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Lp SPACES FROM MATRIX MEASURES: A 
CORRECTION AND THEIR INTERPOLATION 

BY 

P A T R I C K J. B R O W N E * A N D C L A U D E C O S T A 

ABSTRACT. We discuss the construction of the spaces L**^), 
l < p < o o , where {JUL0} is an n xn positive matrix measure, correct a 
mistake in the literature concerning those spaces and develop an 
interpolation theory for them. 

This paper has two aims. Firstly we shall correct an error which appears in 
[2] wherein the theory of the matrix measure function spaces Lp(jLtii), p > 1, is 
presented and secondly we shall develop an interpolation theory for these 
spaces. 

1. The Spaces Lp(jLLiJ). We commence with a brief outline of the construc­
tion of the spaces Lp(jULiJ). Most of the details can be found in [2] and [4]. 

DEFINITION 1. Let {JU^}, l < j , j^n, be a family of complex valued set 

functions defined on the bounded Borel subsets of the real line. The family 
{/utjj} will be called an n x n positive matrix measure if 

(i) the matrix {^(e)} is Hermitian and positive semidefinite for each 
bounded Borel set e, and 

toi ( U )em= X jLLiJ-(em), 1 < i, ; < n, 
Vn = 1 / m - 1 

for each sequence {em} of pairwise disjoint Borel sets with bounded 
union. 

DEFINITION 2. Let {/uiy} be an n x n positive matrix measure defined on the 
bounded Borel sets of the real line and let v be a non-negative regular o--finite 
Borel measure with respect to which each /LL0 is absolutely continuous. Let the 
matrix of densities M = {mtj} be defined by the equations 

toi(S)= I m^dvit), 1 < /, j < n, 

Received by the editors May 21, 1981 and in revised form, January 8, 1982 and May 7, 1982. 
AMS Classification 46E30. 
* Research supported in part by a grant from the NSERC of Canada. 
© 1983 Canadian Mathematical Society. 

137 

https://doi.org/10.4153/CMB-1983-022-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-022-x


138 PATRICK J. BROWNE AND CLAUDE COSTA [June 

where S is any bounded Borel set. For 1 < p <°°, the space Lgdutj,-) is defined to 
be the space of all n-tuples of Borel functions F(i) = (Fi(t)9. . . , Fn(f)) such 
that 

||F||=[J [F*(0M(t)F(0]p/2^(0j 
l i /p 

<oo . 

Here, and throughout, we write 

F*(t)M(t)F(t) = Z ^(Om.CO^Ô). 
u = i 

If D denotes the subspace of LgC^-) consisting of those F with ||F|| = 0 we 
define Lp(jULiJ) to be the quotient space Lp(jULiJ-)/D. 

The space L 0 0 ^-) is defined as usual using essential suprema in place of 
integrals. 

It is easy to check that the Lp(jULiJ), p > l are normed linear spaces. 

DEFINITION 3. If SçlR is a Borel set, fc>l is an integer and v is a 
non-negative regular a-finite Borel measure, the space Lp(Ck,S,v) is the 
space of (equivalence classes of) complex k -vector valued functions G on S 
normed by 

l p/2 "I 1/p 

U r k -ip/2 -il/p 

,[IlG,(0|2J dv(t)\ , 
r k -11/2 

||G|| = v-esssup I l G i W l 2 , 

l < p < o o 5 

DEFINITION 4. Given n normed linear spaces Xl9... ,Xn , we define lp(Xt), 
l < p < o o to be the space 0^=1 Xj with 

(
n \ 1/p 

IllF,!!-) , i < P < -
= sup 

l < i < n 

THEOREM 1. Let {fx^} be an nxn positive matrix measure on R and let v be a 
non-negative regular a-finite Borel measure with respect to which each ^ is 
absolutely continuous. Then there exists a collection of pairwise disjoint v-
measureable sets S 1 ? . . . , Sn 

Lp(1uL i i)^ip(Lp(C i,S i,i,)). l < p < œ . 

Here = denotes isometric isomorphism. 

The details of the proof of this result can be found in [2]; it is sufficient for us 
to note that the isometric isomorphism is uniquely determined by the matrix 
measure {JUL£J} and has the same analytic form for each value of p. 
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We close this introduction by giving an example to show that Theorem 1 of 
[2] which claims that the space Lp(ju,iy) is independent of the measure v used to 
define it, is correct only for the case p = 2. A proof for the case p = 2 can be 
found in [4]. 

