H �i Ri) (2.6)

for every (Ri) ∈ R . Combining (2.4), (2.5), and (2.6) yields

+ +
i i ii

,..., ,..., �

� � �

R R Z R

Z c H L c H Z U c H R

R RP Pn n
i

n

i i i i
i

n

1 1
1

1

1

1

# + +

- - - - +

=

-

=

-

i

i i

i

i
� � �

!

!

_ ^ ^

c c cd

i h h

m m mn< <F F

(2.7)

for every (Ri) ∈ R . Equality in (2.7) holds for (Ri) = (Ri) so

+ +
i i ii .� � � �Z R Z c H L c H Z U c H R 0i i i i i i

i

n

1

1

- - + - - =
=

-

i ii
� � �! ^ c c cd h m m mn< <F F (2.8)

As a consequence of (2.7) and (2.8), P(R1,…, Rn) ≤ P(R1, …, Rn) for every
(Ri) ∈ R , which completes the proof of part (a) of Theorem 1.

(b) Let (Ri) be a solution of the problem (2.2) satisfying conditions (iii) and (iv).
Fix any i, i ≤ n – 1, and define (R(t)

j ) as follows:

R(t)
j = Rj for j ≠ i,n, R(t)

i = (1 – t)Ri + tRi, R(t)
n = Rn – t (Ri – Ri),

where t ∈ (0,1) and (Rj) ∈ R . Clearly, (R(t)
j ) ∈ R for each t. The function

f (t) = P(R(t)
1 , …, R(t)

n ) + ci (Hi(R(t)
i ) – Pi)

has a maximum at t = 0 and is concave. Hence f �+ (0) ≤ 0, where f �+ (0) denotes
the right-hand derivative of f at 0. This implies

�((P�n – P�i – ciH �i ) (Ri – Ri)) ≤ 0. (2.9)

Let assumption A1 be fulfilled. Put

Rj = Rj for j ≠ i, n,
Ri = Ri + (Ui – Ri)1A + (Li – Ri)1B,
Rn = Rn – (Ri – Ri),
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in which A = {ciH �i – P�n + P�i > 0}, and B = {ciH �i – P�n + P�i < 0}. Obviously,
(Ri) ∈ R . From (2.9) we get

�[(P�n – P�i – ciH �i )+(Ri – Li)] + �[(ciH �i – P�n + P�i)+(Ui – Ri)] ≤ 0.

This implies that conditions (i)-(ii) hold, which completes the proof under
assumption A1. Let assumption A2 be fulfilled. Put

Rj = Rj for j ≠ i, n, Ri = Ri + (Ui – Ri)1C, Rn = Rn – (Ui – Ri)1C,

where C = {P�n – P�i – ciH �i ≤ 0}. From (2.9) it follows that

�[(ciH �i – P�n + P�i)+(Ui – Ri)] ≤ 0. (2.10)

Since (ciH�i – P�n + P�i)+(Ui –Ri) ≥ 0, condition (ii) holds. We now show that con-
dition (i) is satisfied. Suppose it is untrue, that is, there exists B0 ⊂ B = {P�n –
P�i – ciH �i > 0} such that �(B0) > 0 and

(P�n – P�i – ciH �i ) (Ri – Li)1B0
> 0. (2.11)

Suppose also that Hi (Ri) ≥ Pi , where Ri =Ri + (Ui – Ri)1C + (Li – Ri)1B0
. The exis-

tence of B0 follows from assumption A2 since Ri ↑ Ri + (Ui – Ri)1C as B0 tends
monotonically to the empty set. By (2.9)

�[(P�n – P�i – ciH �i ) (Ri – Li)1B0
] + �[(ciH �i – P�n + P�i )+(Ui – Ri)] ≤ 0. (2.12)

Hence (P�n – P�i – ci H �i ) (Ri – Li)1B0
= 0, which leads to a contradiction with

(2.11). The proof is complete. ¡

Remark 2.2. Theorem 1 (a) still holds with the problem (2.2) replaced by the
following one:

max P(R1, …, Rn) s.t. (Ri) ∈ R U
L (H=), (2.13)

where

i( ) ; , , .H R R X P H R L R U i nforR 1L
U

i i
i

n

1

# # #= = = -=
=

i i i i i!^ ^h h( 2

Remark 2.3. From conditions (i)-(ii) of Theorem 1 we obtain that

if Ri > Li then P�n – P�i ≤ ciH �i and if Ri < Ui then P�n – P�i ≥ ciH �i .

