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ON A NON-CONVEX HYPERBOLIC DIFFERENTIAL
INCLUSION

by VASILE STAICU
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We prove the existence of a solution u(.,.;a,/?) of the Darboux problem uxfeF(x,y,u), u(x,0) = a(x),
u(0,y) = P(y), which is continuous with respect to (a,/?). We assume that F is Lipschitzean with respect to u
but not necessarily convex valued.
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1. Introduction and main result

Let / = [0,1], Q = IxI and denote by Sf the <7-algebra of the Lebesgue measurable
subsets of Q. Denote by 2R" the family of all closed nonempty subsets of R" and by
08{R") the family of all Borel subsets of R". For xeR" and A, Be2R" we denote by
d(x, A) the usual point-to-set distance from x to A and by h(A, B) the Hausdorff pseudo-
distance from A to B.

By C(Q,R") (resp. L}(Q,Rn)) we denote the Banach space of all continuous (resp.
Bochner integrable) functions u:Q->R" with the norm ||u||00 = sup{||u(x,y)||:(x,.y)e(2}
(resp. ||M||i=joJo||MC'<:>y)|Mx^.y)> where ||.| | is the norm in R".

Recall that a subset K of Ll[Q,R") is said to be decomposable ([9]) if for every u,
veK and Ae£f we have UXA + VXQ\AGK> where XA stands for the characteristic function
of A. We denote by 3) the family of all decomposable closed nonempty subsets of
L\Q,R").

Let F:QxRn^2R" be a multivalued map. Recall that F is called & ®
^(/?")-measurable if for any closed subset C of R" we have that {{x,y,z)eQx
R": F(x, y,z)nC^0}eSe® @(R").

We associate to F: Q x R"-*2R" the Darboux problem

(Da/)) uxyeF(x,y,u), u(x,0)=a(x), u(0,y) =

where a, /? are two continuous functions from / into R" with <x(0) = /?(0).

Definition. u( . , . ; a, /?) e C(Q, R") is said to be a solution of the Darboux problem
(DaP) if there exists v(.,.;a,(S)eLl(Q,R") such that
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(i) v{x, y; a, P) e F(x, y, u(x, y; a, P)) a.e. in Q,

(ii) u{x, y; a, p) = a(x) + P(y) - a(0) + ft ft »(£ >/; a, p) rf£ <fy, for every (x, y) e Q.

Note that the function v(.,.;tx,P) which corresponds to u(.,.;a,P) in the above
definition is unique (a.e.). Consider the Banach space

S = {(a, ft) e C(I, R") x C(I, Rn): a(0) = /?(0)}

endowed with the norm

and, for (a, p) in S, we denote by T(a, ft) the set of all solutions of the problem (D^). The
aim of this note is to prove the following:

Theorem. Let F:Qx R"-+2R" satisfy the following assumptions:

(Hi) F is S£® ®{Rn)-measurable,
(H2) there exists L>0 such that h{F(x,y,u), F(x,y,v))£L\\u — v\\ for all u, veR", a.e.

inQ,
(H3) there exists a function 5 e L}{Q, R) such that d(0, F(x, y, 0)) g 5{x, y) a.e. in Q.

Then there exists u:Qx S->R" such that

(i) u ( . , . ; a, P) e T(a, ft) for every (a, P) e S

(ii) (a, P) - m ( . , . ; a, /?) is continuous from S to C{Q, R").

In other words we prove the existence of a global solution u(.,.;<x,P) of the problem
(Dap) depending continuously on (a, j?) in the space S.

This result is a natural extension of the well posedness property (i.e., existence of a
unique solution depending continuously on the initial data) of the Darboux problems
defined by Lipschitzean single-valued maps (see [3]). We obtain the solution by a
completeness argument without assumptions on the convexity or boundedness of the
values of F.

Filippov has obtained in [7] the existence of solutions to an ordinary differential
inclusion x' e F{t, x) defined by a multifunction F Lipschitzian with respect to x, without
assumptions on the convexity or boundedness of the values F(t, x) by using a successive
approximation process.

Following an idea in [4] we extend this process to Darboux problems and we do it
continuously with respect to (a, /J) in the space S by using a result on the existence of a
continuous selection from multifunctions with decomposable values, proved in [8] and
extended in [2].

