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L* SPACES FROM MATRIX MEASURES: A
CORRECTION AND THEIR INTERPOLATION

BY
PATRICK J. BROWNE* AND CLAUDE COSTA

ABSTRACT. We discuss the construction of the spaces LP(u;),
1=p=w, where {y;} is an n X n positive matrix measure, correct a
mistake in the literature concerning those spaces and develop an
interpolation theory for them.

This paper has two aims. Firstly we shall correct an error which appears in
[2] wherein the theory of the matrix measure function spaces LP(w;), p=1, is
presented and secondly we shall develop an interpolation theory for these
spaces.

1. The Spaces L”(u;). We commence with a brief outline of the construc-
tion of the spaces LP(u;). Most of the details can be found in [2] and [4].

DerFINmTION 1. Let {u;}, 1=<i, j=n, be a family of complex valued set
functions defined on the bounded Borel subsets of the real line. The family
{u;;} will be called an n X n positive matrix measure if

(i) the matrix {uw;(e)} is Hermitian and positive semidefinite for each
bounded Borel set e, and
(ii) = < ..
“‘ii Ul em: Z “'ij(em)’ ISl,]Sn,
m= m=1
for each sequence {e,} of pairwise disjoint Borel sets with bounded
union.

DEFINITION 2. Let {w;} be an n X n positive matrix measure defined on the
bounded Borel sets of the real line and let v be a non-negative regular o-finite
Borel measure with respect to which each w;; is absolutely continuous. Let the
matrix of densities M ={m;} be defined by the equations

I-Lij(s) = j mij(t) dv(1), l=ij=n,
s
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where S is any bounded Borel set. For 1=p <o, the space L§(u;;) is defined to
be the space of all n-tuples of Borel functions F(t) = (F(t), ..., F,(t)) such

that Up

Fl-| | trromoror ao ] <

Here, and throughout, we write

n

F*OMOF()= Y, F(m,()F;{®).
iL,j=1
If D denotes the subspace of L§(w;) consisting of those F with ||F||=0 we
define LP(w;) to be the quotient space L”(w;;)/D.
The space L*(w;) is defined as usual using essential suprema in place of
integrals.
It is easy to check that the LP(w;), p=1 are normed linear spaces.

DEerFintTION 3. If S<R is a Borel set, k=1 is an integer and v is a
non-negative regular o-finite Borel measure, the space L”(C*, S, v) is the
space of (equivalence classes of) complex k-vector valued functions G on S

normed by
1/p

IGlI= U [Z IGi(t)lz]m ], 1=p<e,

k 1/2
IG||= v-ess sup [Z IGi(t)lz] , p =,

i=1

DEerINITION 4. Given n normed linear spaces Xy, ..., X, we define I°(X)),
1=p=ow to be the space P! ; X; with

n 1/p
IEy - B= (S 1EF) T, 1=p<e
i=1

= sup [|F], p=co.

THEOREM 1. Let {u;} be an n X n positive matrix measure on R and let v be a
non-negative regular o-finite Borel measure with respect to which each w; is
absolutely continuous. Then there exists a collection of pairwise disjoint v-
measureable sets Sy, ..., S,

LP(wy)=I"(L?(C', S, v)). 1=p=co.
Here = denotes isometric isomorphism.

The details of the proof of this result can be found in [2]; it is sufficient for us
to note that the isometric isomorphism is uniquely determined by the matrix
measure {y;} and has the same analytic form for each value of p.
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We close this introduction by giving an example to show that Theorem 1 of
[2] which claims that the space LP(p;;) is independent of the measure » used to
define it, is correct only for the case p=2. A proof for the case p=2 can be
found in [4].

Let u be a positive (one by one matrix) measure defined on the bounded
Borel sets of the real line and let v be a non-negative regular o-finite Borel
measure with respect to which w is absolutely continuous. Let the density M be
defined by the equation

u(S)=L M(5) dv(t)

where S is any bounded Borel set. Then using our definition of norm of a
function we obtain

IFle= [~ MIFORP? dvo).