Hence conditions (i) and (ii) of Theorem 1 are equivalent to the following
ones:
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P�n – P�i = ciH �i if Li < Ri < Ui,
P�n – P�i ≥ ciH �i if Ri = Li,
P�n – P�i ≤ ciH �i if Ri = Ui,

where i = 1, 2, …, n – 1. Clearly, for P = ( )�k u Ri i ii
n

1=
! and Hi(Ri) = Pi = 0, 1 ≤

i ≤ n, we obtain the Bühlmann-Jewell condition with L = knu�n(Rn).

In a similar manner as in the proof of Theorem 1 we may easily show that con-
ditions (i)-(ii) of Theorem 1 have to be replaced by:

• (ciH �i – P�n + P�i )+(Ui – Ri) = 0,
(P�n – P�i – ciH �i )+ = 0, i = 1, …, n – 1,

provided Ri ≤ Ui for all Ri, that is, if the problem (2.2) with (Li) = (–∞) is con-
sidered.

• (ciH�i – P�n + P�i )+ = 0,
(P�n – P�i – ciH �i )+(Ri – Li) = 0, i = 1, …, n – 1,

provided (Ui) = (∞). This extends the Gerber condition. In fact, putting Hi =
Pi = 0 and P = ( )k u Ri i ii

n
1=

! we get the condition: if ki u�i (Ri) < max{kj u�j (Rj);
1 ≤ j ≤ n} then Ri = Li.

• ciH �i = P�n – P�i , i = 1, …, n – 1,

provided (Li) = (–∞) and (Ui) = (∞). For Hi = Pi = 0 we obtain the extended
Borch condition.

3. APPLICATIONS

3.1. Extension of Bühlmann result

As mentioned in Section 1 of the paper, Bühlmann (1984) proved that if the
sequence (Xi) is assumed to be bounded and if the Lipschitz condition is
imposed on the Arrow-Pratt risk aversion function ri defined by ri = –u �i /u�i ,
then there exists a solution of (1.1), say (Ri), which satisfies the nonprofit con-
dition with the economic principle. We now extend this result to cover the case
of other premium principles. We first prove the result of Bühlmann for eco-
nomic principle without restrictive assumptions on (Xi) and ri.

Theorem 2.

Assume all ui are differentiable and strictly concave on �, assume u�i (�) = (0,∞)
for all i, and assume max1 ≤ i ≤ n � |XiC | < ∞. Then there are coefficients (ki) such
that �(RiC) = �(XiC) for i =1,2,…,n, where (Ri) is a solution of (1.1).

Proof. Observe that it is enough to prove that �(RiC) = �(XiC) for i ≤ n – 1
because of the clearing condition. Define the map F = (F1,…,Fn – 1) from �n –1
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to �n –1 as follows: Fi (xi) = �(XiC) – �(RiC) + xi, where Ri is the solution of the
problem (1.1) such that Ri(0) = xi (cf. Bühlmann, 1984). Clearly,

( )
( )
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We now show that any solution of (1.1) satisfies the Lipschitz condition with
constant 1, i.e. |Ri(x) – Ri(0) | ≤ |x| for all x. Obviously, it is enough to show
that both the functions x → Ri(x) and x → x – Ri(x) are increasing for each i.
Recall that u�i is decreasing. Since the composition of two decreasing function
is increasing, x → Ri(x) is increasing. Since (Rj) are increasing and u�i is decreas-
ing, we have

j j( ) ( ) > ( ) ( )u x R x u R x u R y u y R y
! !

i
j i j i

i- = = -i i i i� � � �! !^ e e ^h o o h

for x < y so x –Ri(x) < y – Ri(y) for x < y, as expected. By the dominated conver-
gence theorem and continuity of the function (x1,…,xn) → Ri(x) for any fixed
x and i, the map F is continuous. From the Lipschitz condition we get that for
every xi ∈ �

|Fi(xi)| ≤ �(C|Xi – Ri(X) + Ri(0)|) ≤ �(C(|Xi| + |X|)) < ∞,

where Ri is given by (3.1). Let M = [–m1, m1] ≈ … ≈ [–mn –1, mn –1] in which mi =
�(C(|Xi | + |X|)). Let F |M denote the restriction of F to M. Since F |M: M → M
is a continuous function defined on a compact and convex set, the Brouwer
theorem implies that there is a fixed point, say (x*

