ON A NON-CONVEX HYPERBOLIC DIFFERENTIAL INCLUSION

by VASILE STAICU

(Received 16th April 1990)

We prove the existence of a solution $u(...;\alpha,\beta)$ of the Darboux problem $u_{xy} \in F(x, y, u)$, $u(x, 0) = \alpha(x)$, $u(0, y) = \beta(y)$, which is continuous with respect to (α, β) . We assume that F is Lipschitzean with respect to u but not necessarily convex valued.

1980 Mathematics subject classification (1985 Revision): 34A60, 35B30.

1. Introduction and main result

Let I = [0, 1], $Q = I \times I$ and denote by \mathscr{L} the σ -algebra of the Lebesgue measurable subsets of Q. Denote by $2^{\mathbb{R}^n}$ the family of all closed nonempty subsets of \mathbb{R}^n and by $\mathscr{B}(\mathbb{R}^n)$ the family of all Borel subsets of \mathbb{R}^n . For $x \in \mathbb{R}^n$ and A, $B \in 2^{\mathbb{R}^n}$ we denote by d(x, A) the usual point-to-set distance from x to A and by h(A, B) the Hausdorff pseudodistance from A to B.

By $C(Q, \mathbb{R}^n)$ (resp. $L^1(Q, \mathbb{R}^n)$) we denote the Banach space of all continuous (resp. Bochner integrable) functions $u: Q \to \mathbb{R}^n$ with the norm $||u||_{\infty} = \sup \{||u(x, y)||: (x, y) \in Q\}$ (resp. $||u||_1 = \int_0^1 \int_0^1 ||u(x, y)|| dx dy$), where ||.|| is the norm in \mathbb{R}^n .

Recall that a subset K of $L^1(Q, \mathbb{R}^n)$ is said to be *decomposable* ([9]) if for every u, $v \in K$ and $A \in \mathcal{L}$ we have $u\chi_A + v\chi_{Q\setminus A} \in K$, where χ_A stands for the characteristic function of A. We denote by \mathcal{D} the family of all decomposable closed nonempty subsets of $L^1(Q, \mathbb{R}^n)$.

Let $F: Q \times R^n \to 2^{R^n}$ be a multivalued map. Recall that F is called $\mathscr{L} \otimes \mathscr{B}(R^n)$ -measurable if for any closed subset C of R^n we have that $\{(x, y, z) \in Q \times R^n: F(x, y, z) \cap C \neq \emptyset\} \in \mathscr{L} \otimes \mathscr{B}(R^n)$.

We associate to $F: Q \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ the Darboux problem

$$(D_{\alpha\beta}) u_{xy} \in F(x, y, u), \quad u(x, 0) = \alpha(x), \quad u(0, y) = \beta(y),$$

where α , β are two continuous functions from I into \mathbb{R}^n with $\alpha(0) = \beta(0)$.

Definition. $u(.,.;\alpha,\beta) \in C(Q, \mathbb{R}^n)$ is said to be a solution of the Darboux problem $(D_{\alpha\beta})$ if there exists $v(.,.;\alpha,\beta) \in L^1(Q, \mathbb{R}^n)$ such that

- (i) $v(x, y; \alpha, \beta) \in F(x, y, u(x, y; \alpha, \beta))$ a.e. in Q,
- (ii) $u(x, y; \alpha, \beta) = \alpha(x) + \beta(y) \alpha(0) + \int_0^x \int_0^y v(\xi, \eta; \alpha, \beta) d\xi d\eta$, for every $(x, y) \in Q$.

Note that the function $v(.,.;\alpha,\beta)$ which corresponds to $u(.,.;\alpha,\beta)$ in the above definition is unique (a.e.). Consider the Banach space

$$\mathbf{S} = \{(\alpha, \beta) \in C(I, \mathbb{R}^n) \times C(I, \mathbb{R}^n) : \alpha(0) = \beta(0)\}$$

endowed with the norm

$$\|(\alpha,\beta)\| = \|\alpha\|_{\infty} + \|\beta\|_{\infty},$$

and, for (α, β) in S, we denote by $T(\alpha, \beta)$ the set of all solutions of the problem $(D_{\alpha\beta})$. The aim of this note is to prove the following:

Theorem. Let $F: Q \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ satisfy the following assumptions:

- (H_1) F is $\mathscr{L} \otimes \mathscr{B}(\mathbb{R}^n)$ -measurable,
- (H₂) there exists L > 0 such that $h(F(x, y, u), F(x, y, v)) \le L ||u v||$ for all $u, v \in \mathbb{R}^n$, a.e. in Q,
- (H₃) there exists a function $\delta \in L^1(Q, R)$ such that $d(0, F(x, y, 0)) \leq \delta(x, y)$ a.e. in Q.

