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SHIFTS ON TYPE IIX FACTORS 

GEOFFREY L. PRICE 

1. Introduction. A shift on a unital C*-algebras& is a *-endomorphism a 
of stf which fixes the identity and has the property that the intersection of 
the ranges of a" for n = 1, 2, 3, . . . consists only of multiples of the 
identity. In [4] R. T. Powers introduced the notion of a shift on a 
C*-algebra and considered both discrete and continuous one-parameter 
semi-groups of shifts. In this paper we focus on discrete shifts. We use a 
construction of Powers to obtain shifts on certain unital A F C*-algebras. 
These are defined by constructing a set {uf.i = 1, 2, . . . } of self-adjoint 
unitary operators which pairwise either commute or anticommute. Setting 
a(Uj) = ul +, determines an endomorphism on the group algebra generated 
by the w/s. This algebra is called a binary shift algebra. By passing to the 
(unique) C*-algebra completion we obtain an ^4F-algebra s/ on which a 
defines a shift. 

In this paper we give necessary and sufficient conditions for binary shift 
algebras constructed as above to have a unique faithful trace, Theorem 
2.3. In this case the weak operator closure of 7r(stf), where IT is the GNS 
representation associated with the trace, is the unique hyperfinite IIX 

factor R. As in [4] a induces a shift on R with Jones' index [R:a(R) ] = 2, 
see [3]. 

We say that a shift on the factor R that is induced via a binary shift 
algebra, as above, is a binary shift on R. Conversely, one may consider a 
general shift a on R of index 2 and ask whether a is a binary shift. We 
show in Theorem 5.11 that this is not always the case, even if a is regular 
(i.e., the normalizer N(a) of a, 

N(a) = { ( / e Rv\Uak(R)U~x = ak(R), k e N}, 

generates the whole algebra). Moreover, under the assumptions that a is 
regular and that N(a) consists of elements whose squares are scalar 
multiples of the identity, we obtain necessary and sufficient conditions for 
a to be a binary shift, in Theorem 4.5. Our condition on N(a) may not be 
as restrictive as it seems, since this condition holds automatically in the 
case where the subfactor a^(R) has non-trivial relative commutant 
(Theorem 3.3) and may possibly hold in general. 
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2. Factor condition for the shift. Our notation will be consistent with 
Section 3 of [4]. In particular, for any subset S of N we form, as in 
Definition 3.8 of [4], the binary shift algebra B(S) generated by elements 
uh i e N, satisfying 

(1.1) uf = uh 

(1-2) u] = /, 

(1.3) UjUj = u-Uj if \i — j \ & S, and 

(1.4) UiUj + UjU; = 0 if |/ - j \ G S. 

Also, for finite subsets Q = {/1? z2, . . . , in} of N with z, < . . . < /'/? 

we associate the word 

v ^ / /, /2 /„ 

in B(S). The shift a is then the homomorphism of B(S) defined on 
generators by a(Uj) = uj + ]. The shift extends to a homomorphism 
on A(S), the (unique) C*-algebraic completion of B(S). 

To each anti-commutation set S in N we have the corresponding 
signature function os defined on the integers by as(i) = 1 if |/| e S and 
os(i) = 0, otherwise. Using this notation (1) may be replaced with the 
equivalent list of conditions 

(2.1) uf = W/, 

(2.2) u] = /, 

(2.3) utuj = (-Ifs^uju;. 

Denote by 2(5*) the signature sequence 

( . . . , a 5 ( - l ) , a 5 ( 0 ) , a 5 ( l ) , . . . ) 

of S: of course, 2(5) is symmetric about the entry ac(0). 
A set S is called primary [4, Definition 3.7] if it is the anti-commutation 

set of a binary shift on the hyperfinite II\ factor R. In [4] Powers has 
obtained the following characterizations of primary sets ( [4, Theorem 
3.9] ): 

THEOREM P. Let S be a subset of N. The following conditions are 
equivalent: 

(i) S is primary 
(ii) B(S) is simple 

(iii) B(S) has center consisting of scalar multiples of I 
(iv) There is a unique trace on B(S) 
(v) For each non-empty finite set Q of positive integers, there is a positive 

integer k such that in B(S), 

ukT(Q) = -T(Q)uk. 
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In [4] Powers determined that there are uncountably many subsets S 
which are primary sets. Since S is a conjugacy invariant there are 
uncountably many non-conjugate binary shifts of the factor R, [4, 
Theorem 3.6 and Theorem 3.10]. We sharpen these results by giving a 
precise characterization below of the primary sets. We need the following 
straightforward result. 

Definition 2.1. If Q = {/,, . . . , /„} then the length of T(Q) is in - /, + 1. 
The identity / has length 0. 

LEMMA 2.2. Suppose B(S) has non-trivial center. Then there exists a 
unique word T(Q) of minimal length in the center with 1 e Q. 

Proof. By [4, Theorem 3.9] there is a non-trivial word 

T(Q') = ulx . . . uin 

in the center. Choose Q so that T(Q') has minimal length among all such 
words. If /, > 1, then for Q" = {/, - 1, . . . , in - 1}, 

*(T{Q")Ui) = r ( e > / + 1 = ui+xT(Q') = afy-IXe")), 

so T(Q") is also in the center. We may then continue to backshift until we 
obtain an element T(Q) of minimal length in the center with 1 G Q. If 
T((?i) is another such word, then 

±r(e,)r(e) = T(Q}àQ) 
(Q\àQ is the symmetric difference) is a word in the center shorter than 
T(Q), which cannot be unless Qx = Q. 

