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Lp SPACES FROM MATRIX MEASURES: A 
CORRECTION AND THEIR INTERPOLATION 

BY 

P A T R I C K J. B R O W N E * A N D C L A U D E C O S T A 

ABSTRACT. We discuss the construction of the spaces L**^), 
l < p < o o , where {JUL0} is an n xn positive matrix measure, correct a 
mistake in the literature concerning those spaces and develop an 
interpolation theory for them. 

This paper has two aims. Firstly we shall correct an error which appears in 
[2] wherein the theory of the matrix measure function spaces Lp(jLtii), p > 1, is 
presented and secondly we shall develop an interpolation theory for these 
spaces. 

1. The Spaces Lp(jLLiJ). We commence with a brief outline of the construc
tion of the spaces Lp(jULiJ). Most of the details can be found in [2] and [4]. 

DEFINITION 1. Let {JU^}, l < j , j^n, be a family of complex valued set 

functions defined on the bounded Borel subsets of the real line. The family 
{/utjj} will be called an n x n positive matrix measure if 

(i) the matrix {^(e)} is Hermitian and positive semidefinite for each 
bounded Borel set e, and 

toi ( U )em= X jLLiJ-(em), 1 < i, ; < n, 
Vn = 1 / m - 1 

for each sequence {em} of pairwise disjoint Borel sets with bounded 
union. 

DEFINITION 2. Let {/uiy} be an n x n positive matrix measure defined on the 
bounded Borel sets of the real line and let v be a non-negative regular o--finite 
Borel measure with respect to which each /LL0 is absolutely continuous. Let the 
matrix of densities M = {mtj} be defined by the equations 

toi(S)= I m^dvit), 1 < /, j < n, 
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where S is any bounded Borel set. For 1 < p <°°, the space Lgdutj,-) is defined to 
be the space of all n-tuples of Borel functions F(i) = (Fi(t)9. . . , Fn(f)) such 
that 

||F||=[J [F*(0M(t)F(0]p/2^(0j 
l i /p 

<oo . 

Here, and throughout, we write 

F*(t)M(t)F(t) = Z ^(Om.CO^Ô). 
u = i 

If D denotes the subspace of LgC^-) consisting of those F with ||F|| = 0 we 
define Lp(jULiJ) to be the quotient space Lp(jULiJ-)/D. 

The space L 0 0 ^-) is defined as usual using essential suprema in place of 
integrals. 

It is easy to check that the Lp(jULiJ), p > l are normed linear spaces. 

DEFINITION 3. If SçlR is a Borel set, fc>l is an integer and v is a 
non-negative regular a-finite Borel measure, the space Lp(Ck,S,v) is the 
space of (equivalence classes of) complex k -vector valued functions G on S 
normed by 

l p/2 "I 1/p 

U r k -ip/2 -il/p 

,[IlG,(0|2J dv(t)\ , 
r k -11/2 

||G|| = v-esssup I l G i W l 2 , 

l < p < o o 5 

DEFINITION 4. Given n normed linear spaces Xl9... ,Xn , we define lp(Xt), 
l < p < o o to be the space 0^=1 Xj with 

(
n \ 1/p 

IllF,!!-) , i < P < -
= sup 

l < i < n 

THEOREM 1. Let {fx^} be an nxn positive matrix measure on R and let v be a 
non-negative regular a-finite Borel measure with respect to which each ^ is 
absolutely continuous. Then there exists a collection of pairwise disjoint v-
measureable sets S 1 ? . . . , Sn 

Lp(1uL i i)^ip(Lp(C i,S i,i,)). l < p < œ . 

Here = denotes isometric isomorphism. 

The details of the proof of this result can be found in [2]; it is sufficient for us 
to note that the isometric isomorphism is uniquely determined by the matrix 
measure {JUL£J} and has the same analytic form for each value of p. 
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We close this introduction by giving an example to show that Theorem 1 of 
[2] which claims that the space Lp(ju,iy) is independent of the measure v used to 
define it, is correct only for the case p = 2. A proof for the case p = 2 can be 
found in [4]. 

