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Both one-dimensional in the horizontal direction (1DH, dispersive and non-dispersive)
and two-dimensional in the horizontal direction (2DH) axisymmetric (approximate,
non-dispersive) analytical solutions are derived for water waves generated by moving
atmospheric pressures. For 1DH, three wave components can be identified: the locked
wave propagating with the speed of the atmospheric pressure, Cp, and two free
wave components propagating in opposite directions with the respective wave celerity,
according to the linear frequency dispersion relationship. Under the supercritical condition
(Cp > C, which is the fastest celerity of the water wave), the leading water wave is the
locked wave and has the same sign (i.e. phase) as the atmospheric pressure, while the
trailing free wave has the opposite sign. Under the subcritical condition (C > Cp) the
fastest moving free wave component leads, and its free surface elevation has the same sign
as the atmospheric pressure. For a long atmospheric pressure disturbance, the induced
free surface profile mimics that of the atmospheric pressure. The 2DH problem involves
an axisymmetric atmospheric pressure decaying in the radial direction as O(r−1/2).
Due to symmetry, only two wave components, locked and free, appear. The tsunami
DART data captured during Tonga’s volcanic eruption event are analysed. Corrections are
necessary to isolate the free surface elevation data. Comparisons between the corrected
DART data and the analytical solutions, including the arrival times of the leading locked
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waves and the trailing free waves, and the amplitude ratios, are in agreement in order of
magnitude.

Key words: surface gravity waves, coastal engineering, atmospheric flows

1. Introduction

Moving atmospheric pressure disturbances can be generated by a number of processes.
The most common cause is associated with a weather event (i.e. low-pressure fronts,
storms or hurricanes), which, in turn, produce a sea level anomaly, also known as storm
surge (e.g. Bode & Hardy 1997; Pelinovsky et al. 2001). Typically, the low atmospheric
pressure fronts propagate at a speed Cp that is slower than the celerity of long gravity water
waves,

√
gh, where h is the typical ocean depth. The storm surges, acting as free long

waves, propagate away from the locked long waves, which are locked in phase with the
moving atmospheric pressure (Vennell 2007). When these two speeds are close, especially
over a shallow bathymetry, the Proudman resonance condition (Proudman 1929) may be
nearly satisfied, producing larger surge responses, which are often called meteotsunamis
(Monserrat, Vilibić & Rabinovich 2006).

Another source of atmospheric pressure disturbances is related to volcanic explosions.
For example, the 1983 Krakatoa volcanic explosion in Indonesia (Harkrider & Press 1967;
Garrett 1970) and the 2022 Hunga Tonga-Hunga Ha’apai underwater volcano explosion
(see Amores et al. 2022; Carvajal et al. 2022) in the Pacific Ocean not only produced
atmospheric pressure disturbances, but also generated tsunami-like long water waves.
During the 2022 Tonga event, tsunami waves were reported across the Pacific Ocean and
beyond, measured by the Deep-ocean Assessment and Reporting of Tsunamis (DART)
buoy system in deep water, and by tidal gauges placed at shallower coasts (Kataoka, Winn
& Touber 2022), including places not directly connected to the water body surrounding
the Tonga volcano (e.g. Atlantic Ocean and Caribbean and Mediterranean Seas).

In both the Krakatoa and Tonga events, the leading tsunami waves were highly correlated
with the propagation speed of the atmospheric pressure waves. During the Tonga event,
this speed was estimated as 307 m s−1 (Amores et al. 2022), which yields a Froude number
Fr ≈ 1.5 over the Pacific Ocean. In addition, a trailing train of tsunami waves, propagating
at long water wave celerity

√
gh, was also recorded in the Pacific Ocean. These trailing

tsunami waves have been attributed to other tsunami generation mechanisms associated
with the volcano explosion and collapse (Lynett et al. 2022).

A clear distinction between the weather-system-generated storm surge/meteotsunami
and the volcano-explosion-generated tsunamis is the relative speeds of the atmospheric
pressure wave and the tsunami celerity. As mentioned earlier, in the case of storm
surges/meteotsunamis, the former is slower than the latter, which is defined as the
subcritical condition. However, for the volcanic-explosion-generated tsunamis, the
opposite is true and is defined as the supercritical condition. The resulting water wave
characteristics are quite different under these different conditions. The focus of most of
the existing references in the literature has been on subcritical flow conditions.

The objective of this paper is to use simple analytical solutions to better explain the
relationships among the forcing atmospheric pressure waves, the resulting tsunami waves,
and the DART buoy observations during the Tonga event.

