Path Decompositions of Kneser and Generalized Kneser Graphs

C. A. Rodger and Thomas Richard Whitt, III

Abstract. Necessary and sufficient conditions are given for the existence of a graph decomposition of the Kneser Graph $K G_{n, 2}$ and of the Generalized Kneser Graph $G K G_{n, 3,1}$ into paths of length three.

1 Introduction

An H-decomposition of a graph $G=(V, E)$ is a pair (V, B), where B is a collection of edge-disjoint subgraphs of G, each isomorphic to H, whose edges partition $E(G)$. There is much in the literature concerning decompositions of various graphs. The subgraphs used to partition the edges of G are, for example, cycles [$1,8,12$] and paths [14], and G is most commonly a complete multipartite graph. More recently, stemming from statistical designs, G has been chosen to be the graph formed from a complete multipartite graph with multiplicity λ_{2} by adding a copy of $\lambda_{1} K_{n}$ to each part of size n and H is a 3-cycle, a 4-cycle, or a Hamilton cycle [2,5,6].

In this paper, we consider path decompositions in the case where G, the graph being decomposed, is a Kneser Graph or a Generalized Kneser Graph. The Kneser Graph $K G_{n, k}$ is the graph whose vertices are the k-element subsets of some set of n elements, in which two vertices are adjacent if and only if their intersection is empty. The Generalized Kneser Graph, $G K G_{n, k, r}$ is the graph whose vertices are the k-element subsets of some set of n elements, in which two vertices are adjacent if and only if they intersect in precisely r elements. The graph-decomposition problem of finding necessary and sufficient conditions for the existence of P_{3}-decompositions of $K G_{n, 2}$ and $G K G_{n, 3,1}$ is completely solved in Theorems 1 and 2 respectively, where P_{i} denotes a path of length i. An explicit construction is provided to find the relevant decompositions.

It is worth noting that Kneser graphs have attracted much interest in the years since Kneser first described them in 1955 [9]. For instance, Kneser Graphs are known to contain a Hamiltonian cycle if $n \geq 3 k$ [4]. The current conjecture is that all Kneser Graphs are Hamiltonian if $n \geq 2 k+1$, with the exception of $K G_{5,2}$, which is the Petersen Graph. It has been shown computationally that all connected Kneser graphs with $n \leq 27$ except for the Petersen Graph are Hamiltonian [13]. Also, much interest has centered on solving the conjecture by Kneser that $\chi\left(K G_{n, k}\right)=n-2 k+2$ whenever

[^0]$n \geq 2 k[3,7,9-11]$, where $\chi(G)$ is the chromatic number of $G\left(K G_{n, k}\right.$ has no edges if $n<2 k$).

2 Building Blocks

Let $T_{k}(V)$ be the set of k-element subsets of the set V. Let $P_{3}=(a, b, c, d)$ denote the path of length three with edge set $\{\{a, b\},\{b, c\},\{c, d\}\}$.

The following lemmas will be useful in the constructions to come.
Lemma 1 There exists a P_{3}-decomposition of each of the following graphs:
(i) $K_{2,3}$;
(ii) $K_{3,3}$;
(iii) $K_{n, 3 k}$ for any $n \geq 2$ and $k \geq 1$;
(iv) $H_{4}=K_{3,3}-F$ with bipartition $\left\{\mathbb{Z}_{3}, \mathbb{Z}_{6} \backslash \mathbb{Z}_{3}\right\}$ of $V\left(K_{3,3}\right)$, and where $E(F)=$ $\left\{\{i, i+3\} \mid i \in \mathbb{Z}_{3}\right\} ;$
(v) $H_{5}=H_{4} \cup G^{\prime}$, where $G^{\prime}=\left(\mathbb{Z}_{9} \backslash \mathbb{Z}_{3},\{\{3,6\},\{4,7\},\{5,8\}\}\right)$;
(vi) H_{6}, the bipartite graph with bipartition $\left\{T_{2}\left(\mathbb{Z}_{4}\right), \mathbb{Z}_{4}\right\}$ of $V\left(H_{6}\right)$ and $E\left(H_{6}\right)=$ $\left\{\{a, b\} \mid b \notin a, a \in T\left(\mathbb{Z}_{4}\right), b \in \mathbb{Z}_{4}\right\} ;$
(vii) $K G_{5,2}$ (the Petersen Graph);
(viii) H_{8}, the bipartite graph with bipartition $\left\{T_{2}\left(\mathbb{Z}_{5}\right), \mathbb{Z}_{5}\right\}$ of $V\left(H_{8}\right)$ and $E\left(H_{8}\right)=$ $\left\{\{a, b\} \mid b \notin a, a \in T\left(\mathbb{Z}_{5}\right), b \in \mathbb{Z}_{5}\right\}$.

Proof (i) Define $K_{2,3}$ with bipartition $\left\{\mathbb{Z}_{2}, \mathbb{Z}_{5} \backslash \mathbb{Z}_{2}\right\}$ of the vertex set \mathbb{Z}_{5}. Then

$$
\left(\mathbb{Z}_{5},\{(0,2,1,3),(3,0,4,1)\}\right)
$$

is the required decomposition.
(ii) Define $K_{3,3}$ with bipartition $\left\{\mathbb{Z}_{3}, \mathbb{Z}_{6} \backslash \mathbb{Z}_{3}\right\}$ of the vertex set \mathbb{Z}_{6}. Then