i ), of mapping F |M, that is,
�(RiC) = �(XiC) for each i, where Ri(0) = x*

i . Since u�i > 0, it is clear that ki =
knu�i (x*

i ) /u�n (x*
n) > 0 for i ≤ n – 1, as desired. ¡

Remark 3.1. Theorem 2 also holds for other types of utility function. For
instance, if ui(x) = lnx for all i, then a solution of (1.1) satisfying the nonprofit
condition is given by

i( ) , , , ..., .
�

�
R X X

X
X i n
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1 2= =i ^

^

h
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We now provide a Bühlmann type result for premiums of the form Hi (X) =
�X + hi(�X), where hi is a nondecreasing differentiable and convex function
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defined on [0,∞) and hi(0) = 0. Examples include the standard deviation princi-
ple, the variance principle, and the mixed principle (cf. Section 3.5 of the paper).

Theorem 3.

Suppose 0 < �X < ∞. Under the assumptions of Theorem 2 there exist coefficients
(ki) such that the solution of (1.1), say (Ri), satisfies the condition Hi(Ri) = Hi(Xi)
for i = 1,2,…,n – 1, with Hi(Ri) = �Ri + hi(�Ri).

Proof. Let Fi(xi) = Hi(Xi) – Hi(Ri – xi) define the map F = (F1,…,Fn –1) from �n –1

to �n –1, where Ri(0) = xi for each i. It is easy to check that the principle Hi(X) =
–�X – hi (�X) with a differentiable and convex function hi is a C-functional
and H�i,X = –1 – h�i (�X)(X – �X)/�X for �X > 0 and H�i,X = –1 otherwise. There-
fore

�(H�i,Xi
(Xi – Ri + xi)) ≤ Hi(Xi) – Hi(Ri – xi) ≤

≤ �(H�i (Xi – Ri + xi))
(3.2)

(see Deprez and Gerber, 1985, Theorem 8). Herein H�i = H�i,Ri
. Hence for every

xi ∈ �

| (Hi(Xi) – Hi(Ri – xi))| ≤ max {|�(H�i,Xi
(Xi – Ri + xi)) | ,

|�(H�i (Xi – Ri + xi))|}.
(3.3)

Recall that |Ri – xi | = |Ri(X) – Ri(0)| ≤ |X | (see the proof of Theorem 2). By the
Lipschitz condition

|�(H�i,Xi
(Xi –Ri + xi))| ≤ �(|H�i,Xi

|(|Xi | + |Ri – xi |)
≤ �(|H�i,Xi

|(|Xi | + |X |) < ∞
(3.4)

for every solution of (1.1) such that Ri(0) = xi. Furthermore, if �Ri = 0 then by
the Lipschitz condition

|�[H�i (Xi – Ri + xi)]| ≤ �(|Xi | + |X |) < ∞. (3.5)

If �Ri > 0 then

|�[H�i (Xi – Ri + xi)]| ≤ �(|Xi | + |X |) +

�

�

R
h R�

+
i

i^ h
|�[(Ri – �Ri) (Xi – Ri + xi)]|.

(3.6)

From the Cauchy-Schwarz inequality, the inequality (x+y)2 ≤ 2(x2 +y2), and the
Lipschitz condition it follows

(�[(Ri – �Ri) (Xi –Ri + xi)])2 ≤ �(Xi – Ri + xi)2�2Ri

≤ 2(�X 2
i + �X 2)�2Ri.

(3.7)
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By the Lipschitz condition

�2Ri = �2(Ri – xi) ≤ �(Ri – xi)2 ≤ �X 2. (3.8)

Combining (3.6)-(3.8) with the assumption that h� is nondecreasing yields

|�(H�i (Xi – Ri + xi))| ≤ �(|Xi | + |X |) +
+ h�(�X 2) (2[�X 2

i + �X 2])1/2 < ∞.
(3.9)

From (3.3)-(3.5) and (3.9) it follows that for every (Ri) satisfying (1.1) with
Ri(0) = xi

|Hi(Xi) – Hi(Ri – xi)| ≤ mi (3.10)

with some reals mi. Moreover, Hi is continuous, i.e. Hi(Rn) → Hi(R) if Rn → R
a.s. and |Rn| ≤ Y for all n with Hi(Y) < ∞. Consequently, F |M is a continuous
function from M = [–m1, m1] ≈ … ≈ [–mn –1, mn –1] to M. By the Brouwer theo-
rem, there is a fixed point, say (x*

i ), of F |M, that is, H(Xi) = H(Ri) for each i ≤
n – 1, where Ri(0) = x*

i , as desired. ¡

Theorem 3 also applies to the following premium calculation principles:

• exponential principle H(R) = (1/b) log�ebR,
• semi-variance principle H(R) = �R + b�(R – �R)2

+,
• semi-deviation principle P = �R + b(�(R – �R)2

+)1/2,
• covariance principle P = �R + 2b�2R – bCov(R,Y),
• Dutch principle P = �R + b�(R – �R)+,

among others. For instance, if the i th insurer uses the exponential principle with
the index bi then it is enough to show that there is a sharing rule, say (Ri), such
that �exp(biRi) = �exp(biXi) for i ≤ n – 1. Putting Hi(R) = –� exp(biR), we get
H�i,R = –bi exp(biR). Following similar lines as in the proof of Theorem 3 we
obtain that |Hi(Xi) – Hi(Ri – xi)| is bounded in xi ∈ � if �exp(biX) < ∞. The rest
of the proof is straightforward.

It is worth to emphasize that the rule (1.2) may not satisfy the nonprofit
condition for i = n.

Examples

3.1. Let ui(x) = lnx for all i and let Hi(R) = �R +bi�R. It is easy to check that
the solution of (1.1) is the rule Ri = (ki / jj 1= kn! )X and there exists a rule satis-
fying nonprofit condition for all i if and only if

.
� �

� �

X X
X X

b
b

1
i

i i i

i

n

1
+

+
=

=

!

If (Xi) are independent random variables and if bi = b for all i, then the non-
profit condition does not hold for i = n since �(X1+…+Xn) < �(X1)+…+�(Xn).
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3.2. Suppose Hi(X) = H(X) for all i, where H is an additive and comonotonic
premium principle, that is,

i) H(X1 +X2) = H(X1) + H(X2) for independent risks Xi,
ii) H(R1) + H(R2) ≤ H(R1+ R2) for nondecreasing functions Ri = Ri(X).

An example is the exponential principle. Property (ii) follows from the well-
known inequality: �f(X)�g(X) ≤ �(f(X)g(X)) for all nondecreasing functions f,g
such that the expectations exist (see e.g. Rolski et al., 1999). Suppose Theorem 3
holds for (Hi) with Hi = H for all i and suppose the risks (Xi) are independent.
Then there is a rule (Ri) such that H(Ri) = H(Xi) for 1 ≤ i ≤ n –1 and 

i iH R H R H X H X
i

n

i

n

i

n

i

n

11 1 1

# = =
== = =

i i!! ! !^ d d ^h n n h

because x → Ri(X) are nondecreasing. This implies that H(Rn) ≤ H(Xn).

3.2. Pool

Consider n insurance companies which would like to exchange reinsurance.
Let Xi stand for the aggregate claim amount of the ith company. The premium
of the company is calculated according to the expected value principle with the
safety loading coefficient bi, i.e. Pi = (1 + bi)�Xi. The companies seek for a risk
exchange (Ri) such that the sum of variances of retained risks will be as
small as possible provided the nonprofit condition is fulfilled, that is,
Pi = (1 + bi)�Ri for all i. Hence the following problem should be solved

, , .. .min � �R R X P R R i ns t forb1 0
i

n

i i
i

n
2

1 1

$ #= = +
= =

i i i i! ! ^ h (3.11)

Theorem 4.

Suppose �X = ii 1=
Pn! / (1 + bi) with X = ii 1=

Xn! and suppose Pi /(1 + bi) ≤ Pj /
(1+ bj) for i < j. Then a solution of the problem (3.11) is given by

R*
i (X) = (h*(X) – bi)+ for i = 1,2,…,n,

where h* is the inverse function of h(x) defined by h(x) =
+i 1=

x bn - i! ^ h while 0 =
bn ≤ bn–1 ≤ … ≤ b1 are reals such that (1+ bi)�R*

i = Pi for 1 ≤ i ≤ n.

Proof. In Theorem 1 (a) we put P = i 1=
�n 2- ! Ri and Hi = Pi – (1 + bi)�Ri for

i = 1,2,…,n (see Remark 2.2). The extended Gerber condition is as follows:

P�n – P�i = ciH �i if Ri > 0  and  P�n – P�i ≥ ciH �i if Ri = 0.