Then there exists $u: Q \times S \rightarrow R^n$ such that

- (i) $u(.,.;\alpha,\beta) \in \mathbf{T}(\alpha,\beta)$ for every $(\alpha,\beta) \in \mathbf{S}$
- (ii) $(\alpha, \beta) \rightarrow u(\ldots; \alpha, \beta)$ is continuous from S to $C(Q, \mathbb{R}^n)$.

In other words we prove the existence of a global solution $u(.,.;\alpha,\beta)$ of the problem $(D_{\alpha\beta})$ depending continuously on (α,β) in the space S.

This result is a natural extension of the well posedness property (i.e., existence of a unique solution depending continuously on the initial data) of the Darboux problems defined by Lipschitzean single-valued maps (see [3]). We obtain the solution by a completeness argument without assumptions on the convexity or boundedness of the values of F.

Filippov has obtained in [7] the existence of solutions to an ordinary differential inclusion $x' \in F(t, x)$ defined by a multifunction F Lipschitzian with respect to x, without assumptions on the convexity or boundedness of the values F(t, x) by using a successive approximation process.

Following an idea in [4] we extend this process to Darboux problems and we do it continuously with respect to (α, β) in the space S by using a result on the existence of a continuous selection from multifunctions with decomposable values, proved in [8] and extended in [2].

The construction in the proof of our theorem works for the case when F is Lipschitzian in u, but the assumption (H_2) is not only a technical one. We shall give an example showing that if (H_2) is relaxed, allowing F to be merely continuous then the conclusion of the theorem is in general no longer true.

376

ON A NON-CONVEX HYPERBOLIC DIFFERENTIAL INCLUSION 377

However the Lipschitz property of F is not necessary for the existence of solutions. If F is upper semicontinuous with compact convex values then the existence of local and global solutions has been obtained in [11] and [12], by using the Kakutani-Ky Fan fixed point theorem. The convexity assumption is essential in this case. To avoid the convexity assumption we have to increase the regularity of F. If F is a Carathéodory function which is compact not necessarily convex valued then there exists a solution of the Darboux problem and this fact has been proved in [13] by using a continuous selection argument and the Schauder fixed point theorem. Qualitative properties and the structure of the set of solutions of Darboux problems has been studied in [5] and [6].

Remark finally that another extension of the well posedness property of a Darboux problem defined by a multifunction Lipschitzian in u, lower semicontinuous with respect to a parameter, expressed in terms of lower semicontinuous dependence of the set of all solutions of the problem on the initial data and parameter is given in [10].

2. Proof of the main result

In the following two lemmas S is a separable metric space. Let X be a Banach space and $G: S \rightarrow 2^X$ be a multifunction. Recall that G is said to be *lower semicontinuous* (l.s.c.) if for every closed subset C of X the set $\{s \in S: G(s) \subset C\}$ is closed in S.

Lemma 1 ([4, Proposition 2.1]). Assume $F_*: Q \times S \to 2^{\mathbb{R}^n}$ to be $\mathscr{L} \otimes \mathscr{B}(S)$ -measurable, *l.s.c.* with respect to $s \in S$. Then the map $s \to G_*(s)$ given by

$$G_{\star}(s) = \{ v \in L^{1}(Q, \mathbb{R}^{n}) : v(x, y) \in F_{\star}(x, y, s) \text{ a.e. in } Q \}, \quad s \in S,$$

is l.s.c. with decomposable closed nonempty values if and only if there exists a continuous function $\sigma: S \to L^1(Q, R)$ such that $d(0, F_*(x, y, s)) \leq \sigma(s)(x, y)$ a.e. in Q.

Lemma 2 ([4, Proposition 2.2]). Let $G: S \to \mathcal{D}$ be a l.s.c. multifunction and let $\phi: S \to L^1(Q, \mathbb{R}^n)$ and $\psi: S \to L^1(Q, \mathbb{R})$ be continuous maps. If for every $s \in S$ the set

$$H(\xi) = cl\{v \in G(s): ||v(x, y) - \phi(s)(x, y)|| < \psi(s)(x, y) \text{ a.e. in } Q\}$$
(2.1)

is nonempty then the map $H: S \rightarrow \mathcal{D}$ defined by (2.1) admits a continuous selection.