$$
\left(\mathbb{Z}_{6},\{(3,0,5,2),(1,3,2,4),(0,4,1,5)\}\right)
$$

is the required decomposition.
(iii) Since $n \geq 2$, form a partition P of \mathbb{Z}_{n} into sets of size 2 and 3, and a partition Q of $\mathbb{Z}_{n+3 k} \backslash \mathbb{Z}_{n}$ into sets of size 3. For each $p \in P$ and $q \in Q$, let $(p \cup q$, $B_{p, q}$) be a P_{3}-decomposition of $K_{|p|, 3}$ with bipartition $\{p, q\}$ of the vertex set. Then $\left(\mathbb{Z}_{n+3 k}, \cup_{p \in P, q \in Q} B_{p, q}\right)$ is the required P_{3}-decomposition of $K_{n, 3 k}$.
(iv) With bipartition $\left\{\mathbb{Z}_{3}, \mathbb{Z}_{6} \backslash \mathbb{Z}_{3}\right\},\left(\mathbb{Z}_{6},\{(0,4,2,3),(0,5,1,3)\}\right)$ is the required decomposition with $F=\{\{0,3\},\{1,4\},\{2,5\}\}$.
(v) $\left(\mathbb{Z}_{9},\{(6,3,1,5),(7,4,2,3),(8,5,0,4)\}\right)$ is the required decomposition.
(vi)

$$
\begin{aligned}
\left(V\left(H_{6}\right),\{(0,\{2,3\}, 1,\{0,2\}),(1,\{0,3\}\right. & , 2,\{1,3\}) \\
& (2,\{0,1\}, 3,\{0,2\}),(3,\{1,2\}, 0,\{1,3\}))
\end{aligned}
$$

is the required decomposition.
(vii) Let $V\left(K G_{5,2}\right)=T_{2}\left(\mathbb{Z}_{5}\right)$. Then

$$
\left(T_{2}\left(\mathbb{Z}_{5}\right),\left\{(\{i, i+1\},\{i+2, i+3\},\{i+1, i+4\},\{i, i+3\}) \mid i \in \mathbb{Z}_{5}\right\}\right.
$$

reducing the sums modulo 5 is the required decomposition.
(viii)

$$
\begin{aligned}
& \left(V\left(H_{8}\right),\{(1,\{0,2\}, 3,\{0,1\}),(2,\{0,3\}, 4,\{0,2\}),\right. \\
& \quad(2,\{0,4\}, 1,\{0,3\}),(0,\{1,2\}, 3,\{0,4\}), \\
& (0,\{1,3\}, 4,\{1,2\}),(3,\{1,4\}, 2,\{1,3\}), \\
& *(4,\{2,3\}, 0,\{1,4\}),(3,\{2,4\}, 1,\{2,3\}), \\
& (1,\{3,4\}, 0,\{2,4\}),(4,\{0,1\}, 2,\{3,4\}))
\end{aligned}
$$

is the required decomposition.
A graph G is said to have an Euler tour if there exists a closed walk in G that contains each edge of G exactly once.

The following is well known.
Lemma 2 A connected simple graph G has an Euler tour if and only if the degree of every vertex in G is even.

From this, we can easily obtain the following result.
Lemma 3 If G is a connected bipartite simple graph in which the number of edges is divisible by three and all vertices have even degree, then G has a P_{3}-decomposition.

Proof By Lemma 2, let $P=\left(v_{0}, v_{1}, \ldots, v_{e}\right)$ be an Euler tour of G. Since G is bipartite, each set of three consecutive edges of P induce a P_{3}. Therefore, since $e=|E(G)|$ is divisible by three, $\left(V(G),\left\{\left(v_{3 i}, v_{3 i+1}, v_{3 i+2}, v_{3 i+3}\right) \mid i \in \mathbb{Z}_{e / 3}\right\}\right)$ is a P_{3}-decomposition of G.

Lemma 4 There exists a P_{3}-decomposition of each of the following graphs:
(i) $\operatorname{GKG}_{5,3,1}$ (the Petersen Graph), and
(ii) $G K G_{6,3,1}$.

Proof (i) $G K G_{5,3,1}=K G_{5,2}$ as can be seen by taking the complement of each vertex. The result follows from Lemma 1(vii).
(ii) Partition the vertices of $G K G_{6,3,1}$ into the following two types:

- Type 1: $T_{3}\left(\mathbb{Z}_{5}\right)$, and
- Type 2: $T_{3}\left(\mathbb{Z}_{6}\right) \backslash T_{3}\left(\mathbb{Z}_{5}\right)$.

Let G_{1} be the subgraph induced by the Type 1 vertices, G_{2} be the subgraph induced by the Type 2 vertices, and G_{3} be the bipartite subgraph induced by the edges of the form $\{x, y\}$ where x is a Type 1 vertex and y is a Type 2 vertex. G_{1} is clearly a $G K G_{5,3,1}$ and has a P_{3}-decomposition by (i). G_{2} is isomorphic to $K G_{5,2}$ (all vertices share the element 5, so two are adjacent only if their other two elements are disjoint) and has a P_{3}-decomposition by Lemma 1(vii). G_{3} is a bipartite graph that is 6-regular, so $\left|E\left(G_{3}\right)\right|$ is a multiple of three. To see that G_{3} is connected, for each Type 1 vertex, $\{a, b, c\}$ in G_{3} we display a path to each vertex of Type 2 as follows (where a, b, c, d and e are the distinct elements of $\left.\mathbb{Z}_{5}\right):(\{a, b, c\},\{a, d, 5\},\{b, c, d\},\{a, b, 5\})$, $(\{a, b, c\},\{a, d, 5\},\{a, b, e\},\{d, e, 5\})$, and $(\{a, b, c\},\{a, d, 5\})$. These account for
all pairs of nonadjacent vertices in G_{3}, so G_{3} is connected. Therefore, G_{3} is a connected even regular bipartite graph with a multiple of three edges, so by Lemma 3, it also has a P_{3}-decomposition. The union of these three decompositions forms a P_{3} decomposition of $G K G_{6,3,1}$.

