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Abstract

Borel conjectured that all algebraic irrational numbers are normal in base 2. However, very little is
known about this problem. We improve the lower bounds for the number of digit changes in the binary
expansions of algebraic irrational numbers.
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1. Introduction

Borel [3] proved that almost all positive numbers ξ are normal in every integral base α
(where α ≥ 2). That is, every string of l consecutive base-α digits occurs with average
frequency tending to 1/αl in the α-ary expansion of such ξ . It is widely believed that
all algebraic irrational numbers are normal in each integral base. However, very little
is known about this problem, which was first formulated by Borel [4]. For instance,
it is still unknown whether the word 11 occurs infinitely often in the binary expansion
of
√

2.
In this paper, we study the binary expansions of algebraic irrational numbers. In

what follows, let N be the set of nonnegative integers and Z+ the set of positive
integers. Denote the integral and fractional parts of a real number ξ by bξc and {ξ},
respectively. Moreover, let dξe be the smallest integer not less than ξ . Then the binary
expansion of a positive number ξ is written

ξ =

∞∑
n=−∞

s(ξ, n)2n,

where
s(ξ, n)= b2−nξc − 2b2−n−1ξc ∈ {0, 1}. (1.1)
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There are several ways to measure the complexity of the binary expansions of real
numbers. First, we introduce the block complexity. Let β(ξ, N ) be the total number
of distinct blocks of N digits in the binary expansion of ξ , that is,

β(ξ, N )= Card{(s(ξ, i + 1), . . . , s(ξ, i + N )) ∈ {0, 1}N | i ∈ Z},

where Card denotes the cardinality. If ξ is normal in base 2, then β(ξ, N )= 2N for any
N ∈ Z+. Suppose that ξ is an algebraic irrational number. Bugeaud and Evertse [7]
showed for any δ in (0, 1/11) that

lim sup
N→∞

β(ξ, N )

N (log N )δ
=∞.

Secondly, we estimate the number of nonzero digits in the binary expansion of ξ . For
each integer N , let

λ(ξ, N )= Card{n ∈ Z | n ≥−N , s(ξ, n) 6= 0}.

Bailey et al. [1] showed that, for any algebraic irrational ξ of degree D (so D ≥ 2),
there exists a positive computable constant C0(ξ), depending only on ξ , such that

λ(ξ, N )≥ C0(ξ)N
1/D

for all sufficiently large integers N . Rivoal [17] improved the constant C0(ξ) for
certain classes of algebraic irrational ξ . For example, let ξ ′ = 0.558 . . . be the unique
positive zero of the polynomial 8X3

− 2X2
+ 4X − 3 and ε be an arbitrary real

number in (0, 1). Theorem 7.1 in [1] implies, for any sufficiently large N ∈ N, that

λ(ξ ′, N )≥ (1− ε)16−1/3 N 1/3.

On the other hand, using [17, Corollary 2], we obtain

λ(ξ ′, N )≥ (1− ε)N 1/3

for all sufficiently large N ∈ N.
Now we consider the asymptotic behaviour of the number of digit changes in the

binary expansions of real numbers ξ . Let N be an integer. The number γ (ξ, N ) of
digit changes, introduced in [6], is defined by

γ (ξ, N )= Card{n ∈ Z | n ≥−N , s(ξ, n) 6= s(ξ, 1+ n)}.

Note that γ (ξ, N ) <∞ because s(ξ, n)= 0 for all sufficiently large n ∈ N. Suppose
again that ξ is an algebraic irrational number of degree D ≥ 2. Bugeaud [6] proved,
using Ridout’s theorem [16], that

lim
N→∞

γ (ξ, N )

log N
=∞.

In the same paper, using a quantitative version of Ridout’s theorem [12], he showed
that

γ (ξ, N )≥ 3(log N )6/5(log log N )−1/4
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for every sufficiently large N ∈ N. Moreover, improving the quantitative parametric
subspace theorem from [9], Bugeaud and Evertse [7] verified that there exist
an effectively computable absolute constant C1 > 0 and an effectively computable
constant C2(ξ) > 0, depending only on ξ , such that

γ (ξ, N )≥ C1
(log N )3/2

(log(6D))1/2(log log N )1/2

for any integer N ≥ C2(ξ).
Note that if ξ is normal, then the word 10 occurs in the binary expansion of ξ with

frequency tending to 1/4. Thus, it is widely believed that the function γ (ξ, N ) should
grow linearly in N . The main purpose of this paper is to improve lower bounds of the
function γ (ξ, N ) for certain classes of algebraic irrational numbers. We now state the
main results.