To facilitate the investigation, the linear wave theory is adopted and a constant ocean
depth is assumed. In areas in which the Froude number is in the near-critical regime
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Water waves generated by moving atmospheric pressure

(Fr ≈ 1), upstream radiation of solitary waves is known to be produced, as predicted by the
forced Korteweg–de Vries equation (Akylas 1984) and the Boussinesq equations (Wu &
Wu 1982). Lee, Yates & Wu (1989) found that ‘as the Froude number is increased beyond
Fr ≈ 1.2, the precursor soliton phenomenon was found also to evanesce’. Therefore, since
the Froude number in the Tonga event is approximately 1.5, linear wave theory was deemed
applicable.

For the one-dimensional in the horizontal direction (1DH) problem (to be presented in
§ 2.1), exact solutions for both frequency dispersive and non-dispersive waves are obtained.
Using the fixed coordinate system, the derivation utilizes the Fourier–Laplace transform.
If a moving coordinate system, travelling with the atmospheric pressure, is employed, then
the present solution can be deduced to that presented in Chapter 7.4 of Stoker (1957),
entitled ‘Unsteady waves created by a disturbance on the surface of a running stream’. The
asymptotic far-field and large-time solution forms for both locked waves and free waves
are derived, which cannot be found in Stoker (1957).

To interpret the Tonga event data, the non-dispersive wave solutions are sufficient, since
the atmospheric pressure wave was very long relative to the water depth of the Pacific
Ocean. Thus in § 2.2, the general solutions for the dispersive waves are deduced to those
for non-dispersive waves. These results can be derived directly from the depth-integrated
linear shallow-water equations, and have been reported in the literature (Pelinovsky et al.
2001; Vennell 2007). However, previous works have focused mostly on the subcritical
condition.

To construct an axisymmetric two-dimensional in the horizontal direction (2DH)
solution to mimic the Tonga event (§ 3), the atmospheric pressure strength is assumed
to decay as 1/

√
r, where r measures the distance from the origin. The obtained analytical

solutions are first utilized to correct the DART buoy free surface elevation measurements
taken during the Tonga event (§ 4). Simple analytical model solutions are used to interpret
the other observed tsunami wave characteristics, such as the amplitude ratios between the
leading and trailing waves. Finally, concluding remarks are provided in § 5.

2. 1DH formulation and solutions

2.1. General (dispersive) wave solutions
Consider ocean waves generated by a prescribed atmospheric pressure field Pa(x, t) on the
free surface z = η(x, t) in the two-dimensional vertical plane (x, z). Neglecting viscous
effects, the velocity potential Φ(x, z, t) satisfies the continuity equation

∂2Φ

∂x2 + ∂2Φ

∂z2 = 0. (2.1)

The ocean bottom is approximated as a horizontal solid surface, z = −h. Thus the no-flux
boundary condition requires

∂Φ

∂z
= 0 at z = −h. (2.2)

Anticipating that the generated wave amplitude is small, the linearized free surface
boundary conditions are applied on the still water surface (z = 0) as

∂Φ

∂z
= ∂η

∂t
and

∂Φ

∂t
+ gη = −Pa(x, t)

ρ
at z = 0, (2.3a,b)
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where ρ is the density of water, and g is the gravity acceleration. These two free surface
boundary conditions can be combined by eliminating η, yielding

∂Φ

∂z
= − 1

ρg

[
ρ

∂2Φ

∂t2
+ ∂Pa

∂t

]
at z = 0. (2.4)

In this paper, Pa is prescribed as a moving pressure field with a constant speed Cp,
starting at t = 0. Thus Pa(x, t) = Pa(x − Cpt). Moreover, the wave motions begin from
the quiescent state, i.e. η(x, t = 0−) = Φ(x, z, t = 0−) = 0.

Applying the Laplace and Fourier transforms, namely

Φ̄(x, z, s) =
∫ ∞

0
e−st Φ(x, z, t) dt and Φ̂(k, z, t) =

∫ ∞

−∞
e−ikx Φ(x, z, t) dx, (2.5a,b)

to the initial boundary value problem stated above, the solutions for the transformed
velocity potential and free surface elevation can be obtained readily as

ˆ̄Φ(k, z, s) = − P̂a(k)
ρ

(
s

ω2 + s2

)(
1

s + ikCp

)
cosh k(z + h)

cosh kh
, (2.6)