3 A P_{3}-Decomposition of $K G_{n, 2}$

Theorem $1 \quad K G_{n, 2}$ is P_{3}-decomposable if and only if $n \neq 4$.
Proof If $n \in\{1,2,3\}$, then $K G_{n, 2}$ has no edges, so the result is vacuously true. Since $K G_{4,2}$ is a 1 -factor on six vertices, it is clearly not P_{3}-decomposable. $K G_{5,2}$ is decomposable by Lemma 1(vii).

The remaining cases are proved by induction on n. So now assume that $K G_{w, 2}$ is P_{3}-decomposable for all $w \leq n$ for some $n \geq 5$. It is shown that $G=K G_{n+1,2}$ is P_{3}-decomposable. Let $\epsilon \in\{0,1,2\}$ such that $\epsilon \equiv n(\bmod 3)$. Let $\left(T_{2}\left(\mathbb{Z}_{n}\right), B\right)$ be a P_{3}-decomposition of $K G_{n, 2}$.

The subgraph of $K G_{n+1,2}$ induced by vertices in $T_{2}\left(\mathbb{Z}_{n+1}\right) \backslash T_{2}\left(\mathbb{Z}_{n}\right)$ clearly has no edges, since they all share the element n. What remains to be shown is that the subgraph induced by the edges connecting vertices in $T_{2}\left(\mathbb{Z}_{n}\right)$ to vertices in $T_{2}\left(\mathbb{Z}_{n+1}\right) \backslash T_{2}\left(\mathbb{Z}_{n}\right)$ has a P_{3}-decomposition.

Partition \mathbb{Z}_{n} into $t=(n-\epsilon) / 3$ sets: $S_{i}=\{3 i, 3 i+1,3 i+2\}$ for $i \in \mathbb{Z}_{t-1}$ and $S_{t-1}=\{i \mid n-3-\epsilon \leq i \leq n-1\}$. It is convenient to partition the old vertices, $T\left(\mathbb{Z}_{n}\right)$, into the following two types:

$$
\begin{gathered}
V_{i}=\left\{\{x, y\} \mid x, y \in S_{i}, x \neq y\right\} \quad \text { for } i \in \mathbb{Z}_{t} \\
V_{i, j}=\left\{\{x, y\} \mid x \in S_{i}, y \in S_{j}\right\} \quad \text { for } 0 \leq i<j<t
\end{gathered}
$$

Further, partition the new vertices into t sets:

$$
S_{i}^{\prime}=\left\{\{x, n\} \mid x \in S_{i}\right\} \quad \text { for } i \in \mathbb{Z}_{t} .
$$

All of the edges not involving vertices with elements in S_{t-1} are handled first. Of these edges, the edges that require special attention are those joining two vertices in $\left\{\{v, s\} \mid v \in V_{i}, s \in S_{i}^{\prime}\right\}$ for some $i \in \mathbb{Z}_{t-1}$. For each $i \in \mathbb{Z}_{t-1}$, these edges induce a matching on six vertices, so they can't be decomposed into three paths in isolation. To decompose these edges, they are combined with edges joining two vertices in $\left\{\{v, s\} \mid v \in V_{0, i}, s \in S_{i}^{\prime}\right\}$ for some $i \in \mathbb{Z}_{t-1} \backslash\{0\}$ to form 3-paths as described in the next two paragraphs, with $i=1$ being an even more special case.

First, consider the bipartite subgraph G_{0} of $K G_{n+1,2}$ induced by the edges joining the vertices in $V_{0} \cup V_{1} \cup V_{0,1}$ to the vertices in $S_{0}^{\prime} \cup S_{1}^{\prime}$. Partition these edges as follows. The edges joining the vertices of $V_{1} \cup\left\{\{0, x\} \mid x \in S_{1}\right\}$ to S_{1}^{\prime} induce a subgraph isomorphic to H_{5}, so by Lemma 1(v), there exists a P_{3}-decomposition of this subgraph. The edges joining the vertices of $V_{0} \cup\left\{\{x, 3\} \mid x \in S_{0}\right\}$ to S_{0}^{\prime} also form a subgraph isomorphic to H_{5}, so by Lemma $1(\mathrm{v})$, there exists a P_{3}-decomposition of this subgraph as well. Now, for each $k \in\{1,2\}$ consider the edges joining the vertices $\{\{k, x\} \mid x \in$ $\left.S_{1}\right\}$ to the vertices in S_{1}^{\prime}. These edges induce a subgraph isomorphic to H_{4}, so by Lemma 1(iv), there exists a P_{3}-decomposition of this subgraph. Also, for each $k \in$
$\{4,5\}$ the edges joining the vertices $\left\{\{x, k\} \mid x \in S_{0}\right\}$ to the vertices in S_{0}^{\prime} induce a subgraph isomorphic to H_{4}, so by Lemma 1(iv), there exists a P_{3}-decomposition of this subgraph. The union of these sets of 3-paths produces a P_{3}-decomposition $\left(V\left(G_{0}\right), B_{0}^{\prime}\right)$ of most of G_{0}. The edges connecting V_{1} to S_{0}^{\prime} and connecting V_{0} to S_{1}^{\prime} occur in paths in $B_{1,0}^{\prime}$ and $B_{0,1}^{\prime}$, respectively as defined below.