Let fx be a positive (one by one matrix) measure defined on the bounded 
Borel sets of the real line and let v be a non-negative regular cr-finite Borel 
measure with respect to which JLL is absolutely continuous. Let the density M be 
defined by the equation 

n(S)=\ M{f)dv(i) 

where S is any bounded Borel set. Then using our definition of norm of a 
function we obtain 

| | F | £ = n (M(0|F(0|2)p/2<Mt). 
J—oo 

Let a G U+ and define v = av. Then v is a non-negative regular cr-finite Borel 
measure with respect to which JLL is absolutely continuous, v has a density M 
which satisfies M(t) = aM(t). Then we now obtain 

| | F | | £=r (M(t)\F(t)\2r/2dHt) 
J—oo 

= \ (M(t)\F(t)\2)pl21~p/2dv(t) 

HF\l 

unless p = 2. Hence our norm is not ^-independent. Of course in this simple 
example the spaces L**^) constructed with v and v are easily seen to be 
isomorphic. 

The fault with the proof of Theorem 1 of [2] lies in the fact that the function 
G defined towards the end of the proof is ^-dependent when p ^ 2 . 

2. Interpolation theory, some preparatory theorems. Our standard refer
ence for results from the theory of interpolation spaces will be [1] and we shall 
follow precisely the notation and terminology used there. 

We present a brief survey of the material needed. 

DEFINITION 5. Two Banach spaces A0, Ax are said to form a compatible 
couple if there is a Hausdorff topological vector space si so that A0, Ax are 
subspaces of si. In A0nAx and A0-\-A1 we use the norms 

HallAonA^maxdlall^Hall^), 

IMLo+A! = inf (HaolLo + Iki lk) . 
a — ao+a,} 
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A Banach space A will be called an intermediate space with respect to 
( A c A ^ i f 

A 0 fl A1 c A c A 0 + Ax 

with continuous inclusions. 

DEFINITION 6. An intermediate space A will be called an interpolation space 
with respect to (A^Ax) if for any linear map T with T'.AQ + AX-^AQ + AX 

and T: At -» Aj(i = 0,1) continuously with respect to the appropriate norm in 
each case, we have T\A—>A continuously. 

There exist many ways of constructing interpolation spaces; the different 
interpolation methods are often referred to as interpolation functors. If A is an 
interpolation space with respect to (A0, At) obtained by some method which 
we call F, we write, using functor notation, A = FiAo^x). 

The next two definitions present the so-called "real interpolation method" 
and "complex interpolation method". 

DEFINITION 7. For a e A o + Ai and f > 0 we define 

k(t,a)= inf (IklUo+^lûilk). 
a = a 0+ci i 

If O < 0 < 1 , l < q < o o or if O < 0 < 1 , q=oo, the space (A0, Ax)e^ is defined to 
consist of all a e A o + Ai for which 

a°° \ l /q 

(rek(t,a)T dt/tj <oo. 
For q = oo, we use an essential supremum in place of the integral. It can be 
shown that the space (A0, A 1 ) 0 q is an interpolation space with respect to 
(A0, Ai). The interpolation functor we just described is called the "real 
interpolation method". 

DEFINITION 8. Let &(A0, Ax) be the Banach space of all functions / with 
values in AQ + AX which have the following properties: 

(i) / is bounded and continuous on the strip S = {z \ 0 < Rez < 1} and 
analytic on the interior of S. 

(ii) / is such that the functions t-*f(it), t—>/(l + if) are continuous from U 
to A0, Ax respectively and tend to zero as \t\ —» °°. 

A norm on ^ ( A 0 , Ax) is provided by: 

11/11 = max(sup ||/(f)||A, sup ||/(1 + if)||A) 

The space which consists of all aeAo + Ax for which a=f(6) for some 
fe £F(A0, A ^ and whose norm is given by 

I H U = inffll/ll,: /(0) = a, / G ̂ ( A 0 , A t)} 
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can be shown to be an interpolation space with respect (A0, Ai). This interpo
lation functor is called the "complex interpolation method". 

Again, full details of these constructions can be found in [1]. We also have, 
from this source, 

DEFINITION 9. Two compatible couples (A0, Ax), (A0, Ax) are said to be 
isometrically isomorphic if there is a bijection £ : (A0, Ax) —» (Â0 +Ax) such that 
the restriction of £ to A 0 maps A 0 isometrically onto A0 , while the restriction 
of £ to A ! maps Ax isometrically onto Ax. 