THEOREM 2.3. Let S be a subset of N. S is primary if and only if its 
signature sequence 2(5) is not periodic. 

Proof. Rewrite 2(5) as ( . . . , #_, , <z(), ax, . . . ) with 

ai = °sUX J ^ Z. 

Suppose 2(5) is periodic with period length n. We verify that a non-trivial 
word F(Q) lies in the center of B(S). Consider the homogeneous linear 
system of equations in n + 1 variables x0, . . . , xn over the field 
& = Z/2Z: 

a{)x() + alx] + a2x2 + . . . + anxn = 0 
alxi) + a0x} + axx2 + . . . + an_xxn = 0 
a2x0 + #,*, + tf0x2 + . . . + an_2xn = 0 

(3) 
anx{) + cin_lxl + ^7^2-x2 + • . . + %*„ = ° 
tf/i+I*0 + anX\ + fl„-l*2 + • • • + «!*„ = 0 

Using the periodicity a- = a]+n as well as the symmetry a_k = ak one 
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observes that the (n 4- y)th equation is identical to theyth equation, for all 
7, so the system reduces to n equations in n -f 1 unknowns. Let 

(x0,...9x„) = (/c0, . . . , / c„) 

be a non-trivial solution, and let 

n+\-U = Ux"U2
l . . .U 

Repeated use of (2.3) gives 

uku = (-l)^wwA., 

where ck is the left side of the /cth equation in (3). Since ck = 0 u 
commutes with each uk, so u is in the center of B(S). 

For the other direction suppose S is not primary. Then there exists a 
word 

/ A 0 , / l 
* H + 1 > ^ 

satisfying the conclusion of Lemma 2.2, so we may assume that k{) = 1 
and &„ = 1. Using (2.3) repeatedly, the equations uuk = uku, k e N, imply 
AT = [/c0, . . . , kn] is a non-trivial solution to the linear system 
AX = 0, where X = [x0, . . . , x,J r , and A is the matrix 

(4) 

a2 

a, 
a3 

a-, 
a-, 

*n+\ 

Indeed, if L = [/0, . . . , ln]
T is any solution to the system, then 

A)u2 ln+\ 

commutes with the generators uk of B(S) and w lies in the center. By the 
uniqueness of u, however, either w = u or w = I (in which case L is 
the trivial solution). This implies that the system AX = 0 has only one 
non-trivial solution over J^ so A must have rank n. 

In fact the first n rows have rank n over J*f Let A- be theyth row of A, 
j G N. Our assertion follows from the identities 

(5) M r ^ I ^ H + / - + . [0, . . . , 0], 

for y e N. The case j = 2 should suffice as an illustration. The first row 
entry of the left side of (5) is k0atl + l + k]afl 4- . . . + kna^ which 
coincides with the inner product of An + ] with the solution vector K of 
AX = 0; the second entry of the left side is k0an + k]an_] -f . . . + 
kna{Y which coincides with the inner product of An with K, also giving 0, 
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and so on, until the last entry, k{)ax + k{a0 -f . . . -f knan_x, which agrees 
with the inner product of row A2 with K. 

Replace the system AX = 0 with the equivalent system A'X = 0, where 
/4' consists of the first n + 1 rows of A. It follows from the symmetry of Af 

that if K = [k0, kx, . . . , kn] is a solution, so is 

K() == IA,;, fc/?_i, • . • , k0] . 

Then AT = K{), since v4' admits only one non-trivial solution over.^ Hence 
if (A{))j is the row vector obtained from A: by reversing the order of the 
entries then (A0)- has inner product 0 with K also. It now follows that 
B- K = 0,y e Z, where B is the row vector [<z-, tf/ + ], . . . , #•+„], 7 G Z. 
Hence 

/)[+, = C(DJ\ 

where D- = [tf;+i, • • , #.•+„], 7 ^ Z, and C is the n X n matrix 

To 1 0 . . . 0 "I 
0 0 1 . . . 0 

0 0 0 . . . 1 
k0 k j k2 . . . kn _ , 

C is invertible over.^ so Cm = / for some m and therefore DJ+m = /)-, all 
7 e Z, so that the signature sequence 2(S) is periodic. 

The following is a consequence of the uniqueness result in Lemma 2.2, 
and shows that the center of B(S) is an invariant subalgebra for the 
shift. 

COROELARY 2.4. Suppose S is not primary. Let u = T(Q) be the unique 
central element of minimal length with 1 e Q. The center of B(S) is 
generated by the shifts ap(u) of u, p e N U {0}. 

Proof With 

u = ^ ' . . . 4 i 
(with k{) = \ = kn) the equations UjU = uu^j e N,are by (2.3) equivalent 
to the vanishing of the inner products E.x • K over J^ where 

E} = \ara}_,,..., aj_ „]. 