Obviously, P�i = –2(Ri – �Ri) and H�i = –(1+ bi). This implies
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Rn(x) – Ri(x) = di if Ri(x) > 0,
Rn(x) – Ri(x) ≤ di if Ri(x) = 0,

for i = 1,2,…,n – 1, where (di) are reals. The rule (R*
j ) satisfies the extended

Gerber condition. Since bi ≤ b1 for all i and �R*
1(X) = n–1�(X – b1)+ = P1/(1+b1),

the proof of existence of reals (bi) such that (1+ bi)�R*
i = Pi for all i is similar

to that of Theorem 3 with b = (b1,…,bn –1) → (F1(b),…,Fn –1(b)), where Fi(b) =
|(1+ bi)�R*

i – Pi | + bi ≥ 0. We omit the details. ¡

3.3. Optimal insurance

Suppose insurance is written on the aggregate loss, i.e. the insurer covers R =
R(X) and the insured covers X – R, where X means the global risk and R means
a random variable defined on (W, S, �), called the compensation rule. Assume
the insurer uses the expected value principle of premium calculation with a
safety loading coefficient b > 0. Given an insurer’s premium P, the policyholder
has a wealth m after paying for insurance and wants to have an arrangement
which maximizes a utility function of his retained risk under a restriction on
insurer’s cover, namely, L ≤ R ≤ U, where L,U are random variables such that
0 ≤ L ≤ U. Hence the following problem arises

max�u (m + R –X )  s.t. (1 + b)�R = P,L ≤ R ≤ U, (3.12)

in which u is a increasing differentiable and concave function. A solution of
the problem (3.12) with L = 0 and U = X was given by Arrow (1963). Through-
out the paper we use the following notation

�a�UL = min{U, max{L,a}}.

Theorem 5.

Suppose �L < P ≤ �U. Then a solution of the problem (3.12) is the limited stop
loss contract defined by R*= �X – d �UL, where d is a nonnegative real such that
�R* = P.

Proof. See Pesonen (1984) or Daykin et al. (1994) for the proof via an extension
of the Jensen inequality. ¡

We now provide an extension of Theorem 5. Suppose the policyholder is willing
to have a contract which maximizes his utility function, say �u(m +R –X), while
the insurer wants to have a contract such that �v(M –R) ≥ P, where v and M
means the insurer’s utility function and the insurer’s wealth, respectively, and
P is a fixed real. We assume that both the insured and the insurer are risk
averse, i.e. u and v are differentiable increasing and concave functions. We also
assume that u is strictly concave. This leads to the following problem

max�u(m +R –X)  s.t. �v(M –R) ≥ P,L ≤ R ≤ U. (3.13)
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Put u (t,c) = t + u�–1(cv�(t)) for c > 0. In order that u (t,c) would be well-defined
we assume that v�(Dv) = u�(Du) = (0,∞). Let x → u*(x,c) means the inverse func-
tion of t → u (t,c). Define

Rc = �M – u*(m +M –X,c)�UL. (3.14)

Theorem 6.

Assume �(|X | + |Xu�(X)| + |Xv�(X) |) < ∞ and assume �v (M –R 0+) < P < �v(M –
R∞). Then a solution of the problem (3.13) is the compensation rule Rc defined by
(3.14) with c being such that �v (M – Rc) = P.

Proof. We apply Theorem 1 (a) with n = 2, R1 = R, R2 = X – R, P = �u(m – R2),
H1 = �v(M –R1), H2 = 0, L1 = L, and U1 =U. Clearly, P�1 = 0, P�2 = –u�(m +R –X)
and H�1 = –v�(M – R). The Bühlmann-Jewell condition is as follows:

cv�(M – R) = u�(m + R –X)  if L < R < U,
cv�(M – R) ≥ u�(m + R –X)  if R = L,
cv�(M – R) ≤ u�(m + R –X)  if R = U,

with c > 0 (see Remark 2.3). The equation cv�(M –R) = u�(m +R –X) is equivalent
to u(M –R,c) = m + M – X. Hence the solution of cv�(M – R) = u�(m + R – X) is
given by R = M – u*(m +M – X,c). Define Rc by (3.14). Clearly, (Rc) satisfies the
Bühlmann-Jewell condition. We now show the existence of a real c such that
�v (M – Rc) = P. Put h(c) = �v (M –Rc) – P, where c > 0. By the dominated con-
vergence theorem, h is continuous. Moreover, h (0+) < 0 and h (∞) > 0. Hence
there is a real c > 0 such that �v (M –Rc) = P. The proof is complete. ¡