ˆ̄η(k, s) = − P̂a(k)
ρg

(
ω2

ω2 + s2

)(
1

s + ikCp

)
, (2.7)

where ω2 = gk tanh kh is the dispersion relation, and P̂a(k) denotes the Fourier transform
of Pa at t = 0. Applying the inverse Fourier and Laplace transforms to (2.6) and (2.7),
the velocity potential and free surface elevation can be obtained. The inverse Laplace
transform on (2.6) and (2.7) will be performed first. There are three simple poles in (2.7),
s = ±iω and −ikCp. Applying the Cauchy residue theorem, the inverse Laplace transform
yields

Φ̂ = −i
P̂a(k)

ρ

cosh k(z + h)

cosh kh

{(
−kCp

ω2 − k2C2
p

)
e−ikCpt + 1

2

(
1

ω − kCp

)
e−iωt

− 1
2

(
1

ω + kCp

)
eiωt

}
(2.8)

and

η̂ = − P̂a(k)
ρg

{(
ω2

ω2 − k2C2
p

)
e−ikCpt − 1

2

(
ω

ω − kCp

)
e−iωt − 1

2

(
ω

ω + kCp

)
eiωt

}
.

(2.9)
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Now, applying the inverse Fourier transform to the equations above yields the velocity
potential function and free surface elevation in the physical space as follows:

Φ(x, z, t) = Φp + Φ++Φ−,

Φp = −i
ρ

1√
2π

∫ ∞

−∞
cosh k(z + h)

k cosh kh

(
Cp

C2
p − C2

)
P̂a(k) exp(ik(x − Cpt)) dk,

Φ+=−i
ρ

1√
2π

∫ ∞

−∞
cosh k(z + h)

k cosh kh
1
2

(
1

C − Cp

)
P̂a(k) exp(ik(x − Ct)) dk,

Φ−= i
ρ

1√
2π

∫ ∞

−∞
cosh k(z + h)

k cosh kh
1
2

(
1

C + Cp

)
P̂a(k) exp(ik(x + Ct)) dk,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

and
η(x, t) = ηp + η+ + η−,

ηp = 1
ρg

1√
2π

∫ ∞

−∞

(
C2

C2
p − C2

)
P̂a(k) exp(ik(x − Cpt)) dk,

η+ = 1
ρg

1√
2π

∫ ∞

−∞
1
2

(
C

C − Cp

)
P̂a(k) exp(ik(x − Ct)) dk,

η− = 1
ρg

1√
2π

∫ ∞

−∞
1
2

(
C

C + Cp

)
P̂a(k) exp(ik(x + Ct)) dk,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

where C(k) = ω/k represents the celerity of the generated wave component with
wavenumber k satisfying the dispersion relation ω2 = gk tanh kh. For a given water depth
h, the maximum celerity is

√
gh as k → 0.

The solutions given in (2.10) and (2.11) are written in integral forms, which can
be integrated numerically once the atmospheric pressure and its Fourier transform P̂a
are provided. The solutions consist of three components. The first component (Φp
and ηp) represents a wave train, being ‘locked’ with the moving atmospheric pressure
with propagation speed Cp. The second and third components (Φ+, η+ and Φ−, η−)
represent ‘free’ waves, propagating in the ±x-directions with speed C(k), respectively.
The free surface shapes of these wave components are determined by the product of the
atmospheric pressure spectral density P̂a(k) and a modification function. For the locked
wave, the modification function is C2/(C2

p − C2), while for the free waves, η+ and η−, the
modification functions are C/(2(C − Cp)) and C/(2(C + Cp)), respectively.

These modification functions are plotted against Cp/C(k) in figure 1. Note that since 0 <

C <
√

gh, the applicable range of these curves for a given Cp is Fr < Cp/C < ∞, where
Fr = Cp/

√
gh can be viewed as the Froude number of the problem. When the atmospheric

wave (and the locked wave) propagates faster than the fastest free wave speed
√

gh, it
is called the supercritical condition (Fr > 1). The locked wave, ηp, is the leading wave
moving in the +x-direction. On the other hand, Fr < 1 is called the subcritical condition,
and the longest free wave component is the leading wave. For Fr = 1, the propagation
speed of the locked wave is the same as that of the fastest free wave, creating a resonance
situation, which is called the critical condition.
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Figure 1. Modification functions of ηp (blue line), η+ (red line) and η− (orange line). The horizontal axis
corresponds to Cp/C(k) for the 1DH dispersive solution, and to Fr = Cp/

√
gh for the 1DH shallow-water

solution.