The construction in the proof of our theorem works for the case when F is
Lipschitzian in u, but the assumption (H2) is not only a technical one. We shall give an
example showing that if (H2) is relaxed, allowing F to be merely continuous then the
conclusion of the theorem is in general no longer true.
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However the Lipschitz property of F is not necessary for the existence of solutions. If
F is upper semicontinuous with compact convex values then the existence of local and
global solutions has been obtained in [11] and [12], by using the Kakutani-Ky Fan
fixed point theorem. The convexity assumption is essential in this case. To avoid the
convexity assumption we have to increase the regularity of F. If F is a Caratheodory
function which is compact not necessarily convex valued then there exists a solution of
the Darboux problem and this fact has been proved in [13] by using a continuous
selection argument and the Schauder fixed point theorem. Qualitative properties and the
structure of the set of solutions of Darboux problems has been studied in [5] and [6].

Remark finally that another extension of the well posedness property of a Darboux
problem defined by a multifunction Lipschitzian in u, lower semicontinuous with respect
to a parameter, expressed in terms of lower semicontinuous dependence of the set of all
solutions of the problem on the initial data and parameter is given in [10].

2. Proof of the main result

In the following two lemmas S is a separable metric space. Let X be a Banach space
and G: S->2* be a multifunction. Recall that G is said to be lower semicontinuous (l.s.c.)
if for every closed subset C of X the set {s e S: G(s) <= C} is closed in S.

Lemma 1 ([4, Proposition 2.1]). Assume F^.QxS-*2R" to be £C®@(S)-measurable,
Ls.c. with respect to seS. Then the map s-tG^is) given by

G,(s) = {veL1(Q,Rn):v{x,y)eFt(x,y,s) a.e. in Q}, seS,

is l.s.c. with decomposable closed nonempty values if and only if there exists a continuous
function a:S^L\Q,R) such that d(0,F^x,y,s))^a(s)(x,y) a.e. in Q.

Lemma 2 ([4, Proposition 2.2]). Let G:S-*@> be a Ls.c. multifunction and let
4>:S->LX(Q,R") and 4/:S->Ll(Q,R) be continuous maps. If for every seS the set

H(O = cl{veG(s):\\v(x,y)-cp(s)(x,y)\\<il>(s)(x,y) a.e. in Q) (2.1)

is nonempty then the map H:S->@) defined by (2.1) admits a continuous selection.

We note that the second lemma is a direct consequence of Proposition 4 and
Theorem 3 in [2] (see also [8]).

Proof of the theorem. Fix e > 0 and set en = e/2n+1, neiV. For (a,/?)eS define
uo(.,.;<xJ):Q->Rn by uo(x,y;aJ) = a(x) + P(y)-tx(0) and observe that for all (x,y)eQ
we have
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This implies that (<x,/?)->M0(.,.;a,/?) is continuous from S to C(Q,R"). Setting
o(a,fi)(x,y) = 8(x,y) + L\\uo(x,y;ct, f})\\ we obtain that a is a continuous map from S to
^(6,11) and

d{0, F{x, y, uo(x, y; a, P))) ̂  *(«, P)(x, y) a.e. in Q. (2.2)

For (a,/3)eS, define

G0(a, /0 = {v e L\Q, X): v{x, y) e F(x, y, uo(x, y; a, ft) a.e. in Q},

and

H0(<x,p) = cl{veG0(a,p):\\v(x,y)\\«j(a,p)(x,y) + e0 a.e. in Q}.

Then, by (2.2) and Lemma 1, it follows that Go is l.s.c. from S into S> and, by (2.2),
Ho(a,P)jL0 for each (tx,P)eS. Therefore by Lemma 2, there exists /JO:S-»L1(Q,K'1),
which is a continuous selection of Ho. Set t?0(x, y; a, )S) = /io(a, P)(x, y) and observe that
vo(x,y;x,P)eF(x,y, uo(x,y;tt,P)) and ||u0(x,y)||^(7(a,/S)(x,y) + 60, for a.e. (x,y)eQ. Define

ut(x,y; a, )8) = uo(x, y;a, /S) + f J i;0(^ >/; a.
o o

and, for n ^ l , set

ff.(«,/0(x,^) = L-1 ("f J (X~I)""1 (rf^a(«,/0«,f,)^di, + f E e ( )^±^l . (2.3)
Loo («—l)! («—1)! \i=o / n- J

Then, for every (x, j>)eQ\{0,0)}, we have

0 0 0 0

and so

d(po(x, y; a, P), F(x, y, Uj(x, y; a, /?)) g L^^x , y; a, J?) - MO(X, y; a, /3)|| < La^a, P)(x, y).

We claim that there exist two sequences {vn(x,y;ix, P)}neN and {un(x,y;ct,P)}neN such that
for each n ̂  1 we have:

(a) (a, 0) ->!;„(.,.; a, $ is continuous from S to L1 (g, R").
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(b) vn{x, y; <x, P) e F(x, y, un(x, y; a, /?)) for any (a, P) e S and a.e. (x, y) e Q.