Example 3.3. Suppose both the policyholder and the insurer use the exponen-
tial utility function with index � and b, respectively. A solution of the following
problem:

max �u�(m + R – X)  s.t. �ub(M – R) ≥ P, L ≤ R ≤ U, (3.15)

is given by

,
�

�R X db
*

UL
=

+
-^ h (3.16)

provided �X < ∞ and 1 – �e b(U–M) < bP < 1 – �e b(L–M). Herein d is a real such that
P = �ub(M – R*).

Example 3.4. Let the wealth of the insurer be greater than or equal to the
wealth of the policyholder, i.e. m ≤ M. Suppose both the policyholder and the
insurer use the logarithmic utility. Assume X < m and assume �log(M – U) <
P < �log(M – L). Then a solution of the problem

max�log(m + R –X)  s.t. �log(M – R) ≥ P, L ≤ R ≤ U (3.17)
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is the rule

R c
c X m c

M
1

*

UL
=

+
- +b l

in which c > 0 is such that �log(M –R*) = P.

Example 3.5. Given 0 < � < 1, let u(x) = �1
1
- (x1–� –1), x > 0, be the common power

utility function of the policyholder and the insurer. Assume that X < m ≤ M.
From Theorem 6 we get that if �((M –U)1– �) < (1 – �)P+ 1< �((M – L)1– �),
then a solution of the problem:

max�u(m + R –X)  s.t. �u(M –R) ≥ P, L ≤ R ≤ U, (3.18)

is the contract

,R
c

c X m
c
M

1
*

/

/

/�

�

�
UL

1

1

1=
+

- +b l

where c is such that �u (M –R*) = P.

Remark 3.2. Observe that in Examples 3.3-3.5 the optimal contract is a limited
combination of a stop loss and quota share.

3.4. Dividends payments

Suppose the insurer offers a profit sharing plan to the policyholder because of the
threat of self-insurance on the part of the good risks. He will refund some part of
the profit he makes on the policy. Let R stand for the refund, let P denote the
insurer’s premium, and let X denote the total claim amount. Since the insurer refunds
a part of the profit, one natural constraint on the set of all refunds is 0 ≤ R ≤
(P–X)+. More restrictive constraints are also of great actuarial interest. We assume
L ≤ R ≤ U where 0 ≤ L ≤ U ≤ (P –X)+. Denote by u and v utility function of the
insured and the insurer, respectively. Adopt same assumptions for u and v and def-
inition of u* as in Section 3.3. Given a real q, a solution of the following problem

max�u(m – P +R)  s.t. �v(M – R – X + P) ≥ q,L ≤ R ≤ U, (3.19)

is a Pareto-optimal dividends policy. The case when the insured is risk neutral
(u is linear) was treated by Gerber and Jones (1974). The work of Gerber and
Jones was extended by Vandebroek (1988) who assumed that the insured is risk-
averse (u is concave). In both cited papers, L = 0 and U = (P – X)+. We provide
a further extension.

Theorem 7.

Let �|X |, � |Xu�(X)|, and � |Xv�(X)| be finite. Then a solution of the problem (3.19)
is given by
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, ,R M X P u m M X c
UL

= - + - + -*c ^ h (3.20)

with c being such that �v(M – Rc –X + P) = q provided �v(M –R0+ –X + P) < q <
�v(M – R∞ – X + P).

Proof. Put in Theorem 1 (a): n = 2, R1 = X – P +R, R2 = P – R, P = �u(m – R2),
H1 = �v(M – R1), P1 = q, L1 =L + X – P, and U1 = U + X – P. Clearly, P�1 = 0,
P�2 = –u�(m – P +R), and H�1 = –v�(M – X + P – R). The rest of the proof is omit-
ted because it is extremely similar to that of Theorem 6. ¡

Example 3.6. Suppose both the insurer and the insured use the exponential utility
function with index a and b, respectively. From Theorem 7 we get the following
optimal dividend payments rule:

,R a b
a P X d*

UL
=

+
- +^ h

where d is such that �exp(a(X +R*–M –P)) = 1 – aq. If L = 0 and if U = (P –X)+
then

, .minR P X a b
a P X d* = -
+

- +
+ +

^ ^h h& 0

The later result is due to Vandebroek (1988).