THEOREM 1.1. Let ξ be a positive algebraic irrational number with minimal
polynomial AD X D

+ AD−1 X D−1
+ · · · + A0 ∈ Z[X ], where AD > 0. Assume that

there exists an odd prime number p that divides the coefficients AD , AD−1, . . . , A1,
but not the constant term A0. Let ε be an arbitrary number in (0, 1), and r be the
smallest positive integer such that p divides (2r

− 1). Then there exists an effectively
computable positive constant C(ξ, ε), depending only on ξ and ε, such that

γ (ξ, N )≥ (1− ε)p1/Dr−1/D A−1/D
D N 1/D

for any integer N greater than C(ξ, ε).

For instance, let A and D be positive integers such that A−1/D is an irrational
number of degree D. Assume that there is an odd prime p that divides A. Take
any ε in (0, 1), and r as defined in Theorem 1.1. Then, since the minimal polynomial
of A−1/D is AX D

− 1, it follows from Theorem 1.1 that

γ (A−1/D, N )≥ (1− ε)p1/Dr−1/D A−1/D N 1/D

for every integer N larger than C(A−1/D, ε). In the case where A = 3 and D = 2, we
get p = 3 and r = 2. Hence

γ

(
1
√

3
, N

)
≥

1− ε
√

2

√
N

for each integer N larger than C(1/
√

3, ε).

2. Signed binary representations

In this section we study signed binary expansions of a nonzero integer n of the form

n =
l−1∑
i=0

ai 2i , (2.1)

where ai ∈ {−1, 0, 1} and al−1 6= 0 when 0≤ i ≤ l − 1. The sequence of signed
bits is usually written with the most significant digits al−1 first. In a sequence of
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signed bits, 1 denotes −1. Thus, 10001 is a signed bit representation of 15. We
are interested in finding a representation of n of minimal Hamming weight, that is,
number of nonzero digits. Note that the minimality of a Hamming weight does not
determine a unique representation in general, as, for example, 19= 24

+ 2+ 1=
24
+ 22
− 1. Reitwiesner [15] proved that for each integer n there exists a unique

signed expansion (2.1) satisfying

ai ai+1 = 0

for all i ≥ 0. We will call this representation the signed separated binary (SSB)
expansion of n. We write the Hamming weight of the SSB expansion of n as

ν(n)=
l−1∑
i=0

|ai |.

For instance, if l ≥ 2, then ν(2l
− 1)= 2. For convenience, let ν(0) := 0. It is known

for every integer n that ν(n) is the minimal Hamming weight among the signed binary
expansions of n (for instance, see [5]). In particular, since

n = 1+ · · · + 1

with n summands, or
n =−1− · · · − 1

with |n| summands, we see that
ν(n)≤ |n|. (2.2)

SSB expansions have applications in the optimal design of arithmetical hardware [2,
15], in coding theory [13], and in cryptography [14]. For detailed information about
the SSB expansions of integers, see [5, 8, 10, 11].

We now show that the function ν satisfies convexity relations, which are analogues
of [1, Theorem 4.2].

LEMMA 2.1. Let m and n be integers. Then

ν(m + n)≤ ν(m)+ ν(n) (2.3)

and
ν(mn)≤ ν(m)ν(n). (2.4)

PROOF. It is easy to check (2.3) and (2.4) in the case where mn = 0. Thus, we may
assume that mn 6= 0. Let

3 := {±2l
| l ∈ N}.

Then there exist λ1, . . . , λν(m), λ
′

1, . . . , λ
′

ν(n) ∈3 such that

m =
ν(m)∑
k=1

λk and n =
ν(n)∑
h=1

λ′h . (2.5)
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Then

m + n =
ν(m)∑
k=1

λk +

ν(n)∑
h=1

λ′h

and

mn =
ν(m)∑
k=1

ν(n)∑
h=1

λkλ
′

h .

Observe that λkλ
′

h ∈3 for any k and h. Hence, using the minimality of the Hamming
weights of SSB expansions, we obtain (2.3) and (2.4). 2

Note that the SSB expansion (2.5) of an integer m satisfies

|λi | 6= |λ j | whenever 1≤ i < j ≤ ν(m). (2.6)

In fact, if |λi | = |λ j | for some such i and j , then

m =

{
2λi +

∑ν(m)
k=1,k 6=i, j λk if λi = λk,∑ν(m)

k=1,k 6=i, j λk if λi =−λk .