The sign and shape of free surface elevation depend on P̂a over a range of k. From
figure 1, the modification function for ηp is positive for Fr > 1. Therefore, the locked
wave free surface elevation has the same sign as that of the atmospheric pressure wave,
although their shapes are not necessarily the same. The modification function changes
sign at Cp/C = 1, which is an integrable singularity, and becomes negative for Fr < 1.
The modification function for the free wave, η+, has the opposite sign to that for the
locked wave, resulting in the opposite sign in free surface elevations. On the other hand,
the modification function for the free wave, η−, is always positive so that the free surface
elevation has the same sign as that of the atmospheric pressure. Finally, the magnitude
of the modification function for η− is relatively small compared with the magnitudes of
the other two wave propagation modes, implying that the amplitude of the left-going free
wave is also relatively small.

2.1.1. Further analysis of the far-field solution as x → ∞
For a large time t, the most important contribution to the generated water waves comes
from the long wave component, k ≈ 0. The locked wave in (2.11) can be approximated as

ηp ≈ 1
ρg

(
gh

C2
p − gh

)
1√
2π

∫ ∞

−∞
P̂a(k) exp(ik(x − Cpt)) dk =

(
1

Fr2 − 1

)
Pa(x − Cpt)

ρg
.

(2.12)

Therefore, the free surface profile of the locked wave has the same shape as Pa. However,
its magnitude is multiplied by the modification factor 1/(Fr2 − 1), which is also shown
in figure 1, with the horizontal axis being replaced by Fr. In the supercritical regime
(Fr > 1), the locked wave is the leading wave and this factor is positive (see the blue line
in figure 1). Therefore, the free surface profile and atmospheric pressure have the same
sign, i.e. the positive atmospheric pressure induces the elevated (positive) free surface
profile. The modification factor becomes greater than 1 for Fr <

√
2, and the amplitude of

the locked wave diminishes to 0 as Fr → ∞ (i.e. the atmospheric pressure moves too fast
for the water to respond). In the critical condition (Fr = 1), resonance occurs as Fr → 1.
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Water waves generated by moving atmospheric pressure

Under the subcritical condition (Fr < 1), the modification factor for ηp is negative (see
the blue line in figure 1), and the free surface profile of the locked wave and atmospheric
pressure have opposite signs. Thus the positive atmospheric pressure induces a depression
(negative elevation) in the locked wave free surface profile. It is noted that for Fr < 1, the
free wave becomes the leading wave.

Applying the stationary phase approximation to η+ in (2.11), the far-field solution can
be expressed as,

η+ ≈ 1
2ρg

1
Fr − 1

[
−M0

(
2√

gh h2t

)1/3

Ai(Z) + M1

(
2√

gh h2t

)2/3

Ai′(Z) + · · ·
]

,

(2.13)
where

M0 =
∫ ∞

−∞
Pa(x) dx and M1 =

∫ ∞

−∞
x Pa(x) dx (2.14a,b)

represent the area and the first moment under the atmospheric pressure curve, respectively.
In the solution (2.13), Ai(Z) is the Airy function:

Ai(Z) = 1
2π

∫ ∞

−∞
cos

(
Zq + q3

3

)
dq, with Z =

(
2√

gh h2t

)1/3

(x −
√

gh t), (2.15)

and Ai′(Z) is its first derivative (see figures 2.5 and 2.6 in Mei, Stiassnie & Yue 2005). Both
functions are oscillatory for Z < 0 and decay exponentially for Z > 0. However, Ai(Z) > 0
and Ai′(Z) < 0 for Z > 0. For the case where the first term dominates (|M0| � |M1|),
the leading free waves decay as t−1/3. However, in the case where M0 = 0 (e.g. the
atmospheric pressure distribution has the shape of an isosceles N-wave), the free wave
is represented by the second term in (2.13), which decays faster as t−2/3. Finally, the
sign of η+ depends on the sign of M0 and whether it is under supercritical or subcritical
conditions.

According to Lynett et al. (2022) and Ren, Higuera & Liu (2022), the atmospheric
pressure for the Tonga event takes an N-wave shape that is not isosceles, and M0 > 0.
The order of magnitude of the ratio of the locked wave amplitude to that of the free wave
at the far field can be estimated from (2.12) and (2.13) as

O(ηp)

O(η+)
= O

(
− 25/3

Fr + 1
Pc

a

M0

(
1√

gh h2t

)−1/3
)

, (2.16)

where Pc
a denotes the crest value of Pa, and O(Ai(Z)) ≈ 1/2 has been applied. Denoting

S = √
gh t as the distance that the front of the trailing wave has travelled at time t, the

equation above can be simplified as

O(ηp)

O(η+)
= O

(
−Pc

ah
M0

(
25 S

h

)1/3

(Fr + 1)−1

)
. (2.17)

The influence of the free waves diminishes as the atmospheric pressure wave propagates
to infinity, i.e. S → ∞. For the free wave amplitude to be the same order of magnitude as
the leading wave, O(ηp)/O(η+) = O(1), the travelling distance of the free wave must be
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within the relative distance

S
h

<
1
25

(
M0

Pc
ah

)3

(Fr + 1)3. (2.18)

These points will be illustrated further in § 4 with DART data captured during the 2022
Tonga event.