We note that the second lemma is a direct consequence of Proposition 4 and Theorem 3 in [2] (see also [8]).

Proof of the theorem. Fix $\varepsilon > 0$ and set $\varepsilon_n = \varepsilon/2^{n+1}$, $n \in N$. For $(\alpha, \beta) \in S$ define $u_0(\ldots, \alpha, \beta): Q \to R^n$ by $u_0(x, y; \alpha, \beta) = \alpha(x) + \beta(y) - \alpha(0)$ and observe that for all $(x, y) \in Q$ we have

$$\|u_0(x, y; \alpha_1, \beta_2) - u_0(x, y; \alpha_2, \beta_2)\| \leq \|\alpha_1(x) - \alpha_2(x)\| + \|\beta_1(y) - \beta_2(y)\| + \|\alpha_1(0) - \alpha_2(0)\|$$

 $\leq 2 \| (\alpha_1, \beta_1) - (\alpha_1, \beta_2) \|.$

This implies that $(\alpha, \beta) \to u_0(...; \alpha, \beta)$ is continuous from S to $C(Q, R^n)$. Setting $\sigma(\alpha, \beta)(x, y) = \delta(x, y) + L ||u_0(x, y; \alpha, \beta)||$ we obtain that σ is a continuous map from S to $L^1(Q, R)$ and

$$d(0, F(x, y, u_0(x, y; \alpha, \beta))) \leq \sigma(\alpha, \beta)(x, y) \text{ a.e. in } Q.$$
(2.2)

For $(\alpha, \beta) \in \mathbf{S}$, define

$$G_0(\alpha, \beta) = \{ v \in L^1(Q, X) : v(x, y) \in F(x, y, u_0(x, y; \alpha, \beta)) \text{ a.e. in } Q \},\$$

and

$$H_0(\alpha,\beta) = cl\{v \in G_0(\alpha,\beta): ||v(x,y)|| < \sigma(\alpha,\beta)(x,y) + \varepsilon_0 \text{ a.e. in } Q\}.$$

Then, by (2.2) and Lemma 1, it follows that G_0 is l.s.c. from S into \mathcal{D} and, by (2.2), $H_0(\alpha, \beta) \neq \mathcal{O}$ for each $(\alpha, \beta) \in S$. Therefore by Lemma 2, there exists $h_0: S \to L^1(Q, \mathbb{R}^n)$, which is a continuous selection of H_0 . Set $v_0(x, y; \alpha, \beta) = h_0(\alpha, \beta)(x, y)$ and observe that $v_0(x, y; \alpha, \beta) \in F(x, y, u_0(x, y; \alpha, \beta))$ and $||v_0(x, y)|| \leq \sigma(\alpha, \beta)(x, y) + \varepsilon_0$, for a.e. $(x, y) \in Q$. Define

$$u_1(x, y; \alpha, \beta) = u_0(x, y; \alpha, \beta) + \int_0^x \int_0^y v_0(\xi, \eta; \alpha, \beta) d\xi d\eta,$$

and, for $n \ge 1$, set

$$\sigma_n(\alpha,\beta)(x,y) = L^{n-1} \left[\int_0^x \int_0^y \frac{(x-\xi)^{n-1}}{(n-1)!} \frac{(y-\eta)^{n-1}}{(n-1)!} \sigma(\alpha,\beta)(\xi,\eta) \, d\xi \, d\eta + \left(\sum_{i=0}^n \varepsilon_i \right) \frac{(x+y)^n}{n!} \right].$$
(2.3)

Then, for every $(x, y) \in Q \setminus \{0, 0\}$, we have

$$\begin{aligned} \left\| u_1(x, y; \alpha, \beta) - u_0(x, y; \alpha, \beta) \right\| &\leq \int_0^x \int_0^y \left\| v_0(\xi, \eta; \alpha, \beta) \right\| d\xi \, d\eta \leq \int_0^x \int_0^y \sigma(\alpha, \beta)(\xi, \eta) \, d\xi \, d\eta + \varepsilon_0(x+y) \\ &< \sigma_1(\alpha, \beta)(x, y), \end{aligned}$$

and so

$$d(v_0(x, y; \alpha, \beta), F(x, y, u_1(x, y; \alpha, \beta)) \leq L \|u_1(x, y; \alpha, \beta) - u_0(x, y; \alpha, \beta)\| < L\sigma_1(\alpha, \beta)(x, y).$$

We claim that there exist two sequences $\{v_n(x, y; \alpha, \beta)\}_{n \in \mathbb{N}}$ and $\{u_n(x, y; \alpha, \beta)\}_{n \in \mathbb{N}}$ such that for each $n \ge 1$ we have:

(a) $(\alpha, \beta) \rightarrow v_n(.,.; \alpha, \beta)$ is continuous from S to $L^1(Q, R^n)$.