(c) \\vn(x,y;<x,P)-vn-l(x,y;a,p)\\^Lon(x,P)(x,y) a.e. in Q.

(d) un(x, y; a, P) = uo(x, y; aj) + ] \ vn _ tf, r,; a, /?) d<J dr\.
o o

Suppose we have constructed vl,...,vn and «,,. . . ,«„ satisfying (a)-(d)- Then define

i y

un+j (x, y; a, j?) = uo(x, y; a, i?) + J J un(^, f/; a,
o o

Let (x,y)eQ\{(0,0)}. Using (c) we have

0 0

x y x y

0 0 0 0

i = 0 / 0 0 «! 0 0

Then, by virtue of (2.4) and of the assumption (H2), it follows that

<Lon+1(<x,P)(x,y), (2.5)

Since a is continuous from S to L}(Q, R), by (2.3) it follows that also an is continuous
from S to L}(Q,R). Therefore, by (2.5) and Lemma 1, we have that the multivalued map
Gn + 1 defined by

Gn+l(a,p) = {veL1(Q,X):v(x,y)eF(x,y,un+i(x,y;a,P)) a.e. in Q}

is l.s.c. from S to 3). Moreover, by (2.5), it follows that
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Hn+1(a,P) = cl{veGn + i(aJ):\\v(x,y)-vn(x,y;cL,P)\\<Lan+l(x,p)(x,y) a.e. in Q}

is nonempty. Then, by Lemma 2, there exists hn + 1:S-*L1(Q,R") a continuous selection
of Hn + 1. Set i>B+1(x,3;;a,/?) = /in + 1(a,/?)(x,j;) and observe that vn+1 satisfies the properties
(a)-(d). By (c) and the computations in (2.4) it follows that

(2.6)

and

\\un+1(.,.;K,p)-un(.,.;«,p)\\o0^\\vn+1(.,.;ct,P)-vn_l(.,.;x,p)\\1

(2.7)

Therefore {un(.,.;<x,P)}neN and {vn(.,.;oc,P}neN are Cauchy sequences in C(Q,R") and
L}(Q,R"), respectively. Moreover since (<x,/?)Hk(a>/0||i is continuous, it is locally
bounded; hence the Cauchy condition is satisfied locally uniformly with respect to (a,/?).
Let u(.,.;a,p)eC(Q,Rn) and v(.,.;oc,P)eLi(Q,Rn) be the limit of {un(x,y;a,#} and
{un(.,.;a,/?)} respectively. Then (a,/?)->«(.,.; a, j?) is continuous from S to C(Q,X) and
(<x,P)->v(.,.;ix,P) is continuous from S to Ll(Q,R"). Letting n->oo in (d) we obtain that

u(x, y; OL, p) = uo(x, y,a,fi + ]] v(£, rj; a, p) d£ dr\ for any (x, 3/) e Q. (2.8)

0 0

Furthermore, since

d(vn(x, y; a, p), F{x, y, u(x, y; a, /?))) ^ L\\un+1(x, y; a, P)-u{x, y; a, P)\\

and F has closed values, letting n-»oowe have

v(x, y, a, P) e F(x, y, u(x, y; a, P)) a.e. in Q. (2.9)
By (2.8) and (2.9) it follows that u(.,.,(x,P) is a solution of (D^), which completes the
proof.

Remark 1. Theorem 1 remains true (with the same proof) if R" is replaced by a
separable Banach space X and F is a multifunction from Q x X to the closed nonempty
subsets of X satisfying the assumptions (Hl) — (H3).

Remark 2. If the assumption (H2) is relaxed, allowing F to be merely continuous
then the conclusion of the theorem is in general no longer true. To see this consider the
Darboux problem
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«,, = \ A «(x,0) = a(x), u{O,y) = P(y), (x,y)eQ

Remark that f(u) = \/u is continuous but not Lipschitzean in a neighbourhood of 0
and, for ao(x) = 0 = P0(y), the problem (DxoPo) admits as solutions:

;3'2y ' and

Let

Then

and

therefore (an
+,/?n

+) and (a~,)8~) converge to (ao,/?o) = (0,0) in the space S.
On the other hand the unique solution of the Darboux problem (Da+ fit) (resp. of

(Da- _,_)) is given by

(resp. un"(x,y)= -^Jx^^ + yJ^.

which for n^oo converges to UQ (resp. MQ ).
Suppose that there exists r.S->C(Q,X) a continuous selection of the solution map

(<x,/?)-»T(a,/?). Then, for n->oo, we have that r((an
+,/!^)) = wn

+ converges to UQ and
r((a~,p~)) = u~ converges to UQ. This is a contradiction to the continuity of r.
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