The equality above contradicts the minimality of the Hamming weights of SSB
expansions. Combining (2.2) and (2.3), we see that, for all integers m and n,

|ν(m + n)− ν(m)| ≤ |n|. (2.7)

In fact, we get
ν(m + n)− ν(m)≤ ν(n)≤ |n|

and
ν(m)− ν(m + n)≤ ν(−n)≤ |n|.

The SSB expansions of real numbers were also introduced in [8]. Let V be a
nonempty finite word on the alphabet {0, 1, 1}. We write the right-infinite word
V V V · · · by V ω. Let

K := {x= x−1x−2x−3 · · · ∈ {0, 1, 1}N | x−i x−i−1 = 0 whenever i ≥ 1}.

Endowed with the weak topology, K is a nonempty compact subset of {0, 1, 1}, so
two points are close if they agree on a sufficiently large initial block. Dajani et al. [8]
introduced the continuous map f from K onto the interval [−2/3, 2/3] given by

f (x)=
−1∑

i=−∞

xi 2i
=: 0.x−1x−2 · · · .

We will call this representation the SSB expansion of f (x). Note that f is not injective,
that is, the SSB expansion of a given real number η ∈ [−2/3, 2/3] is not unique. For
instance,

1
3 = 0.(01)ω = 0.1(01)ω.
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Let ξ be any real number. We take a sufficiently large positive integer R such that

η := 2−Rξ ∈ [− 2
3 ,

2
3 ].

Using the SSB expansion of η =
∑
−1
i=−∞ xi 2i , we define the SSB expansion of ξ as

follows:

ξ = 2R
−1∑

i=−∞

xi 2i

=:

R−1∑
i=−∞

yi 2i
= yR−1 · · · y0.y−1 y−2 · · · ,

where yi = xi−R for i ≤ R − 1. Dajani et al. [8] identified K, up to a countable set,
with the interval [−2/3, 2/3]. They studied the dynamical properties of K, equipped
with its Borel σ -algebra BK both under the shift σ and the odometer τ . We now give
the SSB expansions of rational numbers.

LEMMA 2.2. The SSB expansion of a rational number ξ is ultimately periodic.
Moreover, let r be the period of the ordinary binary expansion of ξ . Then r is also
the period of the SSB expansion of ξ .

PROOF. Without loss of generality, we may assume that ξ > 0. In fact, let∑R
i=−∞ ai 2i be the SSB expansion of ξ . Then the SSB expansion of −ξ is∑R
i=−∞(−ai )2i . Moreover, we may assume that ξ < 1/2. Since ξ is a rational

number, its ordinary binary expansion is ultimately periodic. That is,

ξ = 0.0U V ω,

where U and V are words on the alphabet {0, 1} and the length of V is r . Put

ξk := 0.0U V · · · V, (2.8)

where V appears k times. It is easy to obtain the SSB expansion of ξk from its ordinary
binary expansion (2.8): apply the following rule repeatedly, working from right to left
(that is, least significant first):

replace any sequence 01 · · · 1, with l consecutive entries 1 (where l ≥ 2),
by the sequence 10 · · · 01, with l − 1 consecutive entries 0.

Hence, the SSB expansion of ξk satisfies

ξk = 0.U ′V1V2 . . . V2V3,

where U ′, Vi are words on the alphabet {0, 1, 1}, the word V2 appears k − 2 times, and
the length of Vi is r when i = 1, 2, 3. Therefore, we deduce that the SSB expansion
of ξ is

ξ = 0.U ′V1V ω
2 ,

which implies Lemma 2.2. 2
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LEMMA 2.3. Let b be an integer and p be an odd prime number. Assume that p does
not divide b. Let r be the minimal positive integer such that p divides 2r

− 1. Then,
for each N ∈ N,

ν

(⌊
2N b

p

⌋)
≥

N

r
− 4.

PROOF. Put ξ := b/p. We show that the SSB expansion of ξ is

ξ =:

R∑
i=−∞

ai 2i
=U · V1V ω

2 , (2.9)

where U and both V j are words on the alphabet {0, 1, 1}, and the length of V j is r
(when j = 1, 2). For the proof of (2.9), we may assume that ξ > 0. Observe that

ξ = bξc +
u

2r − 1

for some integer u such that 0≤ u < 2r
− 1. Thus, the ordinary binary expansion of ξ

satisfies
ξ =U ′ ·Wω,

where U ′ and W are words on the alphabet {0, 1} and the length of W is r . Hence, as
in the proof of Lemma 2.2, we obtain (2.9). For each N ∈ N, let

ξN :=

R∑
i=−N

ai 2i .