Using (2.3), 

u^iu) = ap(u)u-

if and only if Ej_ { • K = 0, which holds since 2(S) is periodic. Hence 
the algebra generated by the shifts of u lies in the center. 
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Conversely, using the identities u-wu = ±w, for any word w, any 
element of the center must be a linear combination of words, each 
of which lies in the center. Suppose w = T(Q) is such a word, with 
Q = {/b z2, . . . , / , } . Since w is no shorter than w, the central element 

Wj = a'1" (u)w 

must have length shorter than w. Then w} could have length 0, in which 
case 

w = ±al]~\u), 

and we are done, or wx could have length no shorter than that of u. Repeat 
the process above to obtain a central word 

w2 = aj2(u)al] (u)w 

of length shorter than wx. This procedure ends when we finally obtain 

±1 = aji(u) . . . aj2(u)al]~\u)w. 

By (2.2), w is in the algebra generated by the shifts of u. 

3. The normalizer for general shifts. Let B(S) be the binary shift 
algebra corresponding to a primary subset S Q N. Let 77 be the cyclic 
*-representation of B(S) induced by its unique normalized trace (see 
[4, Theorem 3.9] ). Then TT(B(S) )" is the hyperfinite / / ] factor R, and 
from [4] the shift a on B(S) extends to a shift on R with 

[R:a(R)] - 2 and Q a\R) = {cl:c G C}. 

Conversely, one may ask whether any shift a on R of index 2 and 

n an(R) = {cl.c G C} 

arises as the completion of a binary shift algebra B(S). We show in 
Theorem 5.II that this is not always the case, even under the additional 
assumption that a is regular, i.e., that N(a) generates R (recall from [4] 
that N(a) = {u G R: u is unitary and uan(R)u* = an(R), all n G N} ). 

Another question arises regarding N(a) itself. An easy consequence of 
[4, Theorem 3.3] is that the square of any unitary in the normalizer of a on 
TT(B(S) )" is a scalar multiple of the identity. Is this true for any shift of 
index 2 on Rl Although we do not know the answer in general, we have a 
partial answer below. We thank R. T. Powers for suggesting some 
improvements to our original proof of the following result. 

THEOREM 3.1. Let a be a shift on R with [R:a(R) ] = 2 such that a2(R) 
has non-trivial relative commutant N. Then there exists a self-adjoint unitary 
u which generates N and lies in N(a). 
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Proof. We have 

[R:a2(R)] = [R:a(R)][a(R):a2(R)] = 4, 

[3, Proposition 2.1.8]. Since a (R)' n R is non-trivial the Jones local index 
theory [3, Lemma 2.2.2] establishes that a self-adjoint unitary u generates 
the relative commutant. To show u G 7V(a), we need only to verify that 

ua(R)u = a(R). 

Let 0 be the period 2 automorphism fixing a(R), ( [3, Corollary 3.4.3] or 
[2, Theorem 1] ). Since 

6(u)a2(x)0(u) = 0(ua2(x)u) = a2(x\ 

for x G R, 

0(u) G a2(/*)' n JR. 

Hence #(w) = ai + bu, for some a, 6 G C. But / = #(«)" implies 0 = 0, 
b = ± 1 . In fact, b = — 1. For suppose 6 = 1 , then 0 fixes the von Neu
mann algebra M generated by u and a(#) . But u is not in a(R)\ otherwise 
u = a(v) G a%R)', so that v lies in a(R)f Pi /?, which is trivial by 
[3, Lemma 2.2.2]. Hence M = R and 6 fixes /?, a contradiction, giving 
0(u) = — u. Moreover, observe that any x G R has the form a(x{)) + 
a(xx)u so that 6(x) = JC if and only if x G a(R). But for y G /?, 

#(t/a(jy)w) = ua(y)u, 

so wa(jy)w G a(/£), so that ua{y)u = a(y(y) ) for some period two 
automorphism y of R. Hence u G N(a). 

COROLLARY 3.2. Ifa(R) has non-trivial relative commutant N generated 
by the hermitian unitary u, then 

ua(y)u = a(0(y)), ally G R. 

Proof. From the proof of the theorem there is a period 2 automorphism 
y of R satisfying ua(y)u = a(y(y) ). But 

a\y) = ua\y)u = a(y(a(y) ) ), 

so y fixes a(R). Hence y = 0. 

THEOREM 3.3. Let a be a shift on R with [R.a(R) ] = 2. Suppose a2(R) 
has non-trivial relative commutant N. Then any v G N(a) has square equal to 
a scalar multiple of the identity. 

Proof. We proceed along the lines of the proof of [4, Theorem 3.3]. If 
v G N(a), 0(v) = zhv, for if y is the automorphism satisfying 

va(y)v* = a(y(y) ), y G R, 

0(v)a(y)0(v*) = a(y(y)). 
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Hence 

v0(v*) ^ a(Ry n R = {xr.x G Q , 

so v = X6(v). Since 0 has period 2, X = ±\. 
Let u be the hermit ian unitary generating N, (Theorem 3.1). By the 

proof of Theorem 3.1, 6(u) = — w. If 6(v) = — v, set Vj = uv\ otherwise, 
set Vj = v. Now 

v, G a(R) H N(a), 

s o a _ 1 ( v , ) lies in N(a) also. If 

0(a'\vl)) = -a~\vx\ 

set v2 = a(u)vx\ otherwise set v2 = v^ In either case, 

v2 G a2(R) n 7V(a), 

so that a~2(v2) G tf (a) . If 0(a~~\v2) ) = - a ~ 2 ( v 2 ) , set 

v3 = a2(w)v2; 

otherwise set v3 = v2. Then 

v3 G <x3(#) n AT(a). 