Now, for each $i \in\left\{\mathbb{Z}_{t-1} \backslash \mathbb{Z}_{2}\right\}$, consider the bipartite subgraph G_{i} of $K G_{n+1,2}$ induced by the edges joining the vertices in $V_{i} \cup V_{0, i}$ to the vertices in $S_{0}^{\prime} \cup S_{i}^{\prime}$. The edges in G_{i} connecting the vertices of $V_{i} \cup\left\{\{0, x\} \mid x \in S_{i}\right\}$ to S_{i}^{\prime} induce a subgraph isomorphic to H_{5}, thus it has a P_{3}-decomposition by Lemma 1(v). Now, for each $k \in\{1,2\}$, the edges joining the vertices in $\left\{\{k, x\} \mid x \in S_{i}\right\}$ to the vertices in S_{i}^{\prime} induce a subgraph isomorphic to H_{4}, so there exists a P_{3}-decomposition of the subgraph by Lemma 1(iv). Further, for each $k \in S_{i}$, the edges connecting the vertices of $\left\{\{x, k\} \mid x \in S_{0}\right\}$ to the vertices of S_{0}^{\prime} induce a subgraph isomorphic to H_{4} which therefore has a decomposition by Lemma 1(iv). The union of these decompositions produce a P_{3}-decomposition, $\left(V\left(G_{i}\right), B_{i}^{\prime}\right)$, of most of G_{i} for each $i \in\left\{\mathbb{Z}_{t} \backslash \mathbb{Z}_{2}\right\}$. The remaining edges in G_{i}, namely those connecting V_{i} to S_{0}^{\prime}, are in paths in $B_{i, 0}^{\prime}$ as defined below.

For each $i \in \mathbb{Z}_{t-1}$ and for each $j \in \mathbb{Z}_{t-1} \backslash\{i\}$, the bipartite subgraph of G induced by the edges joining vertices in V_{i} to vertices in S_{j}^{\prime} is isomorphic to $K_{3,3}$, so by Lemma 1(ii) there exists a P_{3}-decomposition $\left(V_{i} \cup S_{j}^{\prime}, B_{i, j}^{\prime}\right)$ of this subgraph.

For $1<j<t-1$, the edges connecting vertices of $V_{0,1}$ to vertices of S_{j}^{\prime} induce a $K_{9,3}$, and thus this graph has a P_{3}-decomposition $\left(V_{0,1} \cup S_{j}^{\prime}, B_{0,1, j}\right)$ by Lemma 1(iii).

For each $i \in \mathbb{Z}_{t-1} \backslash \mathbb{Z}_{2}$ and for each $j \in \mathbb{Z}_{t-1} \backslash\{0, i\}$, the edges connecting vertices of $V_{0, i}$ with the vertices of S_{j}^{\prime} induce a copy of $K_{9,3}$ so this graph has a P_{3} decomposition, $\left(V_{0, i} \cup S_{j}^{\prime}, B_{0, i, j}\right)$, by Lemma 1(iii). For $0<i<j<t-1$ and $0 \leq k<t-1$, consider the bipartite subgraph of G induced by edges joining vertices in $V_{i, j}$ to vertices in S_{k}^{\prime}. This subgraph of G has a P_{3}-decomposition as follows:
(a) if $k \notin\{i, j\}$, then the subgraph is isomorphic to $K_{9,3}$, so it has a P_{3}-decomposition ($V_{i, j} \cup S_{k}^{\prime}, B_{i, j, k}$) by Lemma 1(iii);
(b) if $k=i$, then for each $y \in S_{j}$ the edges connecting the vertices $\left\{\{x, y\} \mid x \in S_{i}\right\}$ and $S_{k=i}^{\prime}$ induce a subgraph isomorphic to H_{4}, which has a P_{3}-decomposition ($V_{i, j} \cup S_{k}^{\prime}, B_{i, j, k}$) by Lemma 1(iv);
(c) if $k=j$, then for each $x \in S_{i}$ the edges connecting the vertices $\left\{\{x, y\} \mid y \in S_{j}\right\}$ and $S_{k=j}^{\prime}$ form a subgraph isomorphic to H_{4}, which has a P_{3}-decomposition $\left(V_{i, j} \cup\right.$ $S_{k}^{\prime}, B_{i, j, k}$) by Lemma 1(iv).
The only edges left to consider are all the edges which are incident with a vertex in $S_{t-1}^{\prime} \cup V_{t-1} \cup V_{i, t-1}, i \in \mathbb{Z}_{t-1}$. The handling of thse edges depends on the value of ϵ.

First, consider the bipartite subgraph G_{t-1} of $K G_{n+1,2}$ induced by the edges joining the vertices in $V_{t-1} \cup V_{0, t-1}$ to the vertices in $S_{0}^{\prime} \cup S_{t-1}^{\prime}$. We consider each value of ϵ in turn.

For $\epsilon=0$, the edges in G_{t-1} connecting the vertices of $V_{t-1} \cup\left\{\{0, x\} \mid x \in S_{t-1}\right\}$ to S_{t-1}^{\prime} induce a subgraph isomorphic to H_{5}, thus it has a P_{3}-decomposition by Lemma $1(\mathrm{v})$. Now, for each $k \in\{1,2\}$, the edges joining the vertices in $\{\{k, x\} \mid$ $\left.x \in S_{t-1}\right\}$ to the vertices in S_{t-1}^{\prime} induce a subgraph isomorphic to H_{4}, so there exists a
P_{3}-decomposition by Lemma 1(iv). Further, for each $k \in S_{t-1}$, the edges connecting the vertices of $\left\{\{x, k\} \mid x \in S_{0}\right\}$ to the vertices of S_{0}^{\prime} induce a subgraph isomorphic to H_{4} which therefore has a decomposition by Lemma 1(iv). Lastly, the edges joining the vertices in v_{t-1} to the vertices in S_{0}^{\prime} induce a subgraph isomorphic to $K_{3,3}$, and so has a P_{3}-decomposition be Lemma 1(ii). The union of these decompositions produce a P_{3}-decomposition, $\left(V\left(G_{t-1}\right), B_{t-1}^{\prime}\right)$, of G_{t-1}.