Then 2N ξN is an integer whose SSB expansion is

2N ξN =U V1 V2 · · · V2︸ ︷︷ ︸ V ′,

where V2 appears bN/rc − 1 times and V ′ is the prefix of V2 of length r{N/r}. By
the assumptions of Lemma 2.3, it is clear that the expansion (2.9) is not finite, that is,
at least one letter of the word V2 is not zero. Hence,

ν(2N ξN )≥

⌊
N

r

⌋
− 1. (2.10)

Observe that

|2N ξ − 2N ξN | =

∣∣∣∣2N
−N−1∑
i=−∞

ai 2i
∣∣∣∣= ∣∣∣∣ −1∑

i=−∞

ai−N 2i
∣∣∣∣.

The second statement of [8, Lemma 1] implies that

|2N ξ − 2N ξN | ≤
2
3 ,

and so
|b2N ξc − 2N ξN | ≤ 2.
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Therefore, combining (2.7) and (2.10), we obtain

ν(b2N ξc)≥ ν(2N ξN )− 2≥
⌊

N

r

⌋
− 3,

which implies Lemma 2.3. 2

3. Proof of Theorem 1.1

We study the relations between the number of digit changes γ (ξ, N ) and the value
ν(b2N ξh

c) where h ∈ Z+ and N ∈ N. Let η1 and η2 be any real numbers. Then it is
easily seen that

|bη1 + η2c − (bη1c + bη2c)| ≤ 1 (3.1)

and
|bη1 − η2c − (bη1c − bη2c)| ≤ 1. (3.2)

LEMMA 3.1. Let ξ be a positive real number. Then, for any h ∈ Z+ and N ∈ N,

ν(b2N ξh
c)≤ (γ (ξ, N )+ 1)h + 2h+1 max{1, ξ h

}.

PROOF. Let τ := γ (ξ, N ). We first consider the case where h = 1. Using the
definition of τ and the observation that

1 · · · 10 · · · 0= 2k+l
− 2k,

where 1 occurs l times and 0 occurs k times, we obtain

ν(b2N ξc)≤ 2
⌈
τ

2

⌉
≤ τ + 1 (3.3)

because ν(b2N ξc) is the minimal Hamming weight for the signed binary expansions
of b2N ξc.

Next suppose that h ≥ 2. Put

ξ1 =

∞∑
n=−N

s(ξ, n)2n and ξ2 =

−N−1∑
n=−∞

s(ξ, n)2n.

Note that 2N ξ1 ∈ Z. Now

2N ξh
= 2N (ξ1 + ξ2)

h
= 2N ξh

1 + 2N
h∑

i=1

(
h

i

)
ξh−i

1 ξ i
2,

and so, by (3.1),

|b2N ξh
c − b2N ξh

1 c| ≤ 1+ 2N
h∑

i=1

(
h

i

)
ξh−i

1 ξ i
2.
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Hence, by (2.7),

ν(b2N ξh
c)≤ ν(b2N ξh

1 c)+ 1+ 2N
h∑

i=1

(
h

i

)
ξh−i

1 ξ i
2. (3.4)

In what follows we estimate upper bounds of the right-hand side of (3.4). By (2.4)
and (3.3),

ν(2hN ξh
1 )≤ ν(2

N ξ1)
h
= ν(b2N ξc)h ≤ (τ + 1)h .

By the inequality above and (2.6), there exist a, b ∈ N such that a + b ≤ (τ + 1)h and
l1, . . . , la, k1, . . . , kb ∈ N, which satisfy the following conditions:

l1 < · · ·< la and k1 < · · ·< kb;

2hN ξh
1 =

a∑
i=1

2li −

b∑
j=1

2k j .
(3.5)

Define

θ1 =
∑

1≤i≤a
li≥(h−1)N

2li−(h−1)N
−

∑
1≤ j≤b

k j≥(h−1)N

2k j−(h−1)N ,

θ2 =
∑

1≤i≤a
li<(h−1)N

2li−(h−1)N
−

∑
1≤ j≤b

k j<(h−1)N

2k j−(h−1)N .

Then θ1 ∈ Z and
θ1 + θ2 = 2N ξh

1 . (3.6)

By (3.5), ∑
1≤i≤a

li<(h−1)N

2li−(h−1)N <

∞∑
i=1

2−i
= 1

and ∑
1≤ j≤b

k j<(h−1)N

2k j−(h−1)N < 1.