Cont inuing as above, we get for each n ^ 0 a unitary 

vw + 1 G <x" + 1(#) H N(a) 

and elements /c G {0, 1} such that 

v = uk°a(uk*)a\uk2) . . . an(uk»)vu + x. 

By Corollary 3.2, 

aj{u)aj+x(u) = -aj+\u)aj(u\ j G N U {0}. 

Using these identities, along with a\u) G a 7 + 2 ( i £ ) ' , one computes 

v2 = ±«V»)v,,+,«>*<>,,+ ,-
Hence v lies in a\R) for all n7 so that v is a scalar multiple of the 
identity. 

C O R O L L A R Y 3.4. Let a be as above. Then uv = ±vu for any u, 
v G N(a). 

Proof. By the theorem u and v are scalar multiples of hermit ian 
operators , so for the proof we may assume u = I = v . In this case, 

(uv)2 = XI = (vu)2 = ((uv)2)* = X/, 

so X = zb l , and uv = ±vu. 
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4. A characterization of binary shifts. Let a be a shift of index 2 on 
the hyperfinite IIX factor R, with trace tr. In this section we adopt the 
following standing assumptions: that a is regular, i.e., N(a) generates R, 
and that any u e N(a) has square a multiple of the identity. We shall 
often use the result, which follows from the proof of Corollary 3.4, that 
uv = ±vu for any w, v e N(a). The theorem below gives necessary and 
sufficient conditions for « to be a binary shift on R. First we introduce 
some useful notation. 

Definition 4.1. Let H be a subset of N(a). Then M(H) is the von 
Neumann sub-algebra of R generated by the elements of H and their 
shifts. 

Since we are assuming a to be regular, R = M(N(a) ). 

Definition 4.2. Let H Q N(a). Then H is the subgroup of N(a) 
generated by the elements of // , their shifts, and the (modulus 1) scalar 
multiples of the identity. 

LEMMA 4.3. Let u e N(a), H = {w}, and suppose H has finite (group) 
index in N(a). Then M( {u} ) is a subfactor of R, and [R:M( {u} ) ] is equal 
to the group index [N(a):H]. 

Proof Let M = M( {u} ). By [4, Theorem 3.3] the normalizer of a in M 
consists of (modulus 1) scalar multiples of words in u and its shifts, and 
therefore coincides with H. If M is not a factor, there is by Corollary 2.4 
an element v Œ H such that the center Z of H is generated by v and its 
shifts. In particular, [Z] has infinite order, where [Z] is the set of 
equivalence classes of elements of Z identified if they differ by a scalar 
multiple of /. 

Let 

A ^ 
be the decomposition of N(a) into cosets of / / , with ux = I. Let 
Z, be the subgroup of Z consisting of elements which commute 
with Wj, . . . , ut. Z, = Z, so [Zj] is infinite. Suppose [Z ] is infinite, for 
some j \ 1 ^ j ^ n — 1. Let 

Aj+\ = iw G
 ZJ:WUJ+}W* = -Uj+i). 

[Zj] is the disjoint union of [A + 1] and [Z + 1 ] , so if [^4,+j] is finite [Z/ + 1] is 
infinite. If [^+1] is infinite then so is the subset [ {ww'ivv, w' <= Aj+X) ] of 
[Z7 + 1], so in either case [Zy + j] has infinite order. In particular, [Zn] is 
infinite, so there exists a non-trivial unitary z commuting with all of N(a), 
and therefore with R, a contradiction. Hence M is a subfactor of R. 

To verify the index equation we observe that if w e N(a) is not a scalar 
multiple of /, then tr(w) = 0. For, if v e N(a), 
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vwv* = ±w9 

by the proof of Corollary 3.4. In fact, since R is a factor and a is regular, 
vwv* = — w, for some v e 7V(a), so 

tr(vv) = tr(vwv*) = tr( — w). 

Hence tr(vv) = 0 for any w in Hui9 / > 1. Let Vt = Mu{ in L2(R, tr). 
Since Jf is generated as a subspace by Huh the ^ are equivalent, 
orthogonal, and span L2(R, tr). The remainder of the argument now 
follows exactly as in the proof of [3, Example 2.3.2]. 

The following notation and observations will be useful in proving the 
theorem below. As before, let W be the field {0, 1} and 3F\t\ the ring of 
polynomials over J^ 

Definition 4.4. Let ( , ):N(a) X <F\t\ —» N(a) be the mapping given 
by 

(w,p) = wk«a{wk')...an(wk»), 

where p{t) is the polynomial 

£0 + *:,* + . . . + knt
u. 

The following properties are easily verified: 

(6.1) (w,/?><w, q) = ±(w,p + q) 

(6.2) ( (w,/7>, q) = ±(w,pq) 

(6.3) (w, p)(w\ p) = ±(ww\ p). 