Let aeR" and define ¥ = av. Then ¥ is a non-negative regular o-finite Borel
measure with respect to which w is absolutely continuous. # has a density M
which satisfies M (t) = aM(t). Then we now obtain

IFle= [~ (o [F@PP™ dito

- f (M) [FOPP22 du(e)

#lIFll,

unless p =2. Hence our norm is not v-independent. Of course in this simple
example the spaces LP(w;) constructed with » and 7 are easily seen to be
isomorphic.

The fault with the proof of Theorem 1 of [2] lies in the fact that the function
G defined towards the end of the proof is v-dependent when p# 2.

2. Interpolation theory, some preparatory theorems. Our standard refer-
ence for results from the theory of interpolation spaces will be [1] and we shall
follow precisely the notation and terminology used there.

We present a brief survey of the material needed.

DEerFINITION 5. Two Banach spaces Ay, A; are said to form a compatible
couple if there is a Hausdorff topological vector space & so that Ay, A, are
subspaces of &. In A,N A, and A,+ A; we use the norms

“aHAnr‘lA. = maX(HaHAg’ ”aHAl)a

Ha“AoaﬁA‘1 = a=i£)§.al (llaoqu"' ”a1IIA1)~
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A Banach space A will be called an intermediate space with respect to
(Ao, Ay) if
AgNA;cAcAy+A,

with continuous inclusions.

DEerINITION 6. An intermediate space A will be called an interpolation space
with respect to (A, A,) if for any linear map T with T: Ag+A; —> Ayt A,
and T:A; — A;(i=0, 1) continuously with respect to the appropriate norm in
each case, we have T: A — A continuously.

There exist many ways of constructing interpolation spaces; the different
interpolation methods are often referred to as interpolation functors. If A is an
interpolation space with respect to (A, A;) obtained by some method which
we call F, we write, using functor notation, A = F(A,, A;).

The next two definitions present the so-called “real interpolation method”
and “‘complex interpolation method”.

DEerINITION 7. For ae Ay+ A, and t >0 we define
k(t a)= a:i({lf+a (laolla, + tllalllA,).

If0<6<1, 1=q<worif 0=0=1, q=oo, the space (Ay, A1)eq is defined to
consist of all ae Ay+ A, for which

feloa= | =%kt6 ) <o

For q =, we use an essential supremum in place of the integral. It can be
shown that the space (A, A))e, is an interpolation space with respect to
(Ao, Ay). The interpolation functor we just described is called the ‘“real
interpolation method™.

DEerINITION 8. Let F(A,, A;) be the Banach space of all functions f with
values in Ay+ A; which have the following properties:

(i) f is bounded and continuous on the strip S={z|0=Rez=1} and
analytic on the interior of S.

(ii) f is such that the functions t — f(it), t — f(1+it) are continuous from R
to Ao, A, respectively and tend to zero as |t| — .

A norm on F(A,, A,) is provided by:
Ifll = max(sup ||f(t)]|.a, sup [|f (1 + it)[|.1)

The space which consists of all ae Ag+A; for which a=f(6) for some
feF(Ay, A;) and whose norm is given by

lalle; = inf{llflls=: £(8) = a, f e F(Ao, A}
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can be shown to be an interpolation space with respect (A, A;). This interpo-
lation functor is called the “complex interpolation method”.

Again, full details of these constructions can be found in [1]. We also have,
from this source,

DEerINITION 9. Two compatible couples (Ao, A;), (Ao, A,) are said to be
isometrically isomorphic if there is a bijection &: (Ao, A;) = (Ay+ A,) such that
the restriction of £ to A, maps A, isometrically onto A,, while the restriction
of £ to A; maps A, isometrically onto A,.