2.2. Shallow-water wave solutions
When the horizontal length scale of the atmospheric pressure wave is very long in
comparison with the water depth, the generated water waves are non-dispersive long
waves. The simplified solutions can be deduced readily from (2.11) by setting C → √

gh.
Thus the free surface shallow-water wave solutions can be expressed as

η = ηp + η+ + η−,

ηp = 1
ρg

1
Fr2 − 1

Pa(x − Cpt),

η+ = − 1
ρg

1
2(Fr − 1)

Pa(x −
√

gh t),

η− = 1
ρg

1
2(Fr + 1)

Pa(x +
√

gh t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)

The solutions above, which can also be found in Pelinovsky et al. (2001) and Vennell
(2007), satisfy the linear shallow-water wave equations

∂2η

∂t2
− gh

∂2η

∂x2 = gh
ρg

∂2Pa

∂x2 , (2.20)

with the assumption that wave motions start from the quiescent condition. Note that similar
solutions for waves generated by moving pressure in a narrow channel (Dogan et al. 2021)
and moving obstacles (e.g. landslide, ship) have also been obtained (Tinti, Bortolucci &
Chiavettieri 2001; Lo 2021). In addition, Vennell (2007) studied the effect of bathymetric
variations.

The corresponding horizontal velocity field can be expressed as

u = up + u+ + u−,

up = − 1
ρC

Fr
Fr2 − 1

Pa(x − Cpt),

u+ = − 1
ρC

1
2(Fr − 1)

Pa(x −
√

gh t),

u− = 1
ρC

1
2(Fr + 1)

Pa(x +
√

gh t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.21)

Lacking the frequency dispersion, the resulting wave patterns are much simpler and are
easier to interpret. Moreover, most of the descriptions provided in § 2.1.1 remain valid, as
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captured in figure 1 (note that the horizontal axis represents Fr in this case). The ratio
between the free wave and the locked wave can now be calculated as

O
(

ηp

η+

)
= −2

Fr + 1
. (2.22)

For the subcritical condition (Fr < 1), the locked wave is always larger than the free wave,
up to a factor of 2 when Fr → 0; for the supercritical condition (Fr > 1), the free wave
becomes larger than the locked wave.

2.2.1. Comparison between dispersive and shallow-water solutions
The importance of the frequency dispersive effects is accumulative in time and space, and
can be assessed by evaluating the ‘dispersion parameter’ τ (Glimsdal et al. 2013):

τ = 6h2D
L3 , (2.23)

where L denotes the characteristic wavelength, D represents the propagation distance,
and h is the water depth. Typically, if τ < 0.01, then the frequency dispersion effects are
negligible, whereas they are significant if τ > 0.1. Consider the Tonga event (more details
will be discussed in § 4): the typical water depth in the Pacific Ocean is h = 4 km, and the
characteristic wavelength is L = 800 km. The dispersion parameter becomes τ = 0.002
after the waves have travelled a distance 10 000 km. Therefore, the dispersion effects can
be considered insignificant in the Pacific Ocean during the Tonga event. For dispersion
effects to be significant (e.g. τ = 0.2) under the same conditions, the propagation distance
must be D = 1.07 × 106 km ≈ 1350L.

To portray the differences between the dispersive and non-dispersive solutions, we will
apply (2.11) and (2.19) to an atmospheric pressure disturbance with the soliton shape,

P(x, t) = P0 sech2[K(x − Cpt)], (2.24)

in which P0 is the amplitude of pressure, K = 2π/L is the wave number, and Cp is the
fixed pressure wave celerity. This simple wave shape is convenient because its Fourier
transform has an analytical expression:

P̂(k) = kπ
K2 P0 csch

[
kπ
2K

]
. (2.25)