For $\epsilon=1$ or 2, the edges connecting vertices in V_{t-1} to S_{t-1}^{\prime} induce a graph isomorphic to H_{6} or H_{8} respectively, which has a P_{3}-decomposition by Lemma 1(vi) ((viii) respectively). Regarding the edges connecting vertices in $V_{0, t-1}$ to S_{t-1}^{\prime}, for each $y \in S_{t-1}$ the edges connecting the vertices $\left\{\{x, y\} \mid x \in S_{0}\right\}$ and S_{t-1}^{\prime} induce a subgraph isomorphic to $K_{3,3}$ if $\epsilon=1$ and $K_{3,4}$ if $\epsilon=2$, which has a P_{3}-decomposition by Lemma 1(iii) in both cases. For each $k \in S_{t-1}$ the edges connecting the vertices in $\left\{\{x, k\} \mid x \in S_{0}\right\}$ to the vertices in S_{0}^{\prime} induce a subgraph isomorphic to H_{4}, so there exists a P_{3}-decomposition by Lemma 1(iv). Lastly, the edges joining the vertices in v_{t-1} to the vertices in S_{0}^{\prime} induce a subgraph isomorphic to $K_{3+\epsilon, 3}$, and so has a P_{3}-decomposition be Lemma 1(iii). The union of these decompositions produce a P_{3}-decomposition, $\left(V\left(G_{t-1}\right), B_{t-1}^{\prime}\right)$, of G_{t-1}.

The rest of the edges are easier to decompose.
For each $i \in \mathbb{Z}_{t-1}$, the bipartite subgraph induced by the edges joining the vertices of V_{i} to the vertices of S_{t-1}^{\prime} induce a graph isomorphic $K_{3,3+\epsilon}$, so it has a P_{3-} decomposition ($V_{i} \cup S_{t-1}^{\prime}, B_{i, t-1}$) by Lemma 1(iii).

For $0 \leq i<j<t-1$, the bipartite subgraph induced by the edges joining the vertices of $V_{i, j}$ to the vertices of S_{t-1}^{\prime} induce a graph isomorphic to $K_{9,3+\epsilon}$, so it has a P_{3}-decomposition $\left(V_{i, j} \cup S_{t-1}^{\prime}, B_{i, j, t-1}\right)$ by Lemma 1(iii).

Finally, for $0<i<t-1$ and $0 \leq k<t$, consider the bipartite subgraph of G induced by edges joining vertices in $V_{i, t-1}$ to vertices in S_{k}^{\prime}. This subgraph of G has a P_{3}-decomposition as follows.
(a) If $k \notin\{i, t-1\}$, then the subgraph is isomorphic to $K_{3(3+\varepsilon), 3}$, so it has a P_{3} decomposition $\left(V_{i, t-1} \cup S_{k}^{\prime}, B_{i, t-1, k}\right)$ by Lemma 1(iii).
(b) If $k=i$, then for each $y \in S_{t-1}$ the edges connecting the vertices $\left\{\{x, y\} \mid x \in S_{i}\right\}$ and $S_{k=i}^{\prime}$ induce a subgraph isomorphic to H_{4}, which has a P_{3}-decomposition ($V_{i, t-1} \cup S_{k}^{\prime}, B_{i, t-1, k}$) by Lemma 1(iv).
(c) If $k=t-1$, then we have the following cases:

- Case $\epsilon=0$: For each $x \in S_{i}$ the edges connecting the vertices $\left\{\{x, y\} \mid y \in S_{j}\right\}$ and $S_{k=j}^{\prime}$ induce a subgraph isomorphic to H_{4}, which has a P_{3}-decomposition ($V_{i, j} \cup S_{k}^{\prime}, B_{i, j, k}$) by Lemma 1(iv).
- Case $\epsilon \stackrel{\text { 1: For each } y \in S_{t-1} \text { the edges connecting the vertices }\{\{x, y\}||c| c| c \mid}{ }$ $\left.x \in S_{i}\right\}$ and $S_{k=t-1}^{\prime}$ induce a subgraph isomorphic to $K_{3,3}$, which has a P_{3} decomposition ($V_{i, t-1} \cup S_{k}^{\prime}, B_{i, t-1, k}$) by Lemma 1(ii).
- Case $\epsilon=2$: For each $y \in S_{t-1}$ the edges connecting the vertices $\{\{x, y\} \mid$ $\left.x \in S_{i}\right\}$ and $S_{k=t-1}^{\prime}$ induce a subgraph isomorphic to $K_{4,3}$, which has a P_{3} decomposition ($V_{i, t-1} \cup S_{k}^{\prime}, B_{i, t-1, k}$) by Lemma 1(iii).
This accounts for all new edges.

Let $B_{1}=\bigcup_{i \in \mathbb{Z}_{t}} B_{i}^{\prime}, B_{2}=\bigcup_{0 \leq i<j<t} B_{i, j}^{\prime}$, and $B_{3}=\bigcup_{0 \leq i<j<t, k \in \mathbb{Z}_{t}} B_{i, j, k}^{\prime}$. The required P_{3}-decomposition of G is given by $\left(V(G), B \cup B_{1} \cup B_{2} \cup B_{3}\right)$.

4 A P_{3}-Decomposition of $G K G_{n, 3,1}$

Before stating and proving the main result for $G K G_{n, 3,1}$, a few definitions and a technical lemma are presented.

A digraph is an ordered quadruple $D=(V, E, t, h)$ where V is a set of vertices, E is a set of ordered pairs of vertices (each element of which is called an arc or directed edge), and $t, h: E \rightarrow V$ are functions defined by $t((u, v))=u$ and $h((u, v))=v$ for each $\operatorname{arc}(u, v) \in E(t(e)$ and $h(e)$ are called the tail and head of arc e, respectively). A complete digraph is a digraph in which $E=V \times V$.

A directed 2-factor of a digraph D is a spanning subdigraph F in which every vertex is the head of exactly one arc and the tail of exactly one arc of F.