- (b) $v_n(x, y; \alpha, \beta) \in F(x, y, u_n(x, y; \alpha, \beta))$ for any $(\alpha, \beta) \in S$ and a.e. $(x, y) \in Q$.
- (c) $||v_n(x, y; \alpha, \beta) v_{n-1}(x, y; \alpha, \beta)|| \leq L\sigma_n(\alpha, \beta)(x, y)$ a.e. in Q.
- (d) $u_n(x, y; \alpha, \beta) = u_0(x, y; \alpha, \beta) + \int_0^x \int_0^y v_{n-1}(\xi, \eta; \alpha, \beta) d\xi d\eta.$

Suppose we have constructed v_1, \ldots, v_n and u_1, \ldots, u_n satisfying (a)-(d). Then define

$$u_{n+1}(x, y; \alpha, \beta) = u_0(x, y; \alpha, \beta) + \int_0^x \int_0^y v_n(\xi, \eta; \alpha, \beta) d\xi d\eta.$$

Let $(x, y) \in Q \setminus \{(0, 0)\}$. Using (c) we have

$$\begin{split} \|u_{n+1}(x,y;\alpha,\beta) - u_{n}(x,y;\alpha,\beta)\| &\leq \int_{0}^{x} \int_{0}^{y} \|v_{n}(\xi,\eta;\alpha,\beta) - v_{n-1}(\xi,\eta;\alpha,\beta)\| d\xi d\eta. \\ &\leq L \int_{0}^{x} \int_{0}^{y} \sigma_{n}(\alpha,\beta)(\xi,\eta) d\xi d\eta = L^{n} \int_{0}^{x} \int_{0}^{y} \sigma(\alpha,\beta)(\xi,\eta) \left(\int_{\xi}^{x} \frac{(x-u)^{n-1}}{(n-1)!} du \int_{\eta}^{y} \frac{(y-v)^{n-1}}{(n-1)!} dv \right) d\xi d\eta \\ &+ L^{n} \left(\sum_{i=0}^{n} \varepsilon_{i} \right) \int_{0}^{x} \int_{0}^{y} \frac{(\xi-\eta)^{n}}{n!} d\xi d\eta = L^{n} \int_{0}^{x} \int_{0}^{y} \frac{(x-\xi)^{n}}{n!} \frac{(y-\eta)^{n}}{n!} \sigma(\alpha,\beta)(\xi,\eta) d\xi d\eta \\ &+ \frac{L^{n}}{n!} \left(\sum_{i=0}^{n} \varepsilon_{i} \right) \frac{(x+y)^{n+2} - x^{n+2} - y^{n+2}}{(n+1)(n+2)} \leq L^{n} \left[\int_{0}^{x} \int_{0}^{y} \frac{(x-\xi)^{n}}{n!} \frac{(y-\eta)^{n}}{n!} \sigma(\alpha,\beta)(\xi,\eta) d\xi d\eta \\ &+ \left(\sum_{i=0}^{n} \varepsilon_{i} \right) \frac{(x+y)^{n+1}}{(n+1)!} \right] < \sigma_{n+1}(\alpha,\beta)(x,y), \end{split}$$

$$(2.4)$$

Then, by virtue of (2.4) and of the assumption (H_2) , it follows that

$$d(v_n(x, y; \alpha, \beta), F(x, y, u_{n+1}(x, y; \alpha, \beta))) \leq L \|u_{n+1}(x, y; \alpha, \beta) - u_n(x, y; \alpha, \beta)\|$$

$$< L\sigma_{n+1}(\alpha, \beta)(x, y), \qquad (2.5)$$

Since σ is continuous from S to $L^1(Q, R)$, by (2.3) it follows that also σ_n is continuous from S to $L^1(Q, R)$. Therefore, by (2.5) and Lemma 1, we have that the multivalued map G_{n+1} defined by

$$G_{n+1}(\alpha,\beta) = \{ v \in L^1(Q,X) : v(x,y) \in F(x,y,u_{n+1}(x,y;\alpha,\beta)) \text{ a.e. in } Q \}$$