The idea for generating the sequence (v^ } in the following proof is due 
to R. T. Powers. 

THEOREM 4.5. Let a be a shift on R of index 2. Suppose a is regular and 
that any u e N(a) has square a scalar multiple of I. Then a is a binary shift 
if and only if for all u e ' N(a), with u not a scalar multiple of I, 
[R:M({u})] < oo. 

Proof If a is a binary shift there i s a v e N(a) such that R = M( {v} ). 
If w G N(a), then by [4, Theorem 3.3] u has the form 

Xvk°a(vk]) . . . <xn(vk") 

for some scalar X and k- G {0, 1}. If kn = 1, one verifies that 

[N(a):{ur] = [{v}~ , {M}~] = 2", 

so by the preceding lemma [R:M( {u} ) ] = 2" < oo. 
Now suppose [R:M( {u} ) ] < oo for all u e N(a) not a scalar multiple 

of /. Fix u G N(a) with 6{u) = — u (we may do so by employing an 
argument similar to the first paragraph of the proof of Theorem 3.3). If 
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[R:M( { « } ) ] = 1, then 

[N(a):{ur] = 1, 

so {u}~ = N(a), M( {u} ) = R, and we are done. Otherwise there exists a 
v0 in N(a) but not in {w}~, so 

[ { K , V 0 } ~ : { W } ~ ] > 1. 

We may assume 0(vo) = — v0. 
We show there exists a w G TV (a) such that 

M ( { w } ) D M({u9 v0}). 

First, since #(wv0) = wv0 there is an element Vj G JV(a) such that 

0(vx) = — V] and aJl(vx) = wv0, 

for some7j e N. Since v0 = uah{vx)9 

{v„ w}~ 2 {v0, w}~. 

Similarly there are v2 G N(a) with 0(v2) = ~v 2 andy2
 Œ N such that 

a 7 2 (v 2 ) = «Vj. 

Continuing we obtain an ascending sequence of groups Hk = {vk, u}~~. 
Since 

[N(a):Hk] ^ [# ( « ) : { K } ~ ] = [rt:M( {«} ) ] < oo, 

Hk = / 4 + i for some /:. Hence vA + 1 G //A. 
For simplicity write v = vk, j = j k + \, so vA + 1 = a_/(wv), and write 

/ / = {w, v } ~ . Then a~~\uv) e / / , so there are X0 e C, and/?0(O, #o(0 m 

J^(/) so that 

a~J(uv) = X0 (u9p0)(v9 q0). 

Taking a1 of both sides of this equation and rewriting, there are X e C 
and/?(>), q(t) in F[t] so that 

(7) (u,p) = X(v, q), or 

(8) <W,^> = <v,<7> 

where = indicates equality up to a (modulus 1) scalar multiple of the 
identity. 

We shall show by induction on (deg(/>) + deg(g) ) that there is a w in 
N(a) such that (w, q) = u, (w, /?) = v. If deg(/?) -f deg(g) = 0, set 
w = u. Suppose deg(/?) -f deg(g) > 0. Let 

pit) = a0 + axt + . . . tfm/m, $(f) = b0 + Zy + • • • + />„/". 

Since 0(w) = —u and 0(v) = — v, then a0 = b0 = 1, so that (w, /?) = 
(v, g) implies 
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uv = a{upa(vf' . . . am(uf»>am(v)h»'. 

Let k ^ 1 be the first index for which ak ¥= 0 or bk ¥= 0; then clearly 
uv <E ak(R)y so a_A(wv) e 7V(a). Using (6) the following equations are 
easily shown to be equivalent: 

(9.1) <n,/KO> = <v,?(0> 

(9.2) <n, /?(/) ><W, ^ ( 0 > = (v, q(t) )(u, q(t) > 

(9.3) (u,p(t) + q(t)) = (uv,q(t)) 

(9.4) <*~A( (II, p ( 0 + q(t) > ) = a~A( <nv, </(0 > ) 

(9.5) <M, (/>(/) + ?(f) )//A> = (a~ V ) , </(/) >. 

By the induction step there i s a w e jY(a) such that 

(w, q(t) ) = u and (w, (/?(/) + q(t))/tk) = a~A(wv). 

Shifting the latter equation by a , we get 

(w,/?(/) + q(t) ) = wv, or 

(w, /?(/) )(w, #(/) > = uv, or 

(since (w, q) = u), 

(w,p) = v. 

This completes the induction. 
Hence we have 

M( {w} ) 3 M( {v, w} ) 3 M( {v0, w} ), 

and 

[*:M( {*/})] = [tf(a):{W}~] =§ [JV(a):{«, v0}~] 

< [JV(a):{M}~] = [tf:M( { « } ) ] . 

Continuing this procedure, if necessary, we shall obtain an element W in 
N(a) with 

[N(a):{wT] = 1, 

so {w'}~ = 7V(a), and since a is regular, i? = M( {w'} ). 