Let $D=(V, E, t, h)$ be a digraph, let C be a set of colors, and for each $e \in E$, let $C_{e} \subseteq C$. A $\left(C_{1}, \ldots, C_{e}\right)$-coloring of D is a function $c: E \rightarrow C$ such that if $e \in E$ then $c(e) \in C_{e}$ (this is known as a list arc-coloring). A list arc-coloring is said to be proper if no two adjacent arcs receive the same color. In the following lemma, the vertex set is $T_{3}\left(\mathbb{Z}_{n}\right)$, so we can refer to the intersection of two vertices (it is the intersection of two 3 -element sets).

Lemma 5 Let $D=\left(T_{3}\left(\mathbb{Z}_{n}\right), E, t, h\right)$ be a complete digraph. Let $C=\mathbb{Z}_{n}$ be a set of colors. For each $e \in E$, let $C_{e}=t(e) \cap h(e)$ (so possibly $C_{e}=\varnothing$). There exists a proper list arc-colored directed 2-factor of D.

Proof Let D, C, and C_{e} be defined as stated in the lemma. Form a directed 2factor, F, of D as follows.

First, form a partition, P, of the vertex set $T_{3}\left(\mathbb{Z}_{n}\right)$ so that two vertices $\{a, b, c\}$ and $\{x, y, z\}$ are in the same element of P if and only if $\{x, y, z\}=\{a+i, b+i, c+i\}$ for some $i \in \mathbb{Z}_{n}$ with the sums reduced modulo n. If n is not a multiple of three, then P contains $l=\frac{(n-1)(n-2)}{6}$ sets, each containing n elements. If n is a multiple of three, say $n=3 k$, then P contains $l=\left(\binom{3 k}{3}-k\right) / 3 k=3\binom{k}{2}$ sets of size n and one set of size k. In either case, let the elements of P of size n be $\left\{E_{0}, E_{1}, \ldots, E_{l-1}\right\}$, and if n is a multiple of three then let $E_{l}=\left\{\{i, i+k, i+2 k\} \mid i \in \mathbb{Z}_{k}\right\}$ be the single set of size k.

For $0 \leq i<l$, among the vertices in E_{i}, let $e_{i}=\left\{0, a_{i}, b_{i}\right\}$ with $a_{i}<b_{i}$ be one that contains both zero and as small a nonzero element of \mathbb{Z}_{n} as possible (two such vertices might exist, in which case either can be e_{i}). Let $d_{i}=\operatorname{gcd}\left(a_{i}, n\right)$. For $0 \leq j<d_{i}$, and for $0 \leq r<\frac{n}{d_{i}}$, define the arc $e_{i, r, j}=\left(\left\{r a_{i}+j,(r+1) a_{i}+j, r a_{i}+b_{i}+j\right\},\left\{(r+1) a_{i}+\right.\right.$ $\left.\left.j,(r+2) a_{i}+j,(r+1) a_{i}+b_{i}+j\right\}\right)$ in D. Then for each $j \in \mathbb{Z}_{d_{i}}$, the subgraph $S_{i, j}$ of D induced by $\left\{e_{i, r, j} \left\lvert\, 0 \leq r<\frac{n}{d_{i}}\right.\right\}$ is a directed cycle. Note that the both the tail and head of each arc $e_{i, r, j}$ contains the element $(r+1) a_{i}+j$; so let $c\left(e_{r, j}\right)=(r+1) a_{i}+j$. Clearly this coloring is proper since consecutive arc colors differ by $a_{i}(\bmod n)$, where clearly $a_{i}<n$. If n is not a multiple of three, then $F=\bigcup_{i \in \mathbb{Z}_{l}, j \in \mathbb{Z}_{d_{i}}} S_{i, j}$ is a directed 2-factor that is properly list arc-colored as required.

If n is a multiple of three, then F is a properly list arc-colored directed 2-factor that includes all of the vertices in D except for those in E_{l}. We now insert the k vertices in E_{l} into an already created directed cycle in F and then give a proper list arc-coloring to the modified cycle. Recall that $\left.E_{l}=\{i, k+i, 2 k+i\} \mid 0 \leq i<k\right\}$. Consider the colored directed cycle, C^{\prime}, in F containing the vertex $\{0,1,1+k\}$. Then $C^{\prime}=\left(v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}\right)$ where for each $j \in \mathbb{Z}_{n}, v_{j}^{\prime}=\{0+j, 1+j, 1+k+j\}$ and where the $\operatorname{arc}\left(v_{j}^{\prime}, v_{j+1}^{\prime}\right)$ is colored $j+1$. For $0 \leq j \leq k$, replace the $\operatorname{arc}(\{0+j, 1+j, 1+k+j\},\{1+j, 2+$ $j, 2+k+j\})$ colored $i+j$ in F with the $\operatorname{arcs}(\{0+j, 1+j, 1+k+j\},\{1+j, 1+k+j, 1+2 k+j\})$ colored $1+k+j$ and $(\{1+j, 1+k+j, 1+2 k+j\},\{1+j, 2+j, 2+k+j\})$ colored $1+j$. The resulting cycle is still properly list edge-colored since the only potential conflict is at the vertex $\{0,1,1+k\}$ which previously was incident with arcs colored 0 and 1 and now is incident with arcs colored 0 and $1+k$.

We are now ready to prove our second main result.
Theorem $2 G=G K G_{n, 3,1}$ has a P_{3}-decomposition for all $n>0$.
Proof For $n \in\{1,2,3,4\}, G$ has no edges, so the result is vacuously true. For $n=5$, G has a P_{3}-decomposition by Lemma 4(i). For $n=6, G$ has a P_{3}-decomposition by Lemma 4(ii).