Let fx be a positive (one by one matrix) measure defined on the bounded 
Borel sets of the real line and let v be a non-negative regular cr-finite Borel 
measure with respect to which JLL is absolutely continuous. Let the density M be 
defined by the equation 

n(S)=\ M{f)dv(i) 

where S is any bounded Borel set. Then using our definition of norm of a 
function we obtain 

| | F | £ = n (M(0|F(0|2)p/2<Mt). 
J—oo 

Let a G U+ and define v = av. Then v is a non-negative regular cr-finite Borel 
measure with respect to which JLL is absolutely continuous, v has a density M 
which satisfies M(t) = aM(t). Then we now obtain 

| | F | | £=r (M(t)\F(t)\2r/2dHt) 
J—oo 

= \ (M(t)\F(t)\2)pl21~p/2dv(t) 

HF\l 

unless p = 2. Hence our norm is not ^-independent. Of course in this simple 
example the spaces L**^) constructed with v and v are easily seen to be 
isomorphic. 

The fault with the proof of Theorem 1 of [2] lies in the fact that the function 
G defined towards the end of the proof is ^-dependent when p ^ 2 . 

2. Interpolation theory, some preparatory theorems. Our standard refer­
ence for results from the theory of interpolation spaces will be [1] and we shall 
follow precisely the notation and terminology used there. 

We present a brief survey of the material needed. 

DEFINITION 5. Two Banach spaces A0, Ax are said to form a compatible 
couple if there is a Hausdorff topological vector space si so that A0, Ax are 
subspaces of si. In A0nAx and A0-\-A1 we use the norms 

HallAonA^maxdlall^Hall^), 

IMLo+A! = inf (HaolLo + Iki lk) . 
a — ao+a,} 
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A Banach space A will be called an intermediate space with respect to 
( A c A ^ i f 

A 0 fl A1 c A c A 0 + Ax 

with continuous inclusions. 

DEFINITION 6. An intermediate space A will be called an interpolation space 
with respect to (A^Ax) if for any linear map T with T'.AQ + AX-^AQ + AX 

and T: At -» Aj(i = 0,1) continuously with respect to the appropriate norm in 
each case, we have T\A—>A continuously. 

There exist many ways of constructing interpolation spaces; the different 
interpolation methods are often referred to as interpolation functors. If A is an 
interpolation space with respect to (A0, At) obtained by some method which 
we call F, we write, using functor notation, A = FiAo^x). 

The next two definitions present the so-called "real interpolation method" 
and "complex interpolation method". 

DEFINITION 7. For a e A o + Ai and f > 0 we define 

k(t,a)= inf (IklUo+^lûilk). 
a = a 0+ci i 

If O < 0 < 1 , l < q < o o or if O < 0 < 1 , q=oo, the space (A0, Ax)e^ is defined to 
consist of all a e A o + Ai for which 

a°° \ l /q 

(rek(t,a)T dt/tj <oo. 
For q = oo, we use an essential supremum in place of the integral. It can be 
shown that the space (A0, A 1 ) 0 q is an interpolation space with respect to 
(A0, Ai). The interpolation functor we just described is called the "real 
interpolation method". 

DEFINITION 8. Let &(A0, Ax) be the Banach space of all functions / with 
values in AQ + AX which have the following properties: 

(i) / is bounded and continuous on the strip S = {z \ 0 < Rez < 1} and 
analytic on the interior of S. 

(ii) / is such that the functions t-*f(it), t—>/(l + if) are continuous from U 
to A0, Ax respectively and tend to zero as \t\ —» °°. 

A norm on ^ ( A 0 , Ax) is provided by: 

11/11 = max(sup ||/(f)||A, sup ||/(1 + if)||A) 

The space which consists of all aeAo + Ax for which a=f(6) for some 
fe £F(A0, A ^ and whose norm is given by 

I H U = inffll/ll,: /(0) = a, / G ̂ ( A 0 , A t)} 
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can be shown to be an interpolation space with respect (A0, Ai). This interpo­
lation functor is called the "complex interpolation method". 

Again, full details of these constructions can be found in [1]. We also have, 
from this source, 

DEFINITION 9. Two compatible couples (A0, Ax), (A0, Ax) are said to be 
isometrically isomorphic if there is a bijection £ : (A0, Ax) —» (Â0 +Ax) such that 
the restriction of £ to A 0 maps A 0 isometrically onto A0 , while the restriction 
of £ to A ! maps Ax isometrically onto Ax. 