is l.s.c. from S to \mathcal{D} . Moreover, by (2.5), it follows that

$$H_{n+1}(\alpha,\beta) = cl\left\{v \in G_{n+1}(\alpha,\beta): \left\|v(x,y) - v_n(x,y;\alpha,\beta)\right\| < L\sigma_{n+1}(\alpha,\beta)(x,y) \text{ a.e. in } Q\right\}$$

is nonempty. Then, by Lemma 2, there exists $h_{n+1}: \mathbf{S} \to L^1(Q, \mathbb{R}^n)$ a continuous selection of H_{n+1} . Set $v_{n+1}(x, y; \alpha, \beta) = h_{n+1}(\alpha, \beta)(x, y)$ and observe that v_{n+1} satisfies the properties (a)-(d). By (c) and the computations in (2.4) it follows that

$$\left\|v_{n}(\ldots,\alpha,\beta)-v_{n-1}(\ldots,\alpha,\beta)\right\|_{1} \leq \frac{L^{n}}{n!} \left\|\sigma(\alpha,\beta)\right\|_{1} + \varepsilon \frac{[2L]^{n}}{n!}.$$
(2.6)

and

$$\|u_{n+1}(.,.;\alpha,\beta) - u_n(.,.;\alpha,\beta)\|_{\infty} \leq \|v_{n+1}(.,.;\alpha,\beta) - v_{n-1}(.,.;\alpha,\beta)\|_1$$
$$\leq \frac{L^n}{n!} \|\sigma(\alpha,\beta)\|_1 + \varepsilon \frac{[2L]^n}{n!}.$$
(2.7)

Therefore $\{u_n(...;\alpha,\beta)\}_{n\in\mathbb{N}}$ and $\{v_n(...;\alpha,\beta)\}_{n\in\mathbb{N}}$ are Cauchy sequences in $C(Q, \mathbb{R}^n)$ and $L^1(Q, \mathbb{R}^n)$, respectively. Moreover since $(\alpha, \beta) \rightarrow ||\sigma(\alpha, \beta)||_1$ is continuous, it is locally bounded; hence the Cauchy condition is satisfied locally uniformly with respect to (α, β) . Let $u(...;\alpha,\beta) \in C(Q,\mathbb{R}^n)$ and $v(...;\alpha,\beta) \in L^1(Q,\mathbb{R}^n)$ be the limit of $\{u_n(x,y;\alpha,\beta)\}$ and $\{v_n(...;\alpha,\beta)\}$ respectively. Then $(\alpha,\beta) \rightarrow u(...;\alpha,\beta)$ is continuous from S to C(Q,X) and $(\alpha,\beta) \rightarrow v(...;\alpha,\beta)$ is continuous from S to $L^1(Q,\mathbb{R}^n)$. Letting $n \rightarrow \infty$ in (d) we obtain that

$$u(x, y; \alpha, \beta) = u_0(x, y; \alpha, \beta) + \int_0^x \int_0^y v(\xi, \eta; \alpha, \beta) d\xi d\eta \quad \text{for any } (x, y) \in Q.$$
(2.8)

Furthermore, since

$$d(v_n(x, y; \alpha, \beta), F(x, y, u(x, y; \alpha, \beta))) \leq L \|u_{n+1}(x, y; \alpha, \beta) - u(x, y; \alpha, \beta)\|$$

and F has closed values, letting $n \rightarrow \infty$ we have

$$v(x, y; \alpha, \beta) \in F(x, y, u(x, y; \alpha, \beta))$$
 a.e. in Q. (2.9)

By (2.8) and (2.9) it follows that $u(.,.;\alpha,\beta)$ is a solution of $(D_{\alpha\beta})$, which completes the proof.

Remark 1. Theorem 1 remains true (with the same proof) if \mathbb{R}^n is replaced by a separable Banach space X and F is a multifunction from $Q \times X$ to the closed nonempty subsets of X satisfying the assumptions $(H_1) - (H_3)$.

Remark 2. If the assumption (H_2) is relaxed, allowing F to be merely continuous then the conclusion of the theorem is in general no longer true. To see this consider the Darboux problem

https://doi.org/10.1017/S0013091500005666 Published online by Cambridge University Press

380

ON A NON-CONVEX HYPERBOLIC DIFFERENTIAL INCLUSION 381

$$(D_{\alpha,\beta}) u_{xy} = {}^{3}\sqrt{u}, \quad u(x,0) = \alpha(x), \quad u(0,y) = \beta(y), \quad (x,y) \in Q$$

Remark that $f(u) = \sqrt[3]{u}$ is continuous but not Lipschitzean in a neighbourhood of 0 and, for $\alpha_0(x) = 0 = \beta_0(y)$, the problem (D_{α_0,β_0}) admits as solutions:

$$u_0^+(x,y) = \left(\frac{2}{3}\right)^3 x^{3/2} y^{3/2}$$
 and $u_0^-(x,y) = -\left(\frac{2}{3}\right)^3 x^{3/2} y^{3/2}$.