5. A non-binary shift of R. In this section we give an example of a shift a 
of index 2 on the hyperfinite IIX factor R which is not binary. The basic 
construction, which we present below, is to view R as the completion of an 
inductive limit of binary shift algebras. Our example will be regular and 
such that the square of any unitary in the normalizer is a scalar multiple of 
the identity. Hence by the preceding theorem there is an element u in N(a) 
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such that [R:M( {u})] = oo. 
Let {u-'.i.j e N} be a set of elements satisfying 

(10.1) u* = uir 

(10.2) (u,/ = /, 

(10.3) u;juki = ±ukluir 

Each pair of elements My, u either commutes or anti-commutes. We shall 
prescribe which below. 

Let a be the transformation on the elements «•• defined by 

«("(/) = "/,./ +1-

Then a extends to a homomorphism on the group of words in the uir also 
denoted by a. 

We impose the condition 

uk\ = "* + u«("* + i,i) for all/c G N. 

Shifting by aJ~] we obtain, for all k,j e N, 

( u ) ukj = Uk + \ja(uk + \j)' 

In other words, the relations (11) are compatible with a. Therefore, if 
Bk, k e N, is the algebra generated by all words in the elements ul} 

with 1 ^ /' ^ k and j e N, Bk is invariant under the shift and 
Bl Q B2 Q 

Now we define the commutation rules for the ul}. Begin by fixing 
S = Sx Q N such that the signature sequence 

2(S) = ( . . . , a , ( - l ) , os(0), o s ( l ) , . . . ) 

is not periodic. Impose the relations 

(12) W|,Wl/ = ( - l ) ^ A " % . « , , . 

Then by Theorem 2.3, S is primary, so by [4, Theorem 3.9] there is a 
unique tracial state on Bx, trj. In fact, trj is faithful. This follows from the 
proof of [4, Theorem 3.9], since it is shown there that trj(w) = 0 for a 
word w in the w, -, so that if 

n 

y = 2 c^ 
i = \ 

with the Cj scalars and the H> distinct words in the ux -, 

n 

tr,(y*y) = 2 k,|2. 
/ = i 

We now associate a subset T = S2 of N and a signature sequence 
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2(7) with the elements w2-, J
 G N. T may not be chosen arbitrarily, of 

course, because of (11). In fact, if 

2(S) = ( . . . , Û _ , , a0, a,, . . . ) 

and 

2(7) = ( . . . , * _ „ i0 , ft,,... ), 

then from 

uy = u2ja(u2j) and wnMl7- = (-\)aJ~iu]Juu 

we must have 

u2]a(u2])u2ja(u2j) = (-l)hJ ^hr-^fy^%2ja(u2/)u2]a(u2]) 

= ( - 1 )^ 2 + hJu2ja(u2j)u2,a(w2, ) 

= ( - 1 )^ 'u2ja(u2j)u2,a(w2, ), 

so Z>-_2 + 6; = cij-\J e N. (Here we are viewing the a- and fty as elements 
of the field {0, 1} = &) Since b_j = fty and a;- = fl_;- for ally e N we 
therefore obtain ft _2 + ft = û/-i» a ^ 7 G Z, or 

(13) ft7._, + bJ + ] = ar j e Z. 

We must have ft0 = 0, since ft0 = aT(0). The entry ft1 may be chosen 
arbitrarily, and for n > 1, bn = an_x + bn_2. We s n o w t n a t 2 (7) is not 
periodic. For if 2(7") is periodic, so is the sequence 

(...,//_„ %,//„...), 
where fy' = b:_2- The sum of the sequences, 

( . . . , * _ , + f_„fe0 + b'^bi + b\,...) 

is therefore also periodic. But this is the sequence 

2(5) = ( . . . , û_,, a0, a,, . . . ), 

which is not periodic, a contradiction. 
Since the signature sequence 2(S2) = 2(7") associated with the u2-s is 

not periodic, there is a unique tracial state tr2 on B2. We may argue, as 
with tr,, that tr2 is faithful. 

Proceeding as above we may obtain inductively from Sk Q N a subset 
£A + i of N and corresponding sequence 2(SA + 1) satisfying 

(14) aSkn(j + 1) + aSk^(j - 1) = oSk(j). 

Each of these sequences is not periodic, so from Theorem 2.3 and [4, 
Theorem 3.9] there is a unique (faithful) tracial state trA on Bk. By 
uniqueness 

trA|/? = try for j ^ k. 
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Lets# denote the unique C*-algebra completion of UA^,7?A. We make a 
few observations a b o u t i First, it is clear that srf is an /IF-algebra, since 
for each /c, Bk is the binary shift algebra B(Sk), and Bx Q B2 Q . . . . 
Secondly, s/ is equipped with a unique tracial state tr, since there is a 
unique tracial state on 

B = U B... 
A ^ l A 

Finally, tr is faithful, since for each k e N, trA is faithful (see [1, Lemma 
3.1]). 

We summarize our results below. 

THEOREM 5.1. Let {ul}'.i,j ^ N} be a set of elements satisfying (10) and 
(11). TTĵ ft //i^re exists a sequence of primary sets Sk, k e N, swc/z //z#/ /7ze 
relations 

»kj«H = (-V°S'U~J)Wkj 

are consistent with (11). 77ze AF-algebrasrf generated by the utj has a unique 
(faithful) trace tr. 

Remark. Let w e 5 be a word in the w-, w T̂  ± 7 . Then tr(vv) = 0. In 
fact, there is a word u in the «•• such that uwu* = —w. For, using (11) if 
necessary, there is a k so that w may be brought into the form 

\ukh . . . ukjn. 