The remaining cases are proved by induction on n. So now assume that $G K G_{w, 3,1}$ is P_{3}-decomposable for all $w \leq n$ for some $n \geq 6$. It is shown that $H=G K G_{n+2,3,1}$ is P_{3} decomposable. Let $\left(T_{3}\left(\mathbb{Z}_{n}\right), B_{0}\right)$ be a P_{3}-decomposition of $G=G K G_{n, 3,1}$. Partition the vertices of H as follows:
(i) $\quad V_{0}=T_{3}\left(\mathbb{Z}_{n}\right)$ (the vertices of $\left.G\right)$,
(ii) $V_{1}=\left\{\{a, b, n\} \mid a, b \in \mathbb{Z}_{n}\right\}$,
(iii) $V_{2}=\left\{\{a, b, n+1\} \mid a, b \in \mathbb{Z}_{n}\right\}$, and
(iv) $V_{3}=\left\{\{a, n, n+1\} \mid a \in \mathbb{Z}_{n}\right\}$.

Consider the following subgraphs of H :
(i) $\quad H_{0}$ is the subgraph induced by the vertices of V_{0};
(ii) H_{1} is the subgraph induced by the vertices of $V_{1} \cup V_{3}$;
(iii) H_{2} is the subgraph induced by the vertices of $V_{2} \cup V_{3}$;
(iv) H_{3} is the bipartite subgraph induced by the edges $\left\{\{x, y\} \mid x \in V_{0}, y \in V_{1} \cup V_{2}\right\}$;
(v) H_{4} is the bipartite subgraph induced by the edges $\left\{\{x, y\} \mid x \in V_{1}, y \in V_{2}\right\}$;
(vi) H_{5} is the bipartite subgraph induced by the edges $\left\{\{x, y\} \mid x \in V_{0}, y \in V_{3}\right\}$.

These six subgraphs clearly partition the edges of H, so combining P_{3}-decompositions of each will create a P_{3}-decomposition of H itself.

Since $H_{0}=G$, it has a decomposition $\left(T_{3}\left(\mathbb{Z}_{n}\right), B_{0}\right)$ by assumption.
Next, notice that in H_{1} and H_{2}, all vertices share the element $x=n$ or $n+1$ respectively; so any two vertices, say $\{a, b, x\}$ and $\{c, d, x\}$, are adjacent if and only if $\{a, b\} \cap\{c, d\}=\varnothing$. So H_{1} is clearly isomorphic to $K G_{n+1,2}$ with vertex set $\{v \backslash\{n\} \mid v \in$ $\left.V\left(H_{1}\right)\right\}$ and H_{2} is isomorphic to $K G_{n+1,2}$ with vertex set $\left\{v \backslash\{n+1\} \mid v \in V\left(H_{2}\right)\right\}$. Therefore, H_{1} and H_{2} have P_{3}-decompositions $\left(V\left(H_{1}\right), B_{1}\right)$ and $\left(V\left(H_{2}\right), B_{2}\right)$ respectively by Theorem 1 .

Next, consider the bipartite subgraph H_{3}. If $v \in V_{0}$, then $d_{H_{3}}(v)=6\binom{n-3}{2}$, and if $v \in V_{1} \cup V_{2}$, then $d_{H_{3}}(v)=2\binom{n-2}{2}$, both of which are even. Also, $\left|E\left(H_{3}\right)\right|=$ $6\binom{n}{2}\binom{n-3}{2}$ which is clearly a multiple of three. Finally, to show H_{3} is connected, for each $\{s, t, u\} \in V_{0}$ we display a path to each vertex in $V_{1} \cup V_{2}$ as follows (where a, b, s, t, and u are distinct elements of \mathbb{Z}_{n} and $\left.x \in\{n, n+1\}\right)$:

$$
\begin{aligned}
& (\{s, t, u\},\{a, s, x\},\{b, s, u\},\{a, b, x\}) \\
& \quad(\{s, t, u\},\{a, s, x\},\{a, b, t\},\{s, t, x\}), \text { and }(\{s, t, u\},\{a, s, x\})
\end{aligned}
$$

These account for all pairs of nonadjacent vertices in H_{3}, so H_{3} is easily seen to be connected. Therefore, H_{3} has a P_{3}-decomposition $\left(V\left(H_{3}\right), B_{3}\right)$ by Lemma 3. We also use Lemma 3 to find a P_{3}-decomposition of H_{4} as the following shows. H_{4} is a $2\binom{n-2}{2}$-regular bipartite graph, so all vertices have even degree. Also, $\left|E\left(H_{4}\right)\right|=$ $2\binom{n}{2}\binom{n-2}{2}$ which is a multiple of three. To see this, note $\left|E\left(H_{4}\right)\right|$ is the product of four consecutive integers (one of which must be a multiple of three) divided by two. Finally, to show that H_{4} is connected, for each vertex $\{a, b, n\} \in V_{1}$ we display a path to each vertex in V_{2} as follows (where a, b, s, and t are distinct elements of \mathbb{Z}_{n}):

$$
\begin{aligned}
& (\{a, b, n\},\{a, t, n+1\},\{a, s, n\},\{a, b, n+1\}) \\
& \quad(\{a, b, n\},\{b, s, n+1\},\{a, s, n\},\{s, t, n+1\}), \text { and }(\{a, b, n\},\{a, c, n+1\})
\end{aligned}
$$