THEOREM 2. Let (A0, Ax), (A0, Ax) fee two isometrically isomorphic compati
ble couples. Then (A0, A ^ ^ is isometrically isomorphic to (Â0, ÂOe^ and 
(A0, Ax)[e] is isometrically isomorphic to (A0, Ax)[ej. 

Proof. Note that for a e A o + Ai we have 

k(t, a, Ao + Ax) = k(t, a, Â0 + Âx) 

which yields 

so proving the first claim. Further if / e ^ ( A 0 , Aa) then gfe&(Â0, ÂA) and 
H/II^AcAj)= llêfll ^ (Â 0 , Ax). In fact £ generates an isometric isomorphism 
between 8F(A09 Aa) and ^ (A 0 , Ax). The second result now follows easily. 

We now give, through the next lemma, a recharacterization of the space 

In the notation of Theorem 1, let S = UP=i $ a n d let (ST, v) be the measure 
space obtained by taking for 2T the disjoint union of n copies of S each 
carrying a copy of its measure v. 

We note that the spaces fp(Lp(C\ Si9 v)) described in Section 1 are closed 
subspaces of the spaces Zp(Lp(Cn, Si9 v))\ in fact these subspaces are uniformly 
complemented for we can obtain a projection on Zp(Lp(Cn, Si9 v)) whose range 
isIp(Lp(C\Si, i /)) . 

To obtain this projection for a given F = (FU . . . „Fn) in Zp(Lp(Cn, Si9 v))9 

map each Ft in Lp(Cn , Si9 v) to PFt in LP(C\ Si9 v) where P is the orthogonal 
projection of Cn onto Cl. 

LEMMA 1. If Cn is given the p-norm 

( n \ 1/p 

X H p , a=(a1 , . . . ,on), 
k = l ' 

then the spaces Zp(Lp(Cn, Si? v)) are isometrically isomorphic to the spaces 
Lp(C, P, v). 

Proof. ^ can be written as 9~ = \J?=iS\ the SJ being disjoint copies of 
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S, l < / < n . Each SJ can in turn be written SJ = Ù"=i (S% the (SJ)i being the 
corresponding disjoint copies of St, 1 ^ i, j ^ n. 

Given F in ip(Lp(Cn, St, v)) then F = ( F l 5 . . . , Fn) where Fi = (Fn,..., FJn) 
with FJj :(SJ")i ->C. We now define 

G(T) = Fn(t) when r = te(Si)i. 

It is easy to check that the correspondence between F and G is an isometric 
isomorphism. 

We should also note that this construction has the same form for all values 
of p. 

We close this section with a result on interpolation of complemented 
subspaces. 

THEOREM 3. [5, Theorem 1, p. 118] Let (A0, Ax) be a compatible couple. Let 
B be a complemented subspace of AQ + A-^ whose projection P belongs to 
L((A0, Ax), (A0, Ax)). Let F be an arbitrary interpolation functor. Then (A0C\ 
B^AxCiB) is also a compatible couple and 

F(A0 DB,A1nB) = F(A0, Ax) Pi B. 

3. Interpolation of the spaces Lp(yLij). We now apply our preparatory 
theorems to the interpolation of the spaces Lp(jutij). We present here a 
representative result. A collection of further theorems may be found in [3]. 

THEOREM 4. Let l<po,p1<™,0<d<l and 

l/p = ( l -0) /Po+»/Pi 

Then 

(Lp°(^ij), LPl(M*j))e,P - LPdjLij) (equivalent norms), 

and 

(Lp°(iLij), LPi(ju^0)[e] = L p ( | ^ ) , (equivalent norms). 

Proof. It is clear that (LPKJ^,0,£P I(M*,-)) is a compatible couple. From our 
previous sections we have 

LHnu) = IHLHC\ Sh v)) <= ipo(Lpo(Cn, Sh v)) 

= LP°(C, &, v) (equivalent norms) 

wish similar results holding with px in place of p0. We further know from [1, 
Chapter 5, Section 5.1 and Section 5.2] that 

(LP°(C, ST, v\ Lpi(C, 3", v))6tP = Lp(C, S, v) (equivalent norms), 

(Lp(C, 5T, v), LpiC, 2T, v))w = Lp(C, S, v\ (equivalent norms). 

The result is now immediate using Theorem 3 and Lemma 1. 
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In our original version of this paper, Theorem 4 was proved only for the real 
method. We are grateful to a referee for suggesting the method used here to 
cover the complex method as well. 
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