Since the set Sk is primary the assertions follow by applying [4, Theorem 
3.9]to7?A = B(Sk). 

Since tr is faithful, in what follows we shall identify srf with its image 
7r(s/) in the GNS representation TT associated with tr. Then stf" is the 
hyperfinite 77j factor R. By continuity, a extends to a *-endomorphism of 
R. By Proposition 5.10 below, a is a shift on R. 

THEOREM 5.2. [R:a(R)] = 2. 

Proof By repeated application of (11) we have for k > 1, 

uk\ = "A--l,l«("A-l) 

= " A - 2 J a ( " A - l , l ) « ( " A l ) 

= " l l « ( « 2 l ) - • • a(uk0-

Hence R is generated by ux, and a(R). Moreover by the preceding remark, 
if w e a(R) Pi B is a word then tr(ww,,) = 0. Hence 7/"(/?, tr) decomposes 
into the two orthogonal equivalent subspaces a(R), a(R)uu, so [R:a(R) ] 
= 2 (cf. [3, Example 2.3.2.] ). 

COROI XARY 5.3. Let 6 be the unique period 2 automorphism fixing OL(R). 
Then 0(uk]) = ~ukX,for all k e N. 
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Proof. From the preceding proof every x e R has a unique 
decomposition of the form x = a(x') + a(x")uu, so 

0(x) = a(x') - a(x")uu. 

Hence 6(uu) = — uu. The general result follows from the equation 

uk\ = ±u\\a(u2\) • • • a("*i)> f o r k > \. 

Let w e 5 be a word. Then wuw* = ±w for any other word u in 5. 
Since a\R) is generated by elements of the form ukj+h clearly w e 7V(a). 
(Hence a is a regular shift.) Conversely, we shall show that any element 
w <E Af(tf) is a word in B. This will follow from the series of lemmas below. 
The first lemma is proved exactly as in the proof of [4, Lemma 3.3], so we 
omit the proof. 

LEMMA 5.4. 0(w) = ±w for any w Œ N(a). Let u = unX, for some n. Then 
for any m e N, w may be written uniquely in the form 

uk°a(uk>)...or(uk~)er+\wm+i), 

for some wm + j in R. 

Definition 5.5. Let || ||2 denote the norm on R given by 

IW|2 = tr(x*x)1/2, x e R. 

Definition 5.6. Let $:R —> a(/£) denote the conditional expectation 
(/ + 6)12. 

LEMMA 5.7. L^/ w e N(a), and let v' e Z?A? /or wme «. Suppose w /NXS ?/ie 

w = i/o«(M*') . . . *m(uk*»)am + \wm + x\ 

where u = wwl. 
77ze« //zere /5flv G Bn of the form 

v = uk«a{uk') . . . am(uk™)am + \vm+x\ 

such that ||w — v||2 = ||w — v'||2. 

Proof. If 6(w) = w, replace v' with v0 = $(v'). Then 

I k - v0||2 = HO(w - v')ll2 ^ I k - v| |2 . 

If 0(w) = — w, replace v' with v0 = MO(WV'), in which case 

Ik - v0||2 = \\u$(uw) - u®(uv') ||2 = ||0(ww - uV) ||2 

^ Ik - v||2. 

In either case, if w = wA()a(w,), then v0 = ukQa{vx), for some V| in Bn. We 
have 
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Ik, - v,||2 = ||w - v0||2 ë \\w - v'||2, and 

w, = u ]a(w2). 

Proceeding as above we may replace v, with an element of the form 
uk]a(v2) with v2 in Bn such that 

||w, - uk^a(v2)\\2 ^ \\w} ~ v,||2, 

whence 

\\w - uk»a(uk>)a2(v2)\\2 ^ \\w ~ v'||2. 

Continuing this process m steps yields the result. 

LEMMA 5.8. Let w G N(a). Let n e N be sufficiently large so that for 
some V G Bn, \\w — v'||2 < 1. Let u = unV and let 

N = sup( {q G N: w has the form uk° . . . am(ukm)am+l(wm^l), 

m ^ q and km = 1} ). 

Then N < oo. 

Proof. By hypothesis there is a /? e N such that for some y' in the 
algebra generated by w, a(w), . . . , OLP(U), 

Ik - / l l2 < i. 

Suppose N = oo; then there is an m > p such that w has the form above 
with km = 1. From the proof of the preceding lemma there is a y in Bn of 
the form 

ÛW*° . . . ap(ukp) 

with a e C such that 

ik - /ii2 ^ Ik - yn2 < i. 
Let 

W = ap + \ukp") . . . am{uk-)am + \wm + ]). 

Then \\w — y\\2 < 1 implies ||w' — al\\2 < 1. But 

||M/ - a/||2 = i + \a\
2 - 2 Re(tr(mv') ), 

and tr(vv') = 0; for if y is the first index greater than/? for which k • = 1, 

tr(v/) = tr(a~ /(H/)) = tr(0(a~7'(w') ) ) 

= — tr(a~~J(w')) = — tr(w'). 

Hence 

Ik' - «||1 = 1 + \a\2 > 1, 
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a contradiction. Thus N is finite. 