THEOREM 2. Let (Ao, A,), (Ao, A,) be two isometrically isomorphic compati-
ble couples. Then (Ao, Ai)gg is isometrically isomorphic to (AO,AI)‘,,q and
(Aq, A1eg is isometrically isomorphic to (Ag, Ayer-

Proof. Note that for ae A+ A; we have
k(t9 a, A0+Al) = k(t’ a, AO+A])
which yields

lalla e = 1€all&,. Z 0.0

so proving the first claim. Further if fe %#(A,, A;) then &fe F(A,, A,) and
Iflgcacan = IEfl F(Ao, A;). In fact & generates an isometric isomorphism
between F(A,, A,) and F(A,, A,). The second result now follows easily.

We now give, through the next lemma, a recharacterization of the space
L" (k).

In the notation of Theorem 1, let S=J_; S; and let (7, ) be the measure
space obtained by taking for J the disjoint union of n copies of S each
carrying a copy of its measure v.

We note that the spaces IP(L°(C}, S;, v)) described in Section 1 are closed
subspaces of the spaces [P(LP(C", S,, v)); in fact these subspaces are uniformly
complemented for we can obtain a projection on I°?(L?(C", S, v)) whose range
is I°(L?(C}, S;, v)).

To obtain this projection for a given F=(F,,...,, F,) in IP(L?(C", S, v)),
map each F; in L?(C", S, v) to PF; in L°(C', S,, v) where P is the orthogonal
projection of C" onto C\.

Lemma 1. If C" is given the p-norm

ot = (£ o) " a=(an e,

then the spaces IP(LP(C", S, v)) are isometrically isomorphic to the spaces
LP(C,J,v).

Proof. J can be written as I =U{‘:1 S', the S’ being disjoint copies of
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S,1=<j=n. Each S’ can in turn be written S’ =J_, (§');, the (S’); being the
corresponding disjoint copies of S;, 1=i,j=<n.
Given F in I°P(L?(C", S, v)) then F=(F,,...,F,) where F,=(Fj,...,FE,)
with F;; :(S"); »C. We now define
G(t)=F;(t) when t=te(S").

It is easy to check that the correspondence between F and G is an isometric
isomorphism.

We should also note that this construction has the same form for all values
of p.

We close this section with a result on interpolation of complemented
subspaces.

TueoreMm 3. [5, Theorem 1, p. 118] Let (A, A,) be a compatible couple. Let
B be a complemented subspace of A,+ A, whose projection P belongs to
L((Ay, A)), (Ag, A})). Let F be an arbitrary interpolation functor. Then (AgN
B, A, NB) is also a compatible couple and

F(AOnB,AlnB):F(Ao, Al)nB.

3. Interpolation of the spaces LP(u;). We now apply our preparatory
theorems to the interpolation of the spaces LP(w;). We present here a
representative result. A collection of further theorems may be found in [3].

THEOREM 4. Let 1=p,, p;<*,0<6<1 and
1/p=(1-6)/po+6/p,
Then
(LPo(pi), LP(ig))op =L7 (i) (equivalent norms),
and
(LP(py;), L (ij))por=L" (s;)s (equivalent norms).

Proof. It is clear that (LP(u;), L™(w,;)) is a compatible couple. From our
previous sections we have

Lpu(l“'ij) = lpo(L pO(Ci’ Si’ V)) = lpo(L pu(q:"’ Sis V))
=L"C, J,7) (equivalent norms)

wish similar results holding with p, in place of p,. We further know from [1,
Chapter 5, Section 5.1 and Section 5.2] that

(LP(C, T, #), LP(C, F, ¥))e,,=L"(C, S, ») (equivalent norms),
(L?(C,T,v), L*(C, T, "))e1=L"(C, S, 1), (equivalent norms).

The result is now immediate using Theorem 3 and Lemma 1.
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In our original version of this paper, Theorem 4 was proved only for the real
method. We are grateful to a referee for suggesting the method used here to
cover the complex method as well.
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