Yet calculating (2.11) requires a numerical integration procedure.
The values selected for the first test case are P0 = 100 hPa – which would translate

into approximately 1 m free surface difference under static conditions – Cp = 319 m s−1,
L = 800 km and h = 4 km, which are representative of the Tonga event. Under these
conditions, Fr = 1.61. Figure 2 presents the comparison of the dispersive (2.11) and
non-dispersive (2.19) solutions at different instants. Figure 2(a) presents the instant
at which the trailing free waves have travelled 10 000 km, which is approximately
the longest distance that the tsunami wave can travel from Tonga. According to the
previous analysis based on Glimsdal et al. (2013), τ = 0.002, no significant dispersive
effects are expected, and the results confirm that both solutions are virtually identical,
both in the general overview and in the individual plots below it (which zoom in
to each component). In addition, this validates that the shallow-water assumption is
applicable for the given conditions. Figure 2(b) shows an extreme case in which the
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Figure 2. Comparison between the dispersive ((2.11), in blue), non-dispersive ((2.19), in red) and ‘far-field’
approximation ((2.12) and (2.13), in yellow, bottom plots only) solutions at different instants. The pressure
distribution is represented by a black line. Parameters: P0 = 100 hPa, Cp = 319 m s−1, L = 800 km and h =
4 km.

trailing waves have propagated over 1500 wavelengths, and have accumulated significant
dispersive effects according to the previous analysis. Both free waves clearly show that
the dispersive effects (blue line solution, (2.11)), with fast-decaying oscillating waves,
are observed trailing the first wave, which is lower in height but longer than the
shallow-water solution (red line). The ‘far-field’ approximation (yellow line) solution
for the trailing free wave (η+) presents a high resemblance with the fully dispersive
solution, although the former presents a significant larger height. These differences can
be attributed to the approximations inherent in (2.13) and the distance travelled, which
may still not be large enough. The leading locked wave, however, does not show any
differences between the three (dispersive, non-dispersive and ‘far-field’ approximation)
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Figure 3. Comparison between the dispersive ((2.11), in blue) and non-dispersive ((2.19), in red) solutions at
different instants. The pressure distribution is represented by a black line. Parameters: P0 = 100 hPa, Cp =
319 m s−1, L = 1 km and h = 4 km.

solutions. Since this wave is forced by the pressure wave, this means that the leading
wave propagates with a permanent shape and is effectively in the shallow-water
regime.

An additional case in which the pressure wave is much shorter (L = 1 km) and the
rest of parameters from the previous case are the same is shown in figure 3. The short
wavelength, h/L = 4, means that these waves are in the deep-water regime. Therefore, the
non-dispersive solution is not applicable, although it will be presented to enable a more
direct comparison. Two snapshots are presented, when the free wave has propagated for
2 and 12.5 wavelengths (2 km and 12.5 km). In both cases τ � 200, which means that
dispersive effects are several orders of magnitude more important than in the previous
case. Regarding the dispersive solution, the amplitude of the leading wave is significantly
smaller, and the effective wavelength is longer, than the values for the non-dispersive
solution. (The theoretical wavelength of a soliton is infinite. For convenience, the effective
wavelength can be defined as the distance between those points at which the free surface
elevation has reduced to a small fraction, e.g. 1 %, of the wave amplitude.) This is
a direct result of (2.11), which, as discussed before, applies a scaling factor for each
of the components. Since the pressure wave here is significantly shorter than before,
each of these components will propagate at a much smaller celerity than long-wave
celerity (

√
gh). Therefore, the effective amplification factor is also smaller, because

Cp remains constant. The free waves at both sides are way behind the non-dispersive
solution due to the slower wave celerity. Dispersive effects can be noticed best in
figure 3(b), presenting oscillations that are similar to those observed for the previous
case.

These results point out that the dispersive solution is important when dealing with cases
in which the pressure wave is not a long wave, or when waves propagate over a significant
distance.
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3. 2DH axisymmetric shallow-water wave problem

In the Tonga event, the atmospheric pressure is nearly axisymmetric and decays in the
radial direction (Amores et al. 2022; Lynett et al. 2022). In this section, approximate
solutions are sought for axisymmetric shallow-water waves being forced by an atmospheric
pressure field. Thus in terms of the free surface elevation η(r, t), the governing equation
is well-known:

∂2η

∂t2
− gh

1
r

∂

∂r

(
r

∂η

∂r

)
= h

ρ

1
r

∂

∂r

(
r

∂Pa

∂r

)
, (3.1)

which can be rewritten in the form

∂2√r η

∂t2
− gh

(
∂2√r η

∂r2 +
√

r η

4r2

)
= h

ρ

(
∂2√r Pa

∂r2 +
√

r Pa

4r2

)
. (3.2)