These account for all pairs of nonadjacent vertices in H_{4}, so H_{4} is easily seen to be connected. Therefore, H_{4} has a P_{3}-decomposition $\left(V\left(H_{4}\right), B_{4}\right)$ by Lemma 3. Finally, consider H_{5}. Using Lemma 5, let F be a properly list arc-colored 2-factor of the complete digraph with vertex set V_{0}, with the set of colors $C=\mathbb{Z}_{n}$, and with lists of colors $\left(C_{0}, C_{1}, \ldots, C_{|E|-1}\right)$ defined by $C_{e}=t(e) \cap h(e)$ for each $e \in E$. Assume F has components $\left\{f_{0}, f_{1}, \ldots, f_{m-1}\right\}$. For each $i \in \mathbb{Z}_{m}$, consider the directed cycle f_{i} of length l with $E\left(f_{i}\right)=\left\{e_{0}, e_{1}, \ldots, e_{l-1}\right\}$ where $h\left(e_{k}\right)=t\left(e_{k+1}\right)$ for $k \in \mathbb{Z}_{l}$ with additions done modulo l. Form the following 3-paths in H_{5} :

$$
T_{i}=\left\{\left(t\left(e_{j}\right),\left\{c\left(e_{j}\right), n, n+1\right\}, h\left(e_{j}\right),\left\{h\left(e_{j}\right) \backslash\left\{c\left(e_{j}\right), c\left(e_{j+1}\right)\right\}, n, n+1\right\}\right) \mid j \in \mathbb{Z}_{l}\right\}
$$

with subscript additions done modulo l. The edges in T_{i} exist in H_{5} since C_{e} is a list of the shared elements of $t(e)$ and $h(e) . H_{5}$ has a P_{3}-decomposition $\left(V\left(H_{5}\right), B_{5}\right)$ where $B_{5}=\bigcup_{i \in \mathbb{Z}_{m}} T_{i}$. To see that each edge in H_{5} is in exactly one path in B_{5}, consider the edge $e=(\{a, b, c\},\{a, n, n+1\})$ in H_{5}. The vertex $\{a, b, c\}$ is in exactly one component, f_{i}, of F. Consider the two arcs, e_{1} and e_{2} in f_{i} such that $h\left(e_{1}\right)=\{a, b, c\}$ and $t\left(e_{2}\right)=\{a, b, c\}$. There are three possibilities.
(i) If $c\left(e_{1}\right)=a$, then e is in $\left(t\left(e_{1}\right),\{a, n, n+1\},\{a, b, c\},\left\{\{b, c\} \backslash c\left(e_{2}\right), n, n+1\right\}\right)$.
(ii) If $c\left(e_{2}\right)=a$, then let e_{3} be the arc in f_{i} with $t\left(e_{3}\right)=h\left(e_{2}\right)$. Then e is in $\left(\{a, b, c\},\{a, n, n+1\}, h\left(e_{2}\right),\left\{h\left(e_{2}\right) \backslash\left\{a, c\left(e_{3}\right)\right\}, n, n+1\right\}\right)$.
(iii) If $a \notin\left\{c\left(e_{1}\right), c\left(e_{2}\right)\right\}$, the e is in $\left(t\left(e_{1}\right),\left\{c\left(e_{1}\right), n, n+1\right\},\{a, b, c\},\{a, n, n+1\}\right)$.

Since F is a properly list arc-colored 2 -factor, exactly one of the previous three cases holds. Thus every edge of H_{5} is in exactly one path in B_{5}.

Let $B=\bigcup_{i \in \mathbb{Z}_{6}} B_{i}$. Then $(V(H), B)$ is the desired P_{3}-decomposition.

References

[1] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$. J. Combin. Theory Ser. B 81(2001), 77-99. http://dx.doi.org/10.1006/jctb.2000.1996
[2] A. Bahmanian and C. A. Rodger, Multiply Balanced Edge Colorings of Multigraphs. J. Graph Theory, to appear. http://dx.doi.org/10.1002/jgt. 20617
[3] I. Bárány, A short proof of Kneser's conjecture. J. Combin. Theory Ser. A 25(1978), 325-326. http://dx.doi.org/10.1016/0097-3165(78)90023-7
[4] Y. Chen, Kneser graphs are Hamiltonian for $n \geq 3 k$. J. Combin. Theory Ser. B 80(2000), 69-79. http://dx.doi.org/10.1006/jctb.2000.1969
[5] H. L. Fu and C. A. Rodger, Group divisible designs with two associate classes: $n=2$ or $m=2$. J. Combin. Theory Ser. A 83(1998), 94-117. http://dx.doi.org/10.1006/jcta.1998.2868
[6] H. L. Fu and C. A. Rodger, 4-cycle group divisible designs with two associate classes. Combin. Probab. Comput. 10(2001), 317-343.
[7] J. E. Greene, A new short proof of Kneser's conjecture. Amer. Math. Monthly 109(2002), 918-920. http://dx.doi.org/10.2307/3072460
[8] D. G. Hoffman, C. C. Lindner, and C. A. Rodger, On the construction of odd cycle systems. J. Graph Theory 13(1989), 417-426. http://dx.doi.org/10.1002/jgt.3190130405
[9] M. Kneser, Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abteilung 58(1955), 27.
[10] L. Lovász, Kneser's conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(1978), 319-324. http://dx.doi.org/10.1016/0097-3165(78)90022-5
[11] J. Matoušek, A combinatorial proof of Kneser's conjecture. Combinatorica 24(2004), 163-170. http://dx.doi.org/10.1007/s00493-004-0011-1
[12] Mateja Šajna, On decomposing $K_{n}-I$ into cycles of a fixed odd length. In: Algebraic and topological methods in graph theory (Lake Bled, 1999). Discrete Math. 244(2002), 435-444. http://dx.doi.org/10.1016/S0012-365X(01)00099-1
[13] Ian Shields and Carla D. Savage, A note on Hamilton cycles in Kneser graphs. Bull. Inst. Combin. Appl. 40(2004), 13-22.
[14] Michael Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs. J. Combin. Theory Ser. A 34(1983), 60-70. http://dx.doi.org/10.1016/0097-3165(83)90040-7
Department of Mathematics and Statistics, Auburn University, AL USA 36849-5310
e-mail: rodgec1@auburn.edu trw0003@auburn.edu

[^0]: Received by the editors November 8, 2012.
 Published electronically May 13, 2015.
 AMS subject classification: 05C51, 05C70.
 Keywords: Kneser graph, generalized Kneser graph, path decomposition, graph decomposition. 610