Let

$$\alpha_n^+(x) = \left(\frac{2}{3\sqrt{n}}\right)^3 x^{3/2}, \quad \alpha_n^-(x) = -\left(\frac{2}{3\sqrt{n}}\right)^3 x^{3/2}, \quad \beta_n^+(y) = 0 = \beta_n^-(y).$$

Then

$$(\alpha_n^+,\beta_n^+),(\alpha_n^-,\beta_n^-)\in \mathbf{S}$$
 and $\|(\alpha_n^+,\beta_n^+)\|=\|(\alpha_n^-,\beta_n^-)\|=\left(\frac{2}{3\sqrt{n}}\right)^3$,

therefore (α_n^+, β_n^+) and (α_n^-, β_n^-) converge to $(\alpha_0, \beta_0) = (0, 0)$ in the space S.

On the other hand the unique solution of the Darboux problem $(D_{a_n^+, \beta_n^+})$ (resp. of $(D_{a_n^-, \beta_n^-})$) is given by

$$u_n^+(x, y) = \left(\frac{2}{3}\right)^3 x^{3/2} \left(\frac{1}{n} + y\right)^{3/2}$$

(resp. $u_n^-(x, y) = -\left(\frac{2}{3}\right)^3 x^{3/2} \left(\frac{1}{n} + y\right)^{3/2}$).

which for $n \to \infty$ converges to u_0^+ (resp. u_0^-).

Suppose that there exists $r: S \to C(Q, X)$ a continuous selection of the solution map $(\alpha, \beta) \to T(\alpha, \beta)$. Then, for $n \to \infty$, we have that $r((\alpha_n^+, \beta_n^+)) = u_n^+$ converges to u_0^+ and $r((\alpha_n^-, \beta_n^-)) = u_n^-$ converges to u_0^- . This is a contradiction to the continuity of r.

REFERENCES

1. J. P. AUBIN and A. CELLINA, Differential Inclusions (Springer-Verlag, Berlin, 1984).

2. A. BRESSAN and G. COLOMBO, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.

3. M. CINQUINI-CIBRARIO and S. CINQUINI, Equazioni a Derivate Parziali di Tipo Iperbolico Parziali (Edizioni Cremonese, Roma, 1964).

4. R. M. COLOMBO, A. FRYSZKOWSKI, T. RZEZUCHOWSKI and V. STAICU, Continuous selection of solutions sets of Lipschitzean differential inclusions, *Funkcial. Ekvac.* 34 (1991), 321–330.

5. F. S. DE BLASI and J. MYJAK, On the set of solutions of a differential inclusion, Bull. Inst. Math. Acad. Sinica. 14 (1986), 271-275.

6. F. S. DE BLASI and J. MYJAK, On the structure of the set of solutions of the Darboux problem of hyperbolic equations, *Proc. Edinburgh Math. Soc.* 29 (1986), 7–14.

7. A. F. FILIPPOV, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621.

8. A. FRYSZKOWSKI, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174.

9. F. HIAI and H. UMEGAKI, Integrals, conditions expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1971), 149–182.

10. S. MARANO, Generalized solutions of partial differential inclusions depending on a parameter, Rend. Acad. Naz. Sci. XL Mem. Mat. 107 (1989), 281-295.

11. G. TEODORU, Le problem de Darboux pour une equation aux derivees partielles multivoque, An. Stiint. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. 31 (1985), 173–176.

12. G. TEODORU, Sur le problem de Darboux pour l'equation $\partial^2 z/\partial x \partial y \in F(x, y, z)$, An. Stiint. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. **32** (1986), 41–49.

13. G. TEODORU, Continuous selections for multifunctions satisfying Carathéodory type conditions. The Darboux problem associated to a multivalued equation, *Proc. Itinerant Seminar on Functional Equations, Approximation and Convexity*, Faculty of Mathematics, Cluj-Napoca, Preprint 6 (1987), 281-286.

International School for Advanced Studies Strada Costiera II. 34014 Trieste Italy