Consider l as the characteristic length scale of the atmospheric pressure and the induced
water wave. For large r � l, the second term, relative to the first term inside the brackets
of the equation above, is O(l/r)2 � 1 and can be neglected, resulting in an approximate
governing equation in the far field as

∂2√r η

∂t2
− gh

(
∂2√r η

∂r2

)
= h

ρ

(
∂2√r Pa

∂r2

)
. (3.3)

Assuming that the atmospheric pressure takes the form

Pa =
√

r0

r
P0(r − Cpt), (3.4)

where r0 is a constant defining the radial location at which Pa = P0(r0 − Cpt), the
analytical solution for (3.3) can be obtained as

η = 1
ρg

1
Fr2 − 1

√
r0

r

[
P0(r − Cpt) − P0(r −

√
gh t)

]
. (3.5)

This result can also be obtained by summing up the wave components of the 1DH solutions
presented in (2.19), and multiplying the resulting expression by the radial decay factor√

r0/r, since η− also propagates in the r-direction (due to radial symmetry).

4. Applications to the 2022 Tonga event

The theoretical far-field solutions are used to check the three DART station measurements
(32 411, 32 401 and 32 404) during the Tonga event, shown in figure 4(a). The paths for
the tsunamis reaching these stations are practically uninterrupted from the source. DART
stations measure dynamic pressure at the bottom of the ocean. Normally, DART data are
reported every 15 min; when the system detects a tsunami, the reported data resolution is
improved to every 15 s. The reported data ζ are calculated as follows (Rabinovich & Eblé
2015):

ζ = η + Pa

ρg
, (4.1)

capturing both the atmospheric pressure disturbances and the induced water waves for the
leading (locked) wave. These data need to be corrected to identify the actual water wave
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Figure 4. (a) Geographical locations and (b) time series of free surface elevation reported by DART stations.
The free surface elevations corrected by (4.2a,b) are in black lines. Grey arrows mark the arrival times of the
leading locked waves and trailing free waves.

Station S h̄ tηp tη+ Cp C̄ Fr Aηp A′
ηp Pηp Aη+ 	ttheo 	tobs

32 411 9633 4283 510 794 1133 728 1.56 1.38 0.57 0.81 −1.96 285 284
32 401 10 385 4153 554 875 1125 712 1.58 2.13 0.85 1.28 −3.36 307 321
32 404 9833 3983 525 779 1124 757 1.48 1.96 0.89 1.07 −3.46 291 254

Table 1. Basic information from DART stations: S is great-circle distance from Tonga to the station in km; h̄
is average depth along the path in m; tηp and tη+ are arrival times of ηp and η+ in min; Cp and C̄ are average
celerities of ηp and η+ in km h−1; Fr is the average Froude number; Aηp and A′

ηp are wave amplitudes of
ηp and their corrections (see (4.2a,b)) in cm; Pηp is the estimated peak pressure (see (4.2a,b)) in hPa; Aη+ is
the wave amplitude of η+ in cm; 	ttheo and 	tobs are time differences between the leading and trailing wave
arrival times, from theoretical results and observations, in min.

surface profile η. For the Tonga event, the atmospheric pressure wave is long (∼800 km)
and propagates within the supercritical regime (Fr ≈ 1.5) (Amores et al. 2022; Lynett
et al. 2022). Thus the free surface elevation of the leading locked wave has the same sign
and shape as the atmospheric pressure wave, and (2.19) can be used in (4.1) to find the
following relationships:

Pa = ρg
(

Fr2 − 1
Fr2

)
ζ and η = 1

Fr2 ζ. (4.2a,b)

This implies that the actual free surface elevation is smaller than the reported DART data,
since Fr2 > 1. In addition, the first expression in (4.2a,b) provides a formula for estimating
the magnitude of the atmospheric pressure at the DART station, using the reported ζ . The
time series shown in figure 4(b) contain both the reported DART data and the corrected
data (black line) as per (4.2a,b).

Practical information for the DART stations, such as the distance to Tonga and the
average depth along the path, is listed in table 1. The arrival times for the leading and
trailing waves are marked with grey arrows in figure 4(b) and listed along with the
separation times (in the last column) in table 1. Based on the DART data at these stations,
the Froude numbers range from 1.48 to 1.58, with average 1.54, confirming that the Tonga
event is under the supercritical condition.
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Station DART CDART (2.17) (2.22) (3.5)

32 411 −0.70 −0.29 −1.03 −0.78 −1
32 401 −0.63 −0.25 −0.96 −0.78 −1
32 404 −0.57 −0.26 −0.97 −0.81 −1

Table 2. Comparison of the ηp/η+ ratio for the uncorrected (DART) and corrected (CDART) data, and the
analytical solutions.