THEOREM 2. Let (A0, Ax), (A0, Ax) fee two isometrically isomorphic compati­
ble couples. Then (A0, A ^ ^ is isometrically isomorphic to (Â0, ÂOe^ and 
(A0, Ax)[e] is isometrically isomorphic to (A0, Ax)[ej. 

Proof. Note that for a e A o + Ai we have 

k(t, a, Ao + Ax) = k(t, a, Â0 + Âx) 

which yields 

so proving the first claim. Further if / e ^ ( A 0 , Aa) then gfe&(Â0, ÂA) and 
H/II^AcAj)= llêfll ^ (Â 0 , Ax). In fact £ generates an isometric isomorphism 
between 8F(A09 Aa) and ^ (A 0 , Ax). The second result now follows easily. 

We now give, through the next lemma, a recharacterization of the space 

In the notation of Theorem 1, let S = UP=i $ a n d let (ST, v) be the measure 
space obtained by taking for 2T the disjoint union of n copies of S each 
carrying a copy of its measure v. 

We note that the spaces fp(Lp(C\ Si9 v)) described in Section 1 are closed 
subspaces of the spaces Zp(Lp(Cn, Si9 v))\ in fact these subspaces are uniformly 
complemented for we can obtain a projection on Zp(Lp(Cn, Si9 v)) whose range 
isIp(Lp(C\Si, i /)) . 

To obtain this projection for a given F = (FU . . . „Fn) in Zp(Lp(Cn, Si9 v))9 

map each Ft in Lp(Cn , Si9 v) to PFt in LP(C\ Si9 v) where P is the orthogonal 
projection of Cn onto Cl. 

LEMMA 1. If Cn is given the p-norm 

( n \ 1/p 

X H p , a=(a1 , . . . ,on), 
k = l ' 

then the spaces Zp(Lp(Cn, Si? v)) are isometrically isomorphic to the spaces 
Lp(C, P, v). 

Proof. ^ can be written as 9~ = \J?=iS\ the SJ being disjoint copies of 
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S, l < / < n . Each SJ can in turn be written SJ = Ù"=i (S% the (SJ)i being the 
corresponding disjoint copies of St, 1 ^ i, j ^ n. 

Given F in ip(Lp(Cn, St, v)) then F = ( F l 5 . . . , Fn) where Fi = (Fn,..., FJn) 
with FJj :(SJ")i ->C. We now define 

G(T) = Fn(t) when r = te(Si)i. 

It is easy to check that the correspondence between F and G is an isometric 
isomorphism. 

We should also note that this construction has the same form for all values 
of p. 

We close this section with a result on interpolation of complemented 
subspaces. 

THEOREM 3. [5, Theorem 1, p. 118] Let (A0, Ax) be a compatible couple. Let 
B be a complemented subspace of AQ + A-^ whose projection P belongs to 
L((A0, Ax), (A0, Ax)). Let F be an arbitrary interpolation functor. Then (A0C\ 
B^AxCiB) is also a compatible couple and 

F(A0 DB,A1nB) = F(A0, Ax) Pi B. 

3. Interpolation of the spaces Lp(yLij). We now apply our preparatory 
theorems to the interpolation of the spaces Lp(jutij). We present here a 
representative result. A collection of further theorems may be found in [3]. 

THEOREM 4. Let l<po,p1<™,0<d<l and 

l/p = ( l -0) /Po+»/Pi 

Then 

(Lp°(^ij), LPl(M*j))e,P - LPdjLij) (equivalent norms), 

and 

(Lp°(iLij), LPi(ju^0)[e] = L p ( | ^ ) , (equivalent norms). 

Proof. It is clear that (LPKJ^,0,£P I(M*,-)) is a compatible couple. From our 
previous sections we have 

LHnu) = IHLHC\ Sh v)) <= ipo(Lpo(Cn, Sh v)) 

= LP°(C, &, v) (equivalent norms) 

wish similar results holding with px in place of p0. We further know from [1, 
Chapter 5, Section 5.1 and Section 5.2] that 

(LP°(C, ST, v\ Lpi(C, 3", v))6tP = Lp(C, S, v) (equivalent norms), 

(Lp(C, 5T, v), LpiC, 2T, v))w = Lp(C, S, v\ (equivalent norms). 

The result is now immediate using Theorem 3 and Lemma 1. 
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In our original version of this paper, Theorem 4 was proved only for the real 
method. We are grateful to a referee for suggesting the method used here to 
cover the complex method as well. 
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