3.5. Optimal limited reinsurance

Assume that an insurer is exposed to a risk X and has decided to buy a reinsur-
ance policy. By R we denote the part of X covered by reinsurer. The following
reinsurance contracts on the basis of global claims are commonly treated in
actuarial literature:

stop loss R = (X – b)+,
quota share R = aX,
combined stop loss and quota share R = a (X – b)+,

where a,b are parameters such that 0 < a ≤ 1 and b ≥ 0. We can find several
papers on optimality of agreements 1-3 (see e.g. Gerber, 1979, Deprez and
Gerber, 1985, Pesonen, 1984, Samson, 1986, Hesselager, 1990, Hesselager, 1993,
Bühlmann, 1996, Embrechts et al. 1997, Rolski et al., 1999, Young, 1999,
Kaluszka, 2001, 2004, and the references therein). Nevertheless, a lot of these
results are only of theoretical value since in practice most insurance is sold with
limited liability. Such an insurance contract is the limited stop loss defined by
R = min{l,(X – b)+}, where l is a positive real, called the layer (cf. Gerathewohl,
1980, Daykin et al., 1994, Barile and Monti, 1995). It seems that there are only
few papers dealing with optimality of limited reinsurance contracts (see Sundt,
1991, Walhin and Paris, 2000, and Mata, 2000).
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We now adjust some well-known optimality results to the case of limited
reinsurance. Suppose the cedent wants to minimize the variance of his part of
the total claims under a fixed reinsurer’s premium based on the mean and the
variance of the compensated part of the risk, i.e.

min�2(X – R)  s.t. �R = f (P,�R), L ≤ R ≤ U, (3.21)

where 0 ≤ L ≤ U ≤ X are given constraints and t → f(P,t) is decreasing and con-
cave function such that f (P,0) = P. Examples include the

• standard deviation principle P = �R + b�R,
• variance principle P = �R + b�2R,
• mixed principle P = �R + ��R + b�2R,
• modified variance principle P = �R + b�2R/�R,
• mean value principle P = [�(R2)]1/2 = [(�R)2 + �2R]1/2,
• quadratic utility principle P = �R + c – (c2 – �2R)1/2,

where �,b,c > 0 (cf. Gerber, 1979, Goovaerts et al., 1984, and Bühlmann, 1996
among others). Theorem 8 extends Theorem 1.1 of Kaluszka (2001).

Theorem 8.

Assume �X2 < ∞ and assume there exists the rule R* = �a(X – b)�UL with reals a,b
such that �R* > 0, a > 0, and

(i) (a (�X – b) – �R*) f �2(P,�R*) = (1– a)�R*,
(ii) �R* = f (P,�R*),

where f �2(P,t) = ∂f (P,t) /∂t. Then R* is a solution of (3.21).

Proof. Put n = 2, R1 = R, R2 = X – R, L1 = L, U1 = U, P = –�2R2, P1 = 0, and
H1(R) = f (P,�R) – �R in Theorem 1 (a) (see Remark 2.2). As a consequence
of the inequalities:

f (P,�R) ≤ f (P,�R) + f �2 (P,�R) (�R – �R),
�R – �R ≥ �[(R – �R) (R – R)] /�R,

and the assumption f �2(P,t) ≤ 0, we get

( )
( ) , >

( ) ,

� � �

� �

H
H R f P R R R

H R R R

if

if
R

R

R

1 0

0
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Hence H1 is a C-functional and

,
�

�
�H R

R R f P R 1,R1 2= - -� �^ h
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provided �R > 0 and H�1,R = –1 otherwise. Moreover, P is a C-functional, P�1 = 0,
and P�2 = –2(R2 – �R2) = – 2(X – R – �(X – R)). If �R > 0 then the extended
Bühlmann-Jewell condition reads

2(X –R – �(X –R)) = c (1 – f �2 (P,�R) �
�

R
R R- ) if L < R < U,

2(X –R – �(X –R)) ≤ c (1 – f �2 (P,�R) �
�

R
R R- ) if R = L,

2(X –R – �(X –R)) ≥ c (1 – f �2 (P,�R) �
�

R
R R- ) if R = U.