Thus
|θ2|< 1. (3.7)

Combining (3.6) and (3.7), we obtain

|b2N ξh
1 c − θ1| ≤ 1.

Hence, by (2.7),

ν(b2N ξh
1 c)≤ ν(θ1)+ 1≤ a + b + 1≤ (τ + 1)h + 1. (3.8)
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Moreover, since ξ1 ≤ ξ and ξ2 ≤ 2−N ,

2N
h∑

i=1

(
h

i

)
ξh−i

1 ξ i
2 ≤

h∑
i=0

(
h

i

)
max{1, ξ h

} = 2h max{1, ξ h
}.

Combining (3.4), (3.8), and (3.9), we conclude that

ν(b2N ξh
c) ≤ (τ + 1)h + 2h max{1, ξ h

} + 2

≤ (τ + 1)h + 21+h max{1, ξ h
},

as required. 2

We now verify Theorem 1.1. Let A′i = Ai/p when i = 1, 2, . . . , D. Then

D∑
h=1

A′h2N ξh
=−

2NA0

p

for each N ∈ N. By Lemma 2.3,

ν

(⌊
−

2NA0

p

⌋)
≥

N

r
− 4. (3.9)

On the other hand, by (3.1) and (3.2),∣∣∣∣⌊ D∑
h=1

A′h2N ξh
⌋
−

D∑
h=1

A′hb2
N ξh
c

∣∣∣∣≤ D∑
h=1

|A′h |.

Hence, using (2.3), (2.7) and Lemma 3.1, we get

ν

(⌊
−

2NA0

p

⌋)
= ν

(⌊ D∑
h=1

A′h2N ξh
⌋)
≤ ν

( D∑
h=1

A′hb2
N ξh
c

)
+

D∑
h=1

|A′h |

≤

D∑
h=1

|A′h |(ν(b2
N ξh
c)+ 1) (3.10)

≤

D∑
h=1

|A′h |((γ (ξ, N )+ 1)h + 2h+1 max{1, ξ h
} + 1).

Combining (3.9) and (3.11), we deduce that, for every nonnegative integer N ,

N ≤ P(γ (ξ, N )), (3.11)

where P(X) ∈ R[X ] is a polynomial of degree D with leading coefficient r A′D .
Thus, for any positive number R, there is an effectively computable positive constant
C ′(ξ, R), depending only on ξ and R, such that

γ (ξ, N )≥ R

for any integer N greater than C ′(ξ, R). Take an arbitrary ε in (0, 1), and put

δ := −1+ (1− ε)−D > 0.
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By (3.11), there exists an effectively computable positive constant C(ξ, ε), depending
only on ξ and ε, such that, for every integer N greater than C(ξ, ε),

N ≤ (1+ δ)r A′Dγ (ξ, N )D,

that is,
(1− ε)p1/Dr−1/D A−1/D

D N 1/D
≤ γ (ξ, N ).

We have therefore proved Theorem 1.1.

REMARK 3.1. The constant preceding N 1/D in Theorem 1.1 can be improved by
considering the number σ of nonzero digits in the period of the SSB expansion of
A0/p. As in the proof of Lemma 2.3, we can show that

ν

(⌊
−

2NA0

p

⌋)
≥ σ

(⌊
N

r

⌋
− 1

)
− 2≥

σ

r
N − 2σ − 2.

Let ε be an arbitrary number in (0, 1). Then, by Lemma 3.1, there exists an effectively
computable positive constant C ′′(ξ, ε), depending only on ξ and ε, such that

γ (ξ, N )≥ (1− ε)
(
σ p

r AD

)1/D

N 1/D (3.12)

for every integer N larger than C ′′(ξ, ε), which improves Theorem 1.1.
For instance, we consider the case where ξ = 1/

√
5. Then A2 = p = 5 and r = 4.

Theorem 1.1 implies that

γ

(
1
√

5
, N

)
≥

1− ε
2

√
N

for each integer N larger than C(1/
√

5, ε). Observe that the SSB expansion of
A0/p =−1/5 is

−
1
5 = 0.(0101)ω.

Hence, the number of nonzero digits in the SSB expansion of A0/p is 2.
Therefore, (3.12) implies that

γ

(
1
√

5
, N

)
≥

1− ε
√

2

√
N

for any integer N greater than C ′′(1/
√

5, ε).
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