During the event, the atmospheric pressure wave travels at the average velocity Cp ≈
1100 km h−1 in the Pacific Ocean (Lynett et al. 2022), and the wave celerity of long
water waves can be estimated as C ≈ 713 km h−1, corresponding to average depth 4 km,
representative of the Pacific Ocean. The theoretical time differences in the arrival times of
the leading locked wave and the trailing free wave are listed in the second to last column in
table 1. The differences between the theoretical and observed time lapses are below 10 %
for DART stations 32 411 and 32 401. The difference for station 32 404 is larger, as the
trailing (free) waves arrive 37 min faster than expected.

The observed and corrected amplitudes of the leading and trailing waves, and the
estimated peak atmospheric pressure according to (4.2a,b), are also recorded in table 1.
The peak pressures among these three DART stations range from 0.81 hPa to 1.28 hPa,
with average 1.05 hPa, which is very close to 1.11 hPa, the value provided by the empirical
model in Lynett et al. (2022).

In table 2, the values of ηp/η+ at each station are listed, including the reported
and corrected DART data and various analytical solutions. The ratio is always negative
for all cases, indicating that the leading and trailing waves have opposite sign. All the
analytical solutions show that the amplitude ratios are close to 1, indicating that the
shallow-water wave theory is adequate in describing this event. As expected, applying the
correction (4.2a,b) reduces the amplitude of the leading locked wave, thus also decreases
the value of the ηp/η+ ratio from average −0.63 to −0.27. These corrected values are
significantly smaller than any of the analytical values. Nevertheless, the measured data
and analytical solutions are in agreement in the order of magnitude. The differences
between the measured data and theoretical solutions reflect the complexity of the problem,
which includes effects of bathymetry, Earth’s curvature and additional wave generation
mechanisms related to the volcano explosion, which will travel together as part of the
trailing wave package.

5. Concluding remarks

The analytical expressions developed herein cover dispersive and non-dispersive solutions,
and can be applied to model water waves generated by atmospheric pressure disturbances
travelling at supercritical and subcritical speeds. They provide significant insights into
the resulting water wave characteristics, and can be used as benchmarks for numerical
models. It is shown that the wave patterns generated under the supercritical condition
are fundamentally different from those generated by a pressure disturbance propagating
in a subcritical condition. Under the supercritical conditions, the atmospheric pressure
disturbances induce a leading ‘locked’ wave with the same sign, i.e. a positive atmospheric
pressure generates an elevated wave, which is counter-intuitive. Under the subcritical
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conditions, the locked wave is trailing and has opposite sign. Moreover, in the case in
which the pressure wave is a long wave, the resulting water wave will have its same shape.

Atmospheric pressure disturbances also generate ‘free’ waves, whose sign and shape
are also determined by the Froude number. These free waves are generated at the initial
instant, and any other long waves produced during the explosion (e.g. mechanical blast,
collapse of the caldera; Lynett et al. 2022) would also be travelling as part of the same
wave package. Therefore, not all free waves that reach a location at the expected arrival
time (based on the typical tsunami propagation celerity) are produced by the alternative
mechanisms. In addition, locked waves are known to produce additional free waves due to
scattering when they propagate over bathymetry changes (Vennell 2007). Thus any long
waves arriving between the leading wave and pressure-driven trailing wave are likely to
have been produced by this mechanism. Further study regarding the characteristics of these
waves will be performed in a future paper.

We would also like to remark the importance of the dispersive effects when the pressure
wave is short, relative to water depth, and/or if the waves propagate over a significant
distance. In such cases, the frequency dispersive expressions provide the most accurate
solution. Therefore, the dispersive solutions are required to generalize the problem of
waves generated by pressure disturbances to account for potentially smaller eruptions or
explosions.

Probably the most important conclusion of this work is that bottom-mounted pressure
gauge measurements related to the locked waves need to be corrected to account for
the additional pressure variations caused by the atmospheric pressure disturbances,
which can be especially significant in the near field of the volcano explosion. The
correction method presented in (4.2a,b) is novel, simple and useful in instances when
simultaneous and co-located atmospheric pressure measurements to the DART system (or
any pressure-based free surface elevation gauge) are not available.

In short, the analytical theories presented in this paper can explain the positive leading
wave observed during Tonga’s event, which is locked to the atmospheric pressure wave
and thus arrives faster than expected based on the long-wave celerity.
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