Clearly, R = a (X – b) for L < R < U with

,
> , ( )

,
.

�

�
�

�

�
�a c

R
f P R

b X R c
R

f P R
R1

2
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2
12

1

2= - = - + +
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� �
J

L

K
K
K

J

L

K
K
K

^ ^

N

P

O
O
O

N

P

O
O
O

h h

It is easy to check that (a (�X – b) – �R) f �2 (P,�R) = (1 – a)�R. The rule R* =
�a(X – b)�UL satisfies the extended Bühlmann-Jewell condition, which completes
the proof. ¡

We now treat in details the case of the variance principle, namely, we find a solu-
tion of the problem

min�2(X – R)  s.t. P = �R + b�2R, L ≤ R ≤ U, (3.22)

where 0 ≤ L ≤ U ≤ X.

Theorem 9.

Let �(a ≤ X ≤ b) > 0 for every 0 < a < b, let �(U <X) > 0, and let �L + b�2L <
P < �U + b�2U. If 0 < b ≤ 1/ (2�X), then a solution of (3.22) is given by Rab =
�a (X– b)�UL, where a > 0, b ∈ � solves the following system of equations

a – 2ab (�X– b) + 2b�Rab = 1, P = �Rab+ b�2Rab (3.23)

Proof. The result follows directly from Theorem 8. It is enough to show that
the system (3.23) has a solution. Define f(a,b) = �Rab+ b�2Rab – P for a > 0,
b ∈ �. Observe that both the function a → �Rab and a → �R2

ab are nondecreasing
on (0,∞) for each b. Since �Rab ≤ �X ≤ 1/(2b), the function a → f(a,b) is non-
decreasing for each b. It is clear that f(0+,b) = �L + b�2L – P < 0 and

,
>

> ,

� �

� �
b

U U P b

R R P b

for

for
f

b

b

0 0

0b b

2

2
3

#
=

+ -

+ -
^ h *

where Rb(x) = L(x) for x < b and Rb(x) = U(x) for x ≥ b. Let c denote the small-
est solution of the equation �Rb + b�2Rb = P in b > 0. By the assumptions on
X, U and L, for each b < c the function a → f(a,b) is constant on (0,a0) �
[a1,∞) and is increasing on [a0,a1) for some 0 ≤ a0 < a1 ≤ ∞ (either the interval
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(0,a0) or [a1,∞) may be empty). Since f is continuous on (0,∞) ≈ �, there exists
a continuous positive function on (–∞,c), say a(b), such that f(a(b),b) = 0 for
each b < c. Note that a(–∞) = 0 because of

f(a, –∞) = �U + b�U – P > 0

for each a. Furthermore, a(c–) = ∞. Let c(a,b) = a – 2ab (�X – b) + 2b�Rab – 1.
The function c(a(b),b) is continuous on (–∞,c) since both a(b) and c are con-
tinuous. Observe that

b " 3-
lim c(a(b),b) ≤

b " 3-
lim (2b�Rab –1) ≤ 2b�U –1 < 2b�X – 1 ≤ 0,

b c" -
lim c(a(b),b) ≥

b c" -
lim a(b)(1 – 2b�X + 2bb) –1 = ∞,

because a(–∞) = 0, a(c–) = ∞, 1 – 2b�X ≥ 0, and c > 0. Therefore, there exist a > 0
and b ∈ � such that a = a(b), f(a,b) = 0, and c(a,b) = 0, which proves the desired
result. ¡

We now propose another solution of the problem of incorporating the variance
of reinsurer’s cover into a reinsurance contract. Suppose the reinsurer uses the
expected value principle. Both sides of the contract accept a rule being a solution
of the problem

min�2(X – R) + k�2R s.t. P = (1+ b)�R, L ≤ R ≤ U, (3.24)

where 0 ≤ L ≤ U ≤ X and k > 0 is a parameter which has been chosen by one of
the methods described in Section 1.

Theorem 10.

Suppose (1+ b)�L < P < (1+ b)�U. Then a solution of (3.24) is the limited com-
bination of a stop loss and quota share given by R* = � k 1

1
+ (X – b)�UL, where b is

the solution of (1+ b)�R* = P.

Proof. Directly from Theorem 1 (a) and Remark 2.2 with n = 2, R1 = R, R2 =
X – R, P = –k�2R1 – �2R2, H1(R1) = (1+ b)�R1, and P1 = P.
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