For the sake of completeness we include the following result. This result 
implies that a is regular and that every element in N(a) has square a scalar 
multiple of the identity. 

THEOREM 5.9. Ifw G N(a), then there is a positive integer n such that w is 
a scalar multiple of a word in Bn. 

Proof. Let « E N b e sufficiently large so that 

||w — y\\2 < 1, for some ^ G Bn. 

By the previous lemma there is a maximum m G N such that w has the 
form 

uk«...am{uk»>)am + \wm+,) 

with km = 1, where u = un]. Since u and its shifts lie in N(a), am+ (wm + ]) 
lies in N(a), hence so does ww+1 . Hence 

by Lemma 5.4. If #(wm+1) = — wm+1, then 

wm + 2 = uwm+x G «OR), 

so that wm + 1 = wwm+2. But this contradicts the maximality of ra, so 
0(wm + 1) = wm+1, or equivalently, wm+1 G a(#) . Similarly, a~~x(wm + x) lies 
in TV (a) and is fixed by 0, by the maximality of ra, so 

<*~Vm + 1) e a(/t), or wm + 1 G a2(tf). 

Continuing, we have 

But then ww + 1 is a scalar multiple of /, by the following proposition. 

PROPOSITION 5.10. 

Q a\R) = {c/:c G C}. 

Proof Suppose w is a unitary element of nn^la"(R). If 1 > € > 0, there 
are k, p G N such that for some v in the unit ball of the finite-dimensional 
algebra A generated by wA1, a(ukX), . . . , ap~\uk]), 

\\w ~ V\\2 < €. 

Similarly, since w G ap(R) there exist I ^ k, q ^ p, such that for some v' 
in the unit ball of the finite-dimensional algebra A' generated by 
a"(M/1 ) , . . . , «"(«/,), 
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\\W ~ v ' | |2 < € 

also. Now let u be any word in A, u ¥= ± 7 , and let u' ^ ± 7 be a word in 
A'\ then 

tr(uu') = 0. 

For, if u has the form 

a'(uk])a
J + ](uk^)...aP~](uk^-% 

then repeated application of (11) transforms the expression above into one 
involving shifts of un, 

u = aJ(un)a
J + \un

h>^).... 

Then uu' is a non-trivial word in Bl (sincey ^ p — 1) so tr(ww') = 0 by the 
Remark following Theorem 5.1. 

Write 

m 

v = al + J>j ay;, 
i = \ 

where a, ax e C and the vt ¥= ± 7 are distinct words in A (i.e., v,v ¥= ± 7 , 
for / ^ y), and 

V = a'l + 2 0% 
/ = i 

where v,' are distinct words in ^4'. Then 

||/ - v*v'||2 = \\w*w - v*v'||2 < 2c. 

Therefore, |1 — tr(v*v') | < 2c, so |1 — ôia'| < 2c. Since 

1 â ||v||2 S ||v||
2 = \a\

2 + 2 |a,|2, 
/ = ! 

and similarly, 

m' 

i ^ w\2 + 2 |a;i2, 
/=! 

we must have 1 — \a\ < 2c. Therefore 

m 

||v - al\\\ = 2 \a,\2 < 4*, and 
/ = i 

\\w - a/||2 g ||w - v||2 + ||v - al\\2 < 2e + 2e l /2. 
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Hence for 1 > e > 0, there is ae e C such that 

1 > \a€\ > 1 - 2c and \\w - aj\\2 < 2e + 2e1/2. 

Let a0 be a limit point of the av as e approaches 0. Then 

\\w - a0I\\2 = 0. 

By the faithfulness of tr, w = a0I. 

THEOREM 5.11. Let a be the shift of index 2 on the hyperfinite II\ factor R 
constructed above. Then a is not a binary shift. 

Proof. Using the notation of the previous section, B'f[ = M( {un]} ), for 
n e N. Since 

Un\ = "„+l , !«("„+l , l ) 

from (11), the first paragraph of the proof of Theorem 4.5 shows that 

\KW-K\ = M {«,,+ ,..} ):M( {«„,,})] = 2. 

Therefore, 

[R:M({uu})] ^ [ M ( K + 1 , 1}):M( {a , ,} ) ] = 2\ 

from the multiplicativity of the index, [3, Proposition 2.1.8]. Hence 

[R:M({uu})] = oo. 

Applying Theorem 4.5, a cannot be a binary shift. 

Acknowledgements. We are grateful to R. T. Powers for acquainting us 
with this problem, and for many helpful conversations and suggestions. 
We also thank the referee for several helpful comments. 

R E F E R E N C E S 

1. O. Bratteli, Inductive limits of finite-dimensional C*-algebras, Trans. Amer. Math. Soc. 171 

(1972), 195-234. 

2. M. Go ldman , On subfactors of factors of type / / , , Mich. Math. Jour. 6 (1959), 167-172. 

3. V. F. R. Jones, Index for subf actors, Invent. Math. 72 (1983), 1-25. 

4. R. T. Powers, An index theory for semigroups of *-endomorphisms of B(II) and type / / , 

factors, Can. J. Math. , to appear. 

United States Naval Academy, 
Annapolis, Maryland 

https://doi.org/10.4153/CJM-1987-